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Abstract. The k-traveling salesman problem (k-TSP) seeks a tour of minimal length that 
visits a subset of k ≤ n points. The traveling repairman problem (TRP) seeks a complete 
tour with minimal latency. This paper provides constant-factor probabilistic approxima-
tions of both problems. We first show that the optimal length of the k-TSP path grows at a 
rate of Θ k=nk=(2(k�1))� �

. The proof provides a constant-factor approximation scheme, which 
solves a TSP in a high-concentration zone, leveraging large deviations of local concentra-
tions. Then, we show that the optimal TRP latency grows at a rate of Θ(n

ffiffiffi
n
√
). This result 

extends the classic Beardwood–Halton–Hammersley theorem to the TRP. Again, the proof 
provides a constant-factor approximation scheme, which visits zones by decreasing order 
of probability density. We discuss practical implications of this result in the design of trans-
portation and logistics systems. Finally, we propose dedicated notions of fairness— 
randomized population-based fairness for the k-TSP and geographic fairness for the TRP— 
and give algorithms to balance efficiency and fairness.
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1. Introduction
This paper studies the traveling repairman problem (TRP)—also known as the minimum latency problem (Afrati et al. 
[1], Bianco et al. [12], Minieka [30])—and the k-traveling salesman problem (k-TSP) in the Euclidean plane. These two 
problems are extensions of the well-studied traveling salesman problem (TSP). The TSP takes as inputs a set of n 
points as well as a distance matrix between all points and seeks the route of minimal length that visits all n points. 
Assuming constant speed, the TSP is equivalent to minimizing the arrival time at the end of the tour. Instead, the TRP 
seeks a tour that minimizes the sum of waiting times, known as the total latency. This problem arises in routing pro-
blems with requirements on customer wait times, for instance, to ensure sufficient level of service or to maximize 
operating profitability under random customer abandonment. The TRP is also applicable to disk head scheduling 
(Blum et al. [15]), flexible manufacturing systems (Simchi-Levi and Berman [38]), machine scheduling (Picard and 
Queyranne [35]), information search in computer networks (Ausiello et al. [4]) and other domains (Tsitsiklis [44]).

In contrast, the k-TSP seeks a path of minimal length that visits k out of n points, where k ≤ n. In other words, the server 
chooses which points to serve. This problem has natural applications in routing and distribution systems, for example, 
for a logistics provider that can only serve a partial set of customers because of limitations on its delivery capacity. In addi-
tion, the k-TSP is used as subroutine for TRP approximation algorithms (Blum et al. [15], Goemans and Kleinberg [23]).

Our goal is to derive probabilistic bounds on the optimal k-TSP tour and the optimal TRP latency, which, in turn, 
lead to the design of efficient probabilistic approximation schemes. We consider a setting with a fixed number n of 
points in the Euclidean plane. The location of these points is unknown, following a known distribution; we denote 
by f the density of its absolutely continuous part. We seek constant-factor optimal approximations, that is, probabi-
listic solutions leading to an objective value that is asymptotically within a constant factor from the optimal solu-
tion. Specifically, we derive constant-factor estimates for the k-TSP and TRP solutions as a function of the number 
of points n and the density f. Moreover, through constructive proofs, we provide constant-factor approximation 
algorithms for both problems.
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1.1. Related Work
The TSP is one of the canonical problems in operations research. The Beardwood–Halton–Hammersley (BHH) the-
orem, stated in Beardwood et al. [7] and improved in Steele [41, 42] gives a constant-factor Θ(

ffiffiffi
n
√
) approximation of 

the optimal TSP tour in the Euclidean space. The proof of these TSP estimates leads to the design of approximation 
algorithms that are stochastically robust in the a priori setting. A priori optimization (Bertsimas et al. [11]) provides 
an optimization framework when the same combinatorial problem is solved repeatedly over different instances. 
The goal is to compute a master solution ahead of time that minimizes an expected cost function given subsequent 
adjustments according to simple rules upon the realization of uncertainty.

This work has leveraged extensively the “locality property” of the TSP to design “divide and conquer” approxi-
mation algorithms. That is, under this approach, we define an a priori route that can then be slightly modified to 
respond to the instance realizations, keeping its approximation guarantees (Carlsson and Song [18]). Moreover, a 
near-optimal tour for the TSP objective remains near-optimal if we change the starting point of the tour. Even in the 
case of a unique starting depot, restricting the server to start serving from any point in the tour only induces an 
additional constant cost (which does not scale up with the number of points).

Despite its similarity with the TSP, the TRP lacks a locality property and is, therefore, much harder to solve. Local 
changes in the input points affect the waiting time of all the remaining ones, leading to nonlocal modifications in 
the optimal tour. Even in the one-dimensional case in which points lie on a line, the optimal TRP tour may cross 
itself several times, which is not the case in the TSP. Blum et al. [15] show that there exists a simple reduction from 
the TRP to the TSP, implying that the TRP is NP-hard in general for all metric spaces in which the TSP is known to 
be NP-hard. The TRP is even NP-hard on weighted trees, in which the TSP is easy (Sitters [39]).

Blum et al. [15] propose the first constant-factor approximation algorithm for the TRP in general metric spaces. 
Their approach involves a reduction to the k-minimum spanning tree (k-MST) problem, which seeks an optimal tree 
spanning k vertices in a weighted graph. This problem is also known to be NP-hard (Fischetti et al. [20]). Substantial 
work has been made to give approximation algorithms for this problem (Arya and Ramesh [3], Blum et al. [14], Garg 
[21], Ravi et al. [37]) with the current best bound being a 2-approximation algorithm (Garg [22]). More precisely, Blum 
et al. [15] show that a c-approximating algorithm for k-MST yields an 8c-approximating algorithm for the TRP, thus 
providing a 16-approximation using the best known algorithm for the k-MST. Goemans and Kleinberg [23] improve 
the reduction in Blum et al. [15] from a factor of 8 to a factor of 3.59. Chaudhuri et al. [19] give the current best bound, 
a 3:59-approximation algorithm for the TRP in general metric spaces. In the case of weighted trees on the Euclidean 
plane, there exists a polynomial time (1+ ε)-approximation algorithm (Sitters [40]).

The k-MST and k-TSP are also closely related. Hence, some papers on the k-MST give results for the k-TSP. Specifi-
cally, the algorithms given by Blum et al. [14], Garg [21, 22], and Arora and Karakostas [2] can be adapted to the k-TSP, 
which yields a 2-approximation algorithm for the k-TSP. These results are also leveraged to address other variants, such 
as prize-collector problems (Johnson et al. [26], Paul et al. [34]). More recently, Pandiri and Singh [33] give metaheuris-
tics for the rooted k-TSP leveraging permutation-based and local-search heuristics.

Recent work focuses on the a priori TRP (Navidi et al. [31], van Ee and Sitters [45]). Following earlier work on the 
a priori TSP (Bertsimas et al. [11], Jaillet [25], Laporte et al. [27]), this problem seeks a master tour under demand 
uncertainty, in which each vertex is present with some probability. In this paper, we seek a priori solutions when 
the uncertainty lies in the position of the points as opposed to the number of such points.

Unlike the TSP, the k-TSP and the TRP encode a notion of priority between points. In the k-TSP, the decision maker 
can choose which points to serve; in the TRP, the decision maker can choose the sequence of customer visits. Such pri-
oritization gives rise to important fairness issues. Namely, in the k-TSP, one can serve the points that lie in high- 
density zones, ignoring all other points altogether. Similarly, in the TRP, one can serve zones by decreasing order of 
density, thus prioritizing points in high-density zones over points in low-density zones. As a result, the approxima-
tion algorithms for both problems can lead to spatial discrimination across populations. This trade-off between effi-
ciency and fairness arises in many resource allocation and scheduling problems (Bertsimas et al. [9, 10]), spanning 
communication networks (Bertsimas et al. [9], Luo et al. [28], Radunovic and Le Boudec [36]), air traffic management 
(Bertsimas and Gupta [8], Jacquillat and Vaze [24], Vossen et al. [46]), and finance (O’Cinneide et al. [32]).

1.2. Contributions and Outline
This paper makes three contributions: 
� We derive a constant-factor probabilistic estimate of the optimal k-TSP tour for general distributions (Section 

3). Specifically, we show that the optimal k-TSP length grows at a rate of Θ(k=nk=(2(k�1))). This result is obtained by 
leveraging large deviations in local point concentration to serve regions with high point concentration (especially 
for small k).
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� We provide nonasymptotic constant-factor estimates of the optimal TRP for general distributions (Section 4). 
We show that total latency grows as Θ(n

ffiffiffi
n
√
) and characterize the dependence of the constant on the sampling dis-

tribution as the integral of a function of absolutely continuous part density, thus extending the BHH result from 
the TSP to the TRP. We discuss practical implications for the design of transportation and logistics systems in Sec-
tion 2.3.
� We define fairness-enhanced versions of the k-TSP and TRP and analyze the price of fairness (Section 5). The 

approximation algorithms for the k-TSP and the TRP are highly “local.” As a result, customers in high-density 
regions are more likely to receive a service (for the k-TSP) or to have a lower wait time (for the TRP). We define 
notions of fairness to circumvent this issue. For the TRP, we show that our approximation scheme satisfies max- 
min fairness and propose modifications toward proportional fairness. For the k-TSP, we show that geographical 
fairness across regions leads to significant efficiency loss. We, thus, propose population-based fairness given the 
distribution of populations across regions. We show that probabilistic population-based fairness still allows for 
flexibility and can lead to near-optimal k-TSP solutions.

Before proceeding, we first describe in Section 2 the modeling framework, outline our main results along with 
the proof techniques, and discuss their practical implications.

2. Setup, Overview of Results, and Practical Implications
2.1. Setup and Preliminaries
We consider a set of n points V � {X1, : : : , Xn} in the Euclidean space R2 equipped with the natural Euclidean dis-
tance. We focus on the two-dimensional case, but our results can easily be extended to the general case Rd. We con-
sider a probabilistic setting in which vertices X1, : : : , Xn are independent and identically distributed (i.i.d.), drawn 
from some distribution on a compact K ⊂ R2. We denote by f the density of its absolutely continuous part.

Given the set of points V, we consider three optimization problems: 
1. The TSP seeks a tour that starts in a vertex; visits all n vertices with some service order x1, : : : , xn; and returns 

to the starting point. The objective is to minimize the total length of the tour:
Xn�1

i�1
|xi+1� xi | + |x1� xn | : (1) 

2. The k-TSP seeks a path that visits an endogenous subset of k ≤ n vertices x1, : : : , xk. The objective is again to 
minimize the total length of the path:

Xk�1

i�1
|xi+1� xi | : (2) 

3. The TRP, like the TSP, also seeks a complete tour of the n vertices. However, the TRP minimizes the total 
latency or the total wait times at the vertices. Formally, if x1, : : : , xn defines a service order, the latency at point xi is 
defined as li �

Pi�1
j�1 |xj+1� xj | : The TRP tour minimizes the sum of latencies:

Xn

i�1
li �

Xn�1

i�1
(n� i) |xi+1� xi | : (3) 

In this paper, we provide constant-factor probabilistic bounds, that is, bounds on the expected optimal value of 
these problems that hold asymptotically within a universal constant factor, in which the expectation is taken over 
the randomness of the points X1, : : : , Xn (our bounds also hold with high probability). Similarly, we say that an algo-
rithm is constant-factor optimal if it provides solutions with objective value within a constant factor of the optimal 
solution in expectation.

In this setting, the well-known BHH theorem shows that the optimal TSP length grows as Θ(
ffiffiffi
n
√
).

Theorem 1 (BHH Theorem, Beardwood et al. [7]). Let (Xi)i≥1 be a sequence of i.i.d. random points according to a distri-
bution on a compact space K ⊂ R2. With probability one, the length lTSP(X1, : : : , Xn) of the optimal TSP on points {X1, 
: : : , Xn} satisfies

lim
n→∞

lTSP(X1, : : : , Xn)
ffiffiffi
n
√ � βTSP

Z Z

K

ffiffiffiffiffiffiffiffi

f (x)
q

dx, 

where 0:6250 ≤ βTSP ≤ 0:9204 is a universal constant and f denotes the density of the absolutely continuous part of the 
distribution.
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Lemma 1 provides a simplified version of Theorem 1 that is useful in our analysis. The proof of this result con-
structs a simple “master” space-filling curve that is at most 1=(2

ffiffiffi
n
√
) away from any point in the unit square and has 

length 
ffiffiffi
n
√
+O(1). We can adapt this simple curve to serve any vertex by adding a back-and-forth detour from the 

closest point on the curve. Similarly, we can adapt the curve to serve n points. The length of the resulting tour is 
2
ffiffiffi
n
√
+O(1).

Lemma 1 (Beardwood et al. [7]). Let n ≥ 2 and (Xi)1≤i≤n points in the unit square [0, 1]2. Denote by lTSP(X1, : : : , Xn) the 
length of the TSP tour visiting these points. Then,

lTSP(X1, : : : , Xn) ≤ 2
ffiffiffi
n
√
+C, 

for some universal constant C>0.

In our algorithms for the k-TSP and the TRP, we use this result as a subroutine to design an a priori curve that can 
serve n points with a worst case length of 2

ffiffiffi
n
√
+C. Asymptotically, this a priori procedure yields solutions that are 

at most 2=βTSP away from the optimal TSP tour.

2.2. Main Results
The main results of the paper provide constant-factor approximations of the k-TSP and TRP solutions. First, we 
show in Section 3 that the optimal k-TSP tour grows at a rate of Θ k=nk=(2(k�1))� �

(Theorem 2). This rate can be inter-
preted as a positive result by contrasting it with (i) a naive bound of 

ffiffiffi
k
√

, which applies a TSP tour on a random sub-
set of k points, and (ii) a bound of k=

ffiffiffi
n
√

, which selects the best subpath of k consecutive vertices in the full TSP tour. 
The rate of Θ k=nk=(2(k�1))� �

underscores a benefit of 
ffiffiffiffiffiffiffiffi
k=n

p
that comes from merely optimizing which vertices to visit 

and an additional benefit of n�1=(2(k�1)) that comes from reoptimizing the tour, leveraging large deviations in local 
point concentration.

The proof of the k-TSP proceeds by showing that the rate k=nk=(2(k�1)) is nonasymptotically tight up to a constant 
with uniform densities. We extend the analysis to the case of general measurable (not necessarily continuous) densi-
ties. In particular, the proof for the upper bound is constructive and provides a constant-factor approximation algo-
rithm when 1≪ k≪ n by selecting the region with highest point concentration and performing the (uniform) k-TSP 
in this region.

Second, we show in Section 4 that the optimal TRP latency grows at a rate of Θ(n
ffiffiffi
n
√
) (Theorem 3). In contrast to 

the previous one, this is a rather negative result. Indeed, the TSP tour gives a Θ(
ffiffiffi
n
√
) estimate of the latency in the 

last vertex. Accordingly, if all customers had to wait as long as the last customer, we would end up with a total 
latency of the order of n

ffiffiffi
n
√

. As this result shows, even by reoptimizing the tour, the TRP still leads to optimal 
latency on the order of n

ffiffiffi
n
√

.
The proof of the TRP upper bound is also constructive and gives a simple constant-factor approximation scheme. 

This scheme constructs a master a priori tour, depending solely on the absolutely continuous part density and then 
adapts it to any realization of sampled points. Specifically, the algorithm partitions the region into zones of constant 
density, visits zones by decreasing order of local density, and performs a tour on each zone following space-filling 
techniques for the TSP.

From a practical standpoint, the TRP result is structurally different from the TSP result. Specifically, the optimal 
TSP tour is concave in the number of vertices, indicating economies of scale. In contrast, the optimal TRP latency is 
convex in the number of vertices, indicating diseconomies of scale. This distinction has implications for the design 
of transportation and logistics systems.

2.3. Implications for Transportation and Logistics Operations
TSP approximation results provide insights into the operations of transportation and logistics systems, which can 
be used to support upstream planning decisions. Sample applications include location analysis (Carlsson and Jones 
[17]), area partitioning for vehicle routing (Carlsson [16]), and same-day delivery systems (Banerjee et al. [5, 6], 
Stroh et al. [43]). In these problems, continuous approximations estimate routing costs into upstream optimization 
models rather than, for instance, capturing discrete routing dynamics at significant computational costs.

Specifically, TSP approximation results take the perspective of a logistics provider. However, several systems 
strive to also minimize customer wait times. For instance, in food delivery, a company needs to serve customers as 
early as possible as opposed to meeting an overall deadline. As another example, school bus (or company bus) rout-
ing aims to minimize the travel times of the students (or employees) as opposed to the vehicle’s trip time. The TRP 
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provides the natural framework to estimate customer level of service. As such, the results of this paper can be used 
to guide the design of such transportation and logistics systems focused on wait times.

This distinction between the TSP length and TRP latency has practical consequences because of the concavity of 
the 

ffiffiffi
n
√

function versus the convexity of the n
ffiffiffi
n
√

function. As a result, economies of scale in the TSP favor service 
concentration (few vehicles, each serving many customers), whereas diseconomies of scale in the TRP favor service 
dispersion (more vehicles each serving a smaller number of customers). We illustrate this tension in two simple 
examples.

2.3.1. Fleet Size Optimization. We seek the number of vehicles m to serve a batch of N orders. Each vehicle incurs a 
fixed cost c and carries N=m orders. Assume first that the system minimizes vehicles’ fixed and travel costs. Based 
on the BHH approximation, we can write this objective as minimizing c ·m+ d ·m ·

ffiffiffiffiffiffiffiffiffiffi
N=m

p
� cm+ d

ffiffiffiffiffiffiffiffi
Nm
√

for some 
scaling constant d. The optimal strategy is m�1 even with c�0; that is, a single vehicle serves all customers. 
However, if we replace the vehicle travel time component with a customer wait time component, the objective 
becomes minimizing c ·m+ d̃ ·N=m

ffiffiffiffiffiffiffiffiffiffi
N=m

p
for some scaling constant d̃. The optimum is now attained for 

m∗ � (3d̃=(2c))2=5N3=5. Now, the operator leverages a multivehicle fleet, which increases with customer demand. 
This example underscores two opposite strategies, spanning pure consolidation in the TSP case (serving the entire 
batch with a single vehicle) versus dispersion in the TRP case (serving customer demand with multiple vehicles to 
balance vehicle costs and customer wait times).

2.3.2. Vehicle Dispatch in Same-Day-Delivery (SDD) Systems. Based on Stroh et al. [43], we consider an SDD pro-
vider that operates a fleet of m vehicles, each of which can only be dispatched once. Customers arrive at a constant 
rate λ�until an order cutoff N is met at time Tcutoff �N=λ. The operator optimizes dispatch decisions, characterized 
by a dispatch time ti and a number of carried orders ni for each vehicle i � 1, : : : , m. Following the BHH approxima-
tion, the delivery time of vehicle i can be written as a ·

ffiffiffi
n
√

i for some scaling constant a. The SDD constraint asks that 
vehicles should complete their deliveries by an end-of-day deadline T, that is, ti + a ffiffiffiffini

√
≤ T for all i � 1, : : : , m. Stroh 

et al. [43] minimize the total dispatch time 
Pm

i�1 a ffiffiffiffini
√ under the aforementioned SDD, demand (all orders need to be 

served), and consistency (orders can only be carried after they become available) constraints. Whenever feasible, 
the optimal strategy is to dispatch the first vehicle when it can fulfill all revealed orders and return exactly at time T, 
the second vehicle when it can fulfill all subsequent orders and return exactly at time T, etc. (top of Figure 1). This 
strategy is feasible (hence, optimal) whenever the fleet m is sufficiently large to cover all the demand, which can be 
checked by solving recursively the equations ti + a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ(ti� ti�1)

p
� T for ti�1 ≤ ti ≤ T with t0 � 0 and checking 

whether tm ≥ Tcutoff .
Now, assume that the operator minimizes customer wait times. Based on our TRP approximation result, this 

scales as w · n
ffiffiffi
n
√

for some scaling constant w. Note that the cost function can be augmented by replacing wn
ffiffiffi
n
√

with 
b · n2 +w · n

ffiffiffi
n
√

, where b · n2 captures the batching time prior to the dispatch and w · n
ffiffiffi
n
√

captures the wait time after 
the dispatch. Either way, the cost function is now convex in n. Whenever feasible, the optimal strategy is, therefore, 
to dispatch vehicles at regular times iN=(mλ) (bottom of Figure 1). This strategy is feasible (hence, optimal) when-
ever the last vehicle m can complete its orders by the end of the day, that is, whenever N=λ+ a

ffiffiffiffiffiffiffiffiffiffi
N=m

p
≤ T.

Again, this structure underscores two opposite strategies. In the SDD system (based on a TSP objective), the dis-
patching policy leverages consolidation by bundling orders together as much as possible. In contrast, in the food 

Figure 1. (Color online) Consolidation-driven dispatch based on order deadlines from the TSP approximation (top) versus 
dispersion-driven dispatch based on customer wait times from the TRP approximation (bottom) for m � 4 vehicles. 
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delivery, school bus, and employee bus systems, the dispatching policy leverages dispersion by distributing orders 
as evenly as possible. Although stylized, these two examples underscore that minimizing wait times may signifi-
cantly alter design decisions in routing systems as compared with focusing on vehicle travel times.

3. The k-Traveling Salesman Problem
We provide probabilistic estimates on the length of the k-TSP tour. Before proceeding, let us expand on the two 
aforementioned naive bounds: 
� Upper bound of O(

ffiffiffi
k
√
): By choosing the k points to visit uniformly at random among the n available points, 

the BHH theorem ensures that the length of the optimal path visiting these k points has length ~ βTSP

ffiffiffi
k
√ RR

K

ffiffi
f

p
as 

k→∞. However, this analysis does not leverage the flexibility regarding which points to serve.
� Upper bound of O(k=

ffiffiffi
n
√
): Consider the optimal TSP tour visiting all n points of length lTSP(n). Selecting k con-

secutive points on this tour at random—we randomly select the starting point—yields a path of length (k� 1)=n ·
lTSP(n) in expectation. In particular, the best choice of k consecutive points on the TSP tour yields an upper bound 
for the k-TSP of (k� 1)=n · lTSP(n) �O(k=

ffiffiffi
n
√
). This observation underscores the benefits of choosing which points to 

serve. As we see, such flexibility can be very significant, especially for small values of k. Yet this analysis still relies 
on the optimal TSP tour, therefore eliminating an extra degree of freedom in the k-TSP.

We show that this rate O(k=
ffiffiffi
n
√
) is essentially tight for large k but can be tightened for small k. For instance, 

for k�2, the minimum distance between n uniformly sampled points in the unit square is Θ(1=n) instead of 
O(1=

ffiffiffi
n
√
). Our results in this section interpolate the Θ(1=n) estimate for k�2 and the Θ(

ffiffiffi
n
√
) estimate for k�n. We 

now present the main result of this section giving the exact rate of the expected k-TSP length. Note that this 
result does not only provide an asymptotic rate, but holds yields an estimate of the k-TSP length for any choice 
of 2 ≤ k ≤ n.

Theorem 2. Assume n vertices are drawn independently, uniformly on a compact space K ⊂ R2 with area AK. Denote by 
lTSP(k, n) the length of the k-TSP on these n vertices. Then, for all n ≥ 2 and 2 ≤ k ≤ n, for some universal constants 
0 < c < C,

c k� 1
n1

2 1+ 1
k�1( )

ffiffiffiffiffiffiffi
AK

p
≤ E[lTSP(k, n)] ≤ C k� 1

n1
2 1+ 1

k�1( )

ffiffiffiffiffiffiffi
AK

p
:

Theorem 2 exhibits an additional factor Θ(n�1=(2(k�1))) compared with the previous bound O(k=
ffiffiffi
n
√
). This additional 

factor corresponds to large deviations of local point densities. Consider any subsquare of area O(k=n) and perform the 
TSP on this subsquare. We expect O(k) points in this subsquare, yielding a path of length O(

ffiffiffi
k
√
·
ffiffiffiffiffiffiffiffi
k=n

p
) �O(k=

ffiffiffi
n
√
). In 

the k-TSP however, we can choose to serve zones with abnormally high point concentration, deviating from the 
expected density. In the following two sections, we prove Theorem 2 and show that the resulting discount on the length 
of the optimal path visiting k points is the additional factor Θ(n�1=(2(k�1))). A comparison of the obtained convergence 
rate together with a comparison to the simple bound O(k=

ffiffiffi
n
√
) is represented in Figure 2.

Figure 2. (Color online) Convergence rate of the length of the k-TSP Θ
�
(k� 1)=nk=(2(k�1))� (in solid lines) compared with the rate 

of convergence of the simple heuristic Θ((k� 1)=
ffiffiffi
n
√
) (in dashed lines) as a function of n and k. 
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3.1. Lower Bounds on the k-TSP
We first need the following lemma.

Lemma 2. Assume all n vertices are drawn independently, uniformly on a compact K ⊂ R2 with area AK. Denote by 
lTSP(k, n) the length of the k-TSP on these n vertices. Then, for any α > 0,

P[lTSP(k, n) ≤ α] ≤ nk 2πα2

AK

� �k�1 1
(2k� 2)! :

Proof. By symmetry on the vertices and because n!=((n� k)!) ≤ nk,

P[lTSP(k, n) ≤ α] � E[1lTSP(k, n)≤α]

≤ E
X

1≤i1, : : : , ik≤n distinct
1( |vi2 � vi1 |+⋯ +|vik � vik�1 | ≤ α)

" #

≤ nkE[1 |v2�v1 | +⋯+ |vk�vk�1 | ≤α]:

We next estimate the last term. Given the position of v1, the probability of having l1 ≤ |v2� v1 | ≤ l1 + dl1 is at 
most (2πl1=AK)dl1: Similarly, conditionally on v1, : : :vk�1, the probability of having lk�1 ≤ |vk� vk�1 | ≤ lk�1 + dlk�1 
is at most (2πlk�1=AK)dlk�1 (see Figure 3 for an illustration for k�4). Therefore,

E[1 |v2�v1 | +⋯+ |vk�vk�1 | ≤α] ≤

Z

l1, : : : , lk�1≥0
1l1+⋯+lk�1≤α

2πl1
AK

� �

⋯ 2πlk�1
AK

� �

dl1 ⋯ dlk�1 �
2πα2

AK

� �k�1

Pk�1, 

where Pk�1 :�
R

l1, : : : , lk�1≥01l1+⋯+lk�1≤1 · l1 ⋯ lk�1 · dl1 ⋯ dlk�1. Now, for any k ≥ 2,

Pk �

Z 1

lk�0
lk
Z

l1, : : : , lk�1≥0
1l1+⋯+lk�1≤1�lk · l1 ⋯ lk�1 · dl1 ⋯ dlk�1

� �

dlk

�

Z 1

0
lk · (1� lk)2(k�1)

Pk�1 · dlk � Pk�1 ·
1

(2k� 1)(2k) :

Because P1 �
1
2, by induction Pk � 1=((2k)!). Putting everything together yields the desired result. w

We are now ready to prove a lower bound on the k-TSP.

Proof of the Lower Bound in Theorem 2. Applying Lemma 2, we obtain

P lTSP(k, n) ≤ ε
ffiffiffiffiffiffiffi
2

e2π

r
k� 1

n1
2 1+ 1

k�1( )

ffiffiffiffiffiffiffi
AK

p
" #

≤ nk 4ε2(k � 1)2

e2 · n 1+ 1
k�1( )

 !k�1
1

(2k � 2)!

≤
4ε2(k� 1)2

e2

 !k�1
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π(k� 1)

p
e

2(k� 1)

� �2(k�1)

�
ε2k�2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π(k� 1)

p , 

Figure 3. (Color online) Illustration of the proof of Lemma 2: P(li ≤ |vi+1� vi | ≤ li + dli) ≤ (2πli=AK)dli. 
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where we use Stirling’s approximation 
ffiffiffiffiffiffi
2π
√

nn+1=2e�n ≤ n! ≤ enn+1=2e�n: Then,

E[lTSP(k, n)] �
ffiffiffiffiffiffiffi
2

e2π

r
k� 1

n1
2 1+ 1

k�1( )

ffiffiffiffiffiffiffi
AK

p Z ∞

0
P lTSP(k, n) ≥ ε

ffiffiffiffiffiffiffi
2

e2π

r
k� 1

n1
2 1+ 1

k�1( )

ffiffiffiffiffiffiffi
AK

p
" #

dε

≥

ffiffiffiffiffiffiffi
2

e2π

r
k� 1

n1
2 1+ 1

k�1( )

ffiffiffiffiffiffiffi
AK

p Z 1

0
1� ε2k�2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π(k� 1)

p

 !

dε

≥

ffiffiffiffiffiffiffi
2

e2π

r
k� 1

n1
2 1+ 1

k�1( )

ffiffiffiffiffiffiffi
AK

p
1� 1

6
ffiffiffiffi
π
√

� �

, 

where in the last inequality, we use 
R 1

0 ε
2k�2=

ffiffiffiffiffiffiffiffiffiffi
k� 1
√

≤
R 1

0 ε
2 � 1=3. The result follows. w

This lower bound improves over the simple rate O(k=
ffiffiffi
n
√
) obtained by using the TSP tour only. In particular, 

when k is small, we can improve the exponent of the denominator; for example, for k�1, we obtain the rate Ω(1=n), 
and for k�2, we get a rate Ω(1=n3=4). For k �Ω(log n), the term 1=(k� 1) in the exponent of the denominator can be 
omitted. Thus, the provided lower bound becomes Ω(k=

ffiffiffi
n
√
), matching the simple upper bound with high probabil-

ity as shown in the following result.

Corollary 1. Assume all n vertices are drawn independently, uniformly on a compact space K ⊂ R2 with area AK. Denote 
by lTSP(k, n) the length of the k-TSP on these n vertices. Then, there exists a universal constant M > 0 such that, for M log 
n ≤ kn ≤ n,

P lTSP(kn, n) ≤ kn

e
ffiffiffiffiffiffi
πn
√

ffiffiffiffiffiffiffi
AK

p
� �

� o(e�kn):

Proof. We use Lemma 2 with α � kn
ffiffiffiffiffiffiffi
AK

√
=(e

ffiffiffiffiffiffi
πn
√
) and the lower bound 

ffiffiffiffiffiffi
2π
√

nn+1=2e�n ≤ n! to get

P lTSP(kn, n) ≤ kn

e
ffiffiffiffiffiffi
πn
√

ffiffiffiffiffiffiffi
AK

p
� �

≤ n 2k2
n

e2

� �kn�1 4k2
n

(2kn)!
≤

4e2n
ffiffiffiffiffiffiffiffi
πkn
√

2kn
≤

4e2
ffiffiffiffi
π
√ · elog n�knlog 2:

Therefore, for M > 2=log 2 and for all kn ≥M log n, the right-hand side term is o(e�kn). w

3.2. Upper Bound on the k-TSP
In this section, we show that the lower bound shown in Section 3.1 is tight up to a constant factor.

Proof of the Upper Bound of Theorem 2. We first suppose k ≤ n1=3 and treat the case k ≥ n1=3 separately. Fix α > 0. 
We start by covering the compact K into Pα�disjoint subsquares of equal size (1=mα) × (1=mα), where 

mα :�

$
1
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1+ 1
k�1=(AK(k� 1))

q %

:

Because K is measurable and has area AK, we know that Pα ~ AKm2
α�as α→∞. We first show that, with high proba-

bility, there exists at least one of these subsquares that contains at least k vertices, and we upper bound lTSP(k, n) by 
the length of the TSP tour in that subsquare (see Figure 4). Define Xαi as the number of vertices in subsquare i for 
1 ≤ i ≤ Pα. Then, (Xα1 , : : : , XαPα) follows a multinomial distribution with n trials and uniform probabilities 1=Pα. 
Denote by Aαi � {Xαi ≥ k} the event that subsquare i contains at least k vertices. For any 1 ≤ i ≤ Pα, using the fact that 
Pα � o(1=n),

P(Aαi ) � P(A
α
1 ) ≥

n
k

 !
1

Pαk 1� 1
Pα

� �n�k

≥
1
k!
·

nk

Pαk · (1+ o(1))

≥
(1+ o(1))k(k� 1)k

k!

α2k

n1+ 1
k�1
· (1+ o(1))

≥ c ·α
2k�2

Pα
, 
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for some constant c>0. Then, the Bonferroni–Mallows bound for multinomials (Mallows [29]) implies

P
[Pα

i�1
Aαi

" #

� 1�P[Xα1 ≤ k� 1, : : : , XαPα ≤ k� 1]

≥ 1�
YPα

i�1
P(Xαi ≤ k� 1)

≥ 1� e�
PPα

i�1 P(Aαi ) ≥ 1� e�c·α2k�2
:

Now, assume that the event ∪Pα
i�1 Aαi is met. Let 1 ≤ i ≤ Pα�be the index of a subsquare that contains at least k verti-

ces. Then, according to Lemma 1, the length of the TSP on any k vertices in this subsquare of size (1=mα) × (1=mα)
is at most (2

ffiffiffi
k
√
+C)=mα ≤ C̃α(k� 1)

ffiffiffiffiffiffiffi
AK

√
=nk=(2(k�1)) for some universal constant C̃ > 0. Therefore, using the previ-

ous equation, we get

P lTSP(k, n) > C̃α k� 1
n1

2 1+ 1
k�1( )

ffiffiffiffiffiffiffi
AK

p
� �

≤ 1�P
[Pα

i�1
Aαi

" #

≤ e�c·α2k�2
:

Finally, we apply this inequality to obtain

E[lTSP(k, n)] ≤ C̃ k� 1
n1

2 1+ 1
k�1( )

ffiffiffiffiffiffiffi
AK

p
+

Z ∞

C̃(k�1)=n
1
2 1+ 1

k�1( ) ffiffiffiffiffiAK

√
P[lTSP(k, n) > x]dx

≤ C̃ k� 1
n1

2 1+ 1
k�1( )

ffiffiffiffiffiffiffi
AK

p
1 +

Z ∞

1
e�c·α2k�2 dα

� �

≤ Ĉ k� 1
n1

2 1+ 1
k�1( )

ffiffiffiffiffiffiffi
AK

p
, 

for some universal constant Ĉ. This ends the proof for k ≤ n1=3. Now, consider the case k ≥ n1=3. In this case, 
nk=(2(k�1)) ~

ffiffiffi
n
√

, hence, the result can be derived from TSP bounds: let l∗k be the minimum length of a subpath of the 
optimal TSP tour with k consecutive vertices. Because the average length of a path visiting k consecutive vertices is 
exactly (k� 1)=n · lTSP, Theorem 1 yields directly E[lTSP(k, n)] ≤ E[l∗k]≲ (k� 1)=n · βTSP

ffiffiffiffiffiffiffiffiffiffi
nAK

√
: w

The proof of the upper bound is constructive and, therefore, gives a simple algorithm reaching this bound: first, 
partition the unit square into Pα�equal subsquares, select a subsquare with at least k points, then perform the TSP on 
any k points in this subsquare (see Figure 4). There exists such a subsquare with very high probability. To obtain a 
constant-factor approximation, we only need a constant-factor approximation of the TSP in the subsquare. For 
instance, we can use the simple procedure from Lemma 1 to obtain a path of length at most (2

ffiffiffi
k
√
+O(1))=

ffiffiffiffiffiffi
Pα
√

. This 
procedure may fail to produce a path if no subsquare contains k points, but one can repeat the procedure 

Figure 4. Illustration of the proof of the upper bound of Theorem 2 for n � 20 and k � 7. The procedure partitions the square 
into subsquares and then performs the TSP on k points in a subsquare containing at least k points. 
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successively for α � 1, 2, 3: : : until we find a subsquare with at least k points. By Theorem 2, this algorithm is a 
constant-factor approximation to the k-TSP in expectation.

3.3. Generalization to Nonuniform Distributions
Theorem 2 may be generalized to the case in which point positions are drawn independently according to some dis-
tribution with a density f. For simplicity, we suppose that the density is continuous, but the result can be extended 
to more general densities via smoothing techniques (e.g., Lebesgue derivatives); this is detailed in a companion 
report (Blanchard et al. [13]). Because the density is continuous, we can focus on the region of maximum density 
‖f ‖∞ and relate the k-TSP on n points sampled with f to the k-TSP on ‖f ‖∞n points sampled uniformly. Hence, we 
expect the guarantees of Theorem 2 to hold, replacing n with ‖f ‖∞n.

Proposition 1. Assume n vertices are drawn independently on a compact space K, according to a continuous density f. 
Denote by lTSP(k, n) the length of the k-TSP on these n vertices, where 2 ≤ k ≤ n. There exists a universal constant c > 0 
such that

lim inf
n→∞

E[lTSP(k, n)] (‖f ‖∞n)
1
2 1+ 1

k�1( )

k� 1 A
1

2(k�1)
K ≥ c, 

and, further, if k=n→ 0 and k→∞ as n→∞, there exists a universal constant C > 0 such that

lim sup
n→∞

E[lTSP(k, n)] (‖f ‖∞n)
1
2 1+ 1

k�1( )

k� 1 ≤ C:

Proof. For the lower bound, we use a standard sample-and-reject argument to upper sample the n points accord-
ing to f from the uniform density on K as follows. Consider a sequence (Xi) of i.i.d. uniformly drawn points. A 
point Xi�xi is rejected independently of the other points with probability 1� f (xi)=‖f̃ ‖∞. The sequence (Yi) is 
i.i.d. distributed according to f. Using the Hoeffding inequality, we show that, with probability 1� e�n2=2, from 
N :� ⌈2‖f̃ ‖∞AKn⌉ uniform draws (Xi)i≤N, at least n points are drawn according to density f with the rejection pro-
cess. On this event, we lower bound the k-TSP length on n points drawn according to f with the k-TSP length on 
the N vertices (Xi)i≤N: Therefore, using Theorem 2, for some constant c̃ > 0,

E[lTSP(f )(k, n)] ≥ (1� e�n2=2)E[lTSP(U)(k, N)]≳ c̃
2

k� 1
(‖f̃ ‖∞n)

1
2 1+ 1

k�1( )
A
� 1

2(k�1)
K :

Therefore, we obtain the desired lower bound. For the upper bound, because f is continuous, there exists a none-
mpty square U such that the density is at least ‖f ‖∞=2 on U. By the Hoeffding inequality, with probability at least 
1� e�ε2(‖f ‖2∞=2)A2

Un, at least nU � ‖f ‖∞AU(1� ε)n=2 points fell in U. Denote by E0 this event on which these nU verti-
ces are drawn uniformly on U. Then, using Theorem 2,

E[lTSP(f )(k, n)] ≤ ndiam(AK)P[Ec
0] +E[lTSP(U)(k, nU)] ≤ (1+ on(1)) ·C

k� 1

n
1
2 1+ 1

k�1( )
U

ffiffiffiffiffiffiffi
AU

p
:

Because A1=(k�1)
U �O(1), the desired upper bound follows. w

The intuition of this generalization is fairly simple: instead of solving the k-TSP on the whole compact space K, we 
can focus on zones in which the density is maximal. The hypothesis kn � o(n) ensures that this restriction is feasible 
(otherwise, there would not be kn points locally). When k � o(n) and k→∞, the proposed local strategy—performing 
the k-TSP on the highest density zone—is constant-factor optimal in expectation. As suggested by Proposition 1, this 
is not exactly the case when k �O(1), for which restricting to a fixed high-density zone affects the local concentration 
property of the large-deviations analysis.

4. The Traveling Repairman Problem
We now turn to the TRP, which seeks a tour minimizing total latency (Equation (3)). For simplicity, assume that we 
can choose any point as the starting point. Indeed, we show that the TRP objective is Θ(n

ffiffiffi
n
√
), whereas an initial 

edge from a fixed depot to any starting point only affects the TRP objective by an additive O(n) term.
To provide intuition on the rate Θ(n

ffiffiffi
n
√
), assume that the points are sampled uniformly on a compact space. For 

the kth served point of the TRP tour with k ≥ k∗ � ⌊n=2⌋, we have lk ≥ lTSP(k∗, n). Then, by Theorem 2, the expected 
latency of the kth point is Ω(

ffiffiffi
n
√
). Because this holds for all k ≥ n=2, the expected total latency is Ω(n

ffiffiffi
n
√
). Similarly, 
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we can give a simple argument for an upper bound of the expected TRP objective. Consider following the 
optimal TSP tour of length lTSP with a starting point chosen uniformly at random among the n points. Because the 
position of each vertex in the tour is uniform, Equation (3) implies that the expected latency is equal to 
(n� 1)=2 · lTSP �O(n

ffiffiffi
n
√
). Therefore, the expected TRP objective is Θ(n

ffiffiffi
n
√
) for the uniform distribution.

Let us now turn to the case of a general distribution. We show that the TRP objective is still Θ(n
ffiffiffi
n
√
), but we spe-

cify the dependence of the constant on the sampling distribution. We state the main asymptotic result, which we 
prove in the following two sections.

Theorem 3. Assume all n vertices are drawn according to a distribution with density f on a compact space K ⊂ R2. Denote 
by lTRP the optimal TRP objective of a tour. Then,

c
Z Z

K2
gf (x, y)dxdy ≤ lim inf

n→∞

E[lTRP]

n
ffiffiffi
n
√ ≤ limsup

n→∞

E[lTRP]

n
ffiffiffi
n
√ ≤ C

Z Z

K2
gf (x, y)dxdy, 

where 0 < c < C are two universal constants and

gf (x, y) � f (y) 1f (y)<f (x) +
1
2 · 1f (y)�f (x)

� � ffiffiffiffiffiffiffiffi

f (x)
q

:

4.1. Lower Bound on the TRP
We first prove the lower bound of Theorem 3. To do so, we approximate the densities as piece-wise constant on sub-
squares of the compact space K. We begin with the case of distributions on the unit square [0, 1]2 with piecewise- 
constant density of the form

f (x) �
X

1≤k≤m2

fk1Qk(x), (4) 

where {Qi} is the regular partition of the unit square into m2 subsquares of side 1=m. Note that, because f is a den-
sity, 

Pm2

k�1 fk �m2. We denote by f∗ �min{fk, fk > 0} the minimum positive density across subsquares. By construc-
tion, sampling a vertex from density f is equivalent to choosing one of the squares with a probability fk=m2 

associated to square Qk, then choosing a point at random uniformly in the chosen Qk. Let Nk � |{i, vi ∈Qk} | denote 
the number of points in each subsquare. By the strong law of large numbers, we know that Nk=n→ fk=m2 almost 
surely.

Now, consider the optimal TRP tour. We want to restrict the problem on each of the subsquares. To do so, we can 
partition the tour into subpaths such that each subpath is contained completely in a subsquare Qk (see Figure 5). 

Figure 5. (Color online) Illustration of the partition procedure of a TRP tour into subpaths P1, : : : ,PP corresponding to the parti-
tion of the unit square K � [0, 1]2 into subsquares Qk for 1 ≤ k ≤m2 (m � 3 here). A subpath Pi in a subsquare Qk that crosses 
completely the margin has length at least εm. We can then lower bound the length of that subpath in terms of number of visited 
vertices using Lemma 5. 
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However, unlike for the TSP, we cannot “glue” the subpaths in a same subsquare Qk directly together because here 
the order of subpaths impacts the TRP objective. To circumvent this issue, we derive a lower bound of the length of 
each subpath individually in order to obtain a lower bound on the TRP using the results on the k-TSP. To minimize 
the TRP objective, we order subpaths by decreasing “vertex density,” defined as the ratio between the number of 
visited vertices in the subpath and the length of the subpath.

Define a margin M of the borders of the partition {Qk}. The margin on each of the subsquares is set such that any 
point of Qk outside of the margin is at a certain distance from the boundary ∂Qk. We then are able to use Corollary 
1. More precisely, denote by B(0, 1) the unit ball centered at the origin. Define for εm :� ε=m the margin at which ε >
0 is an arbitrarily small constant:

M �
[

1≤k≤m2

(∂Qk + εmB(0, 1)):

Lemma 3. We have P( |V ∩M | ≥ 8εn] ≤ e�εn, where c>0 is a constant.

Proof. The probability of a vertex falling inside the margin is equal to the area of the margin AM. Then, 
AM ≤ 4m(ε=m) � 4ε. Now, denote c � 2=

ffiffiffiffiffi
πe
√

. Applying the Chernoff bound to the case of n Bernouilli B(AM)

samples, we obtain P[ |V ∩M | ≥ 8εn] ≤ e�4εn=3. w

This lemma shows that the margin only contains a small fraction of vertices. Equivalently, most of the subpaths 
in Qk visit a vertex in Qk \M. These subpaths have length at least εm because they cross the margin completely. Let 
us now introduce the event E0 as follows:

E0 �
\

k∈{1, : : : ,m2}:fk>0

fk
2m2 n ≤Nk ≤

3fk
2m2 n, lTSP(Qk)

&

ε · e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
3fk

2m2 n
r ’

, Nk

 !

> εm

( )

, 

in which we can bound the number of points falling in each subsquare around their mean (fk=m2)n and lower 
bound on the maximum number of points that can be visited by a path of length εm.

Lemma 4. The event E0 has probability P(E0) � 1� o
�

e�cε
ffiffiffiffiffiffiffiffiffiffiffiffi
(f∗n)=m2
√ �

for some constant c > 0.

Proof. By the Chernoff bound,

P
�
�
�
�Nk �

fk
m2 n

�
�
�
� ≥

fk
2m2 n

� �

≤ 2 exp �
fk

12m2 n
� �

:

Moreover, using Corollary 1, we obtain for each 1 ≤ k ≤m2, such that fk > 0,

P lTSP(Qk)

&

ε · e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
3fk

2m2 n
r ’

, Nk

 !

≤
ε

m

�
�
�
�
�

fk
2m2 n <Nk <

3fk
2m2 n

" #

≤ P lTSP(Qk)

&

ε · e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
3fk

2m2 n
r ’

, 3fk
2m2 n

 !

≤
ε

m

" #

� o
�

e�ε·e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3πfkn)=(2m2)
√ �

:

Finally, we use the union bound to end the proof. w

We now assume that E0 is satisfied and analyze the length of the TRP. Recall that, in subsquare Qk, all paths have 
length at least εm except those included in the margin M. In particular, we can leverage the upper bound on the 
number of points of a path of length εm provided in the event E0 to give a simple lower bound on the length of any 
subpath in Qk with length at least εm.

Lemma 5. Let p be a subpath in Qk that has length lp ≥ εm and visits np vertices. Then, there exists a path of length εm in the 
support of p that visits at least εmnp=(2lp) vertices. Furthermore, on the event E0, for n sufficiently large, lp ≥ np(2e

ffiffiffiffiffiffi
2π
√
·
ffiffiffiffiffiffi
fkn

p
):

Proof. We subdivide subpath p in ⌈lp=εm⌉ disjoint portions of length at most εm. Take the portion that visits most 
vertices and denote by nε�that number. In particular, np ≤ ⌈lp=εm⌉nε ≤ (2lp=εm)nε, because lp ≥ εm. Note that, in 
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Qk, on the event E0, any path that visits at least k0 � ε · e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3πfkn)=(2m2)

p
vertices has length at least εm. Therefore, 

nε ≤ k0. Thus, for n sufficiently large, np ≤ 2lp(k0=εm) � lp · 2e
ffiffiffiffiffiffi
2π
√
·
ffiffiffiffiffiffi
fkn

p
: The proof follows. w

In particular, Lemma 5 shows that the vertex density of subpaths in Qk cannot exceed the vertex density of the 
TSP on the Nk points in Qk, up to a constant. We can now apply this bound to the length of all subpaths that are not 
completely included in the margin M in order to lower bound the TRP objective.

Proof of the Lower Bound of Theorem 3. First consider the case of piece-wise constant densities as defined in Equa-
tion (4). Enumerate the subpaths P1, : : :PP, which are not included completely in the margin by order of appearance 
in the TRP path, and denote by n(Pi) the number of vertices visited by Pi. Let l(Pi) be the length of Pi and k(i) the 
index of subsquares containing Pi, that is, Pi ⊂Qk(i). Finally, let τ(v) be the latency at point v ∈ V. On the event E0, we 
can give the following lower bound on the TRP objective by applying Lemma 5 to each of the subpaths Pi.

lTRP �
X

1≤i≤P

X

v∈Pi

τ(v) ≥
X

1≤i≤P
n(Pi)

X

1≤j≤i�1
l(Pj) ≥

1
2e

ffiffiffiffiffiffiffiffiffi
2πn
√

X

1≤j≤P

n(Pj)
ffiffiffiffiffiffiffi
fk(j)

p
X

j+1≤i≤P
n(Pi): (5) 

In order to further lower bound the right term, we use the following lemma, which states that the ordering of 
subpaths minimizing this objective is exactly the ordering by decreasing density fk(i), which formalizes the intui-
tion that it is advantageous to first serve regions with higher density.

Lemma 6. A solution of the following minimization problem

min
σ∈SP

X

i

n(Pσ(i))
ffiffiffiffiffiffiffiffiffiffiffi
fk(σ(i))

p
X

j>i
n(Pσ(j))

is given by ordering the subpaths Pi by decreasing order of fk(i).

Proof. Denote by Cσ�the objective of the minimization problem for σ ∈ SP. Let 1 ≤ i < j ≤ P. We compare Cσ�and Cσ̃ , 
where σ̃�was obtained from σ�by inserting the jth term in ith position. Formally, σ̃(j) � σ(i) for i < r ≤ j, σ̃(r) � σ(r� 1), 
and other entries are left unchanged. Then,

Cσ̃ �Cσ � n(Pσ(j))
X

i≤r≤j�1
n(Pσ(r))

1
ffiffiffiffiffiffiffiffiffiffiffi
fk(σ(j))

p �
1
ffiffiffiffiffiffiffiffiffiffiffi
fk(σ(r))

p

 !

:

Assume that, for i ≤ r ≤ j� 1, we have 1=
ffiffiffiffiffiffiffiffiffiffiffi
fk(σ(j))

p
≤ 1=

ffiffiffiffiffiffiffiffiffiffiffi
fk(σ(r))

p
. Then, the objective is decreased when we place σ(j) in 

the i-th position, Cσ̃ ≤ Cσ: We use this argument to order sequentially the permutation σ. First, take the index i that 
minimizes 1=

ffiffiffiffiffiffiffi
fk(i)

p
. Let σ∗ be a permutation such that 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
fk(σ∗(i))

p
are in increasing order. We can first place σ∗(1) as 

the first index σ̃(1) � σ∗(1), decreasing the objective Cσ. We then place σ∗(2) as the second index σ̃(2) � σ∗(2) until we 
reach the permutation σ∗ of decreasing order of fk(i). Thus, Cσ∗ ≤ Cσ, and σ∗ is a minimizer of the problem. w

Let us now give estimates on the right-hand side of Equation (5). Denote by σ∗ the ordering on the subsquares Qk 
such that fσ∗(k) is decreasing in k. Then, on the event E0,

X

1≤j≤P

n(Pj)
ffiffiffiffiffiffiffi
fk(j)

p
X

j+1≤i≤P
n(Pi) ≥min

σ∈SP

X

i<j

n(Pσ(i))
ffiffiffiffiffiffiffiffiffiffiffi
fk(σ(i))

p n(Pσ(j))

≥
X

1≤k<t≤m2

Nσ∗(k)� |V ∩Qσ∗(k) ∩M |
ffiffiffiffiffiffiffiffiffi
fσ∗(k)

p · (Nσ∗(t) � |V ∩Qσ∗(t) ∩M | )

≥
X

1≤k<t≤m2

Nσ∗(k)
ffiffiffiffiffiffiffiffiffi
fσ∗(k)

p Nσ∗(t) �
2
ffiffiffi
f∗

p
X

1≤k, t≤m2

Nσ∗(t) |V ∩Qσ∗(k) ∩M |

≥
n2

4m4

X

1≤k<t≤m2

ffiffiffiffiffiffiffiffiffi

fσ∗(k)
q

fσ∗(t)�
2n |V ∩M |

ffiffiffi
f∗

p , 

where, in the last inequality, we used the fact that, on E0, Nk ≥ fkn=(2m2) for all 1 ≤ k ≤m2, and f∗ �min{fk : fk > 0}. 
By Lemma 3, with probability 1� o(exp(�cε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f∗n)=m2

p
)), the event E0 is met and |V ∩M | ≤ 8εn. Denote by E1 this 

event. Therefore, using Equation (5), on E1,

lTRP ≥
1

2e
ffiffiffiffiffiffiffiffiffi
2πn
√

n2

4m4

X

1≤k<t≤m2

ffiffiffiffiffiffiffiffiffi

fσ∗(k)
q

fσ∗(t)�
16εn2
ffiffiffi
f∗

p

 !

: (6) 
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We now compare the right term of the preceding inequality with the integral of gf. Note that
ZZ

K2
gf (x, y)dxdy �

X

1≤k≤m2

ffiffiffiffiffiffiffiffiffi
fσ∗(k)

p

m2

Z

K

f (y) 1f (y)<fσ∗(k) +
1
2 · 1f (y)�fσ∗(k)

� �

dy

�
X

1≤k≤m2

ffiffiffiffiffiffiffiffiffi
fσ∗(k)

p

m2
1
2

fσ∗(k)
m2 +

X

k<t≤m2

fσ∗(t)
m2

 !

�
1

2m2

Z

K

f (x)3=2dx + 1
m4

X

1≤k<t≤m2

ffiffiffiffiffiffiffiffiffi

fσ∗(k)
q

fσ∗(t):

The first term in the right-hand side can be made arbitrarily small. Indeed, we can repeat the complete procedure with a 
finest partition of the unit square [0, 1]2 into (αm)2 subsquares, where α ∈ N∗. For α�sufficiently large, we can get 

1
α2m2

Z

K

f (x)3=2dx ≤ δ
Z Z

K2
gf (x, y)dxdy 

for any arbitrarily small δ > 0. Then, with this partition, we have
1

m4

X

1≤k<t≤m2

ffiffiffiffiffiffiffiffiffi

fσ∗(k)
q

fσ∗(t) ≥ (1� δ)
Z Z

K2
gf (x, y)dxdy:

Therefore, taking ε < 2�6δ
ffiffiffi
f∗

p RR

K2 gf (x, y)dxdy, Equation (6) implies that, on E1,

lTRP ≥
1� 2δ
8e

ffiffiffiffiffiffi
2π
√ n

ffiffiffi
n
√
Z Z

K2
gf (x, y)dxdy:

We now obtain the desired result,

lim inf
n→∞

E[lTRP]

n
ffiffiffi
n
√ ≥ lim inf

n→∞
P[E1] ·

1� 2δ
8e

ffiffiffiffiffiffi
2π
√

ZZ

K2
gf (x, y)dxdy ≥ 1� 2δ

8e
ffiffiffiffiffiffi
2π
√

ZZ

K2
gf (x, y)dxdy:

This ends the proof for the densities of the form f (x) �
Pm2

k�1 fk1Qk(x): Let us now consider the general case of a distri-
bution on a compact space K with both a singular part and absolutely continuous part with density f. We lower 
bound the TRP objective by the sum of latencies of points that do not lie in the support of the singular part. With 
this argument, we can restrict to the case of absolutely continuous distributions with density f without loss of gener-
ality. By a scaling argument, we can also suppose without loss of generality that K ⊂ [0, 1]2. We need the following 
lemma to approximate f with a piece-wise constant density, the proof of which is deferred to the appendix.

Lemma 7. Let f be a density on K ⊂ [0, 1]2. For any ε > 0, there exists a density φ�of the form φ(x) �
P

1≤k≤m2φk1Qk(x)
such that ‖φ� f ‖1 ≤ ε�and 

�
�
�
RR

K2 gφ�
RR

K2 gf

�
�
� ≤ ε:

For any ε > 0, we use Lemma 7 to take a density φ�of the same piece-wise constant form as in Equation (4) such 
that ‖φ� f ‖1 ≤ ε�and |

RR

K2 gφ�
RR

K2 gf | ≤ ε. By a coupling argument, we can construct a joint distribution (X, Y) such 
that X (respectively, Y) has density f (φ), and P(X ≠ Y) ≤ 2

R

K
|φ(x)� f (x) |dx ≤ 2ε:Define nε :� |{i, Xi ≠ Yi} | . Then,

lTRP(φ) :� lTRP(Y1, : : : , Yn) ≤ n[lTSP(Yi, Xi ≠ Yi) +
ffiffiffi
2
√
]+ lTRP(Yi, Xi � Yi)

≤ lTRP(Yi, Xi � Yi) + 2n
ffiffiffiffiffi
nε
√
+ n(C+

ffiffiffi
2
√
), 

where in the second inequality, we use Lemma 1. Note that, using the Hoeffding inequality, we have nε ≤ 3εn with 
probability at least 1� e�2ε2n. Therefore,

E[lTRP(f )]

n
ffiffiffi
n
√ ≥

E[lTRP(Yi, Xi � Yi)]

n
ffiffiffi
n
√ ≥

E[lTRP(φ)]

n
ffiffiffi
n
√ � 2

ffiffiffiffiffi
3ε
√
+ o(1):

We can now use the result proved for density φ:

liminf
n→∞

E[lTRP(f )]
n
ffiffiffi
n
√ ≥ c

Z Z

K2
gφ(x, y)dxdy� 2

ffiffiffiffiffi
3ε
√
≥ c
Z Z

K2
gf (x, y)dxdy� c · ε� 2

ffiffiffiffiffi
3ε
√

:

This holds for any ε > 0; hence, this ends the proof of the desired TRP objective upper bound. w
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4.2. Upper Bound on the TRP
The proof of the lower bound of Theorem 3 from Section 4.1 suggests a procedure visiting points by zones of 
decreasing density. We now provide a simple construction of a tour that uses this intuition and shows the upper 
bound from Theorem 3.

Proof of the Upper Bound of Theorem 3. By a scaling argument, we suppose without loss of generality that 
K ⊂ [0, 1]2. We use the same notations as in the proof of the lower bound of the expected TRP objective. Let ε > 0 
be a tolerance parameter. Now, take m>0 and a density φ�given by Lemma 7 to approximate f. We order the sub-
squares by decreasing values of φk: φσ(1) ≥⋯≥ φσ(m2). For each of the subsquares Qk, we construct a tour that is 
optimal for the TSP; in practice, only a constant-factor approximation is needed that makes the construction poly-
nomial: one can, for example, take the tour of Lemma 1. The output TRP tour is given by gluing together these 
local TSP tours into a complete tour, following the order σ. More precisely, we first follow the TSP tour in Qσ(1), 
and then, the TSP tour in Qσ(2) up to the TSP tour in Qσ(m2) (see Figure 6). If a subsquare does not contain vertices, 
we may skip it. As a remark, the additional length for linking the subtours is negligible as n→∞.

We now prove that this tour is constant-factor optimal with high probability. Define the event

E0 �
\

1≤k≤m2

φk
2m2 n ≤ Nk ≤

3φk
2m2 n

� �

, 

where Nk is the count of vertices in subsquare Qk. Recall that E[Nk] � (φk=m2)n: Therefore, using the same argument 
as in the proof of the lower bound, E0 is met with probability 1� o(exp(�cφ

∗
n=m2)) for some constant c>0 and for 

which φ
∗

:�min{φk : φk > 0}. In the next steps, we assume that E0 is met.
By Lemma 1, if we denote by lkTSP the length of the optimal TSP tour in subsquare Qk, then

lkTSP ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
3φk
2m2 n

r

+C

 !
1
m
�

ffiffiffiffiffiffiffiffiffiffi
6φkn

p

m2 +
C
m

(7) 

for all 1 ≤ k ≤m2, and C>0 a universal constant. We are now ready to estimate the TRP objective of our defined 
tour. Let us denote by l̂TRP this objective and l̂i the distance before visiting vertex i by following the given tour. 
For each subsquare Qk, denote by ik the index of the last vertex to be visited in this subsquare by the constructed 

Figure 6. (Color online) Illustration of the constant-factor optimal TRP tour constructed for the upper bound of Theorem 3. The 
space is subdivided in subsquares, and the tour performs a constant-factor optimal TSP tour on each of the subsquares, following 
the decreasing order of density on the subsquares. The TSP tour on each subsquare is represented by a dashed path, and the den-
sity on each subsquare is represented by its brightness—darker (lighter) shades for high (low) density. Each subsquare is given a 
priority order from its density: the tour visits zones by decreasing order of density. 
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tour.

l̂TRP �
Xm2

k�1

X

i:vi∈Qσ(k)

l̂i ≤
Xm2

k�1
Nσ(k) l̂ iσ(k) ≤

Xm2

k�1
Nσ(k)

Xk

l�1
lσ(l)TSP + (k� 1)

ffiffiffi
2
√

 !

:

The second term (k� 1)
ffiffiffi
2
√

was obtained by upper bounding the length of each edge linking a subsquare Qσ(l) to 
the next subsquare Qσ(l+1). Therefore, on E0, because Nk ≤ 3φkn=(2m2) for all 1 ≤ k ≤m2,

l̂TRP ≤
Xm2

k�1
Nσ(k)

Xk

l�1
lσ(l)TSP

 !

+
ffiffiffi
2
√
(m2� 1)

Xm2

k�1
Nσ(k)

≤
3n

2m2

Xm2

l�1
lσ(l)TSP

Xm2

k�l
φσ(k)

 !

+
ffiffiffi
2
√
(m2� 1)n

≤
3
2
ffiffiffi
6
√ n

ffiffiffi
n
√

m4

X

1≤k≤l≤m2

ffiffiffiffiffiffiffiffiffiffi
φσ(k)

q
φσ(l) +

3C
2m

n+
ffiffiffi
2
√
(m2� 1)n, 

where, in the last inequality, we use Equation (7). As in the proof of the lower bound of Theorem 3,
1

m4

X

1≤k≤l≤m2

ffiffiffiffiffiffiffiffiffiffi
φσ(k)

q
φσ(k) �

Z Z

K2
gφ(x, y) + 1

2m2

Z

K

φ(x)3=2dx:

Therefore, with C̃ :� 3
ffiffiffi
6
√
=2, on E0, we obtain

l̂TRP

n
ffiffiffi
n
√ ≤ C̃

Z Z

K2
gφ(x, y)dxdy+ C̃

2m2

Z

K

φ(x)3=2dx+
ffiffiffi
2
√

m2 + 3C=(2m)
ffiffiffi
n
√

≤ C̃
Z Z

K2
gf (x, y) + C̃ ε+

1
2m2

Z

K

φ(x)3=2dx
� �

+

ffiffiffi
2
√

m2 + 3C=(2m)
ffiffiffi
n
√ :

Outside of the event E0, we can use a naive upper bound l̂TRP ≤
Pn�1

i�1 i
ffiffiffi
2
√
≤ n2=

ffiffiffi
2
√

obtained by upper bounding 
the length of each edge by 

ffiffiffi
2
√

. Because P[Ec
0] � o(exp(�cφ

∗
n=m2)), the total contribution of this event is negligible, 

and we obtain

limsup
n→∞

E[l̂TRP]

n
ffiffiffi
n
√ ≤ C̃

Z Z

K2
gf (x, y) + C̃ ε+

1
2m2

Z

K

φ(x)3=2dx
� �

:

Finally, we can take m arbitrarily large, and ε > 0 arbitrarily small. The result follows. w

We note that this proof of the upper bound uses an a priori algorithm to derive a TRP tour. Namely, the pro-
posed solution visits subsquares of size (1=m) × (1=m) by decreasing order of density, using only distributional 
knowledge. Then, the TRP tour is adjusted by visiting the points upon realization of uncertainty by solving a 
TSP within each subsquare. This algorithm yields a constant-factor approximation of the optimal TRP latency. 
As a remark, in order for the estimates in the preceding proof to hold, we need m2≪ n for concentration inequal-
ities to hold on the number of points falling in each subsquare. In fact, with similar arguments, one can show 
that, if l̂TRP denotes the TRP objective obtained by the procedure, whenever m2≪ n, for any ε > 0,

P l̂TRP ≥ (2+ ε)n
ffiffiffi
n
√
Z Z

K2
gf (x, y)dxdy

� �

→
m→∞

0:

5. Fair Routing for the k-TSP and TRP
In the first two sections, we provide bounds for the k-TSP and TRP as well as constant-factor approximation algo-
rithms to provide upper bounds. Both of these approximation schemes rely on a spatial discrimination approach by 
prioritizing the zones with high density (high probability density and high point density). Specifically, the approxi-
mation scheme for the k-TSP visits points only in the highest density zone (Section 3.3), and the approximation 
scheme for the TRP visits zones sequentially by decreasing order of density (Section 4.2). In fact, these schemes are 
derived from the lower bound analyses. This suggests that solutions to the k-TSP and TRP fundamentally integrate 
location-based prioritizations.
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Therefore, optimizing for the k-TSP and TRP comes at the expense of spatial discrimination. In the proposed k- 
TSP scheme, points that do not lie on the highest density zone are never visited. Consider the simple setting in 
which a company can choose which customers to serve and generally receives orders from two cities. Following the 
proposed scheme, the company exclusively serves customers from the highest density city and, thus, ignores custo-
mers from one city altogether even though the densities might be arbitrarily close. Similarly, in the proposed TRP 
scheme, the waiting time is much lower in high-density than low-density regions.

To alleviate spatial discrimination outcomes, we incorporate fairness considerations into the k-TSP and TRP. 
Namely, we consider two categories of fairness: (i) geographic fairness, which mitigates disparities across regions, 
and (ii) population-based fairness, which mitigates disparities across underlying subpopulations. In the aforemen-
tioned example, under geographic fairness, the company needs to serve both cities; under population-based fair-
ness, it needs to achieve a similar level of service across demographics (based on race or gender for instance). We 
quantify the efficiency–fairness trade-off via the fairness ratio, defined as the ratio between the objectives of the fair 
and efficient solutions. This notion relates to the price of fairness introduced by Bertsimas et al. [9], which measures 
the relative loss (as compared with the ratio) between the fair and efficient solutions.

5.1. Fair k-TSP
We focus on the case k � o(n), k→∞, and points are sampled according to a continuous density f, for which Propo-
sition 1 provides an efficient constant-factor algorithm.

5.1.1. Geographic Fairness. Denote by Ai the event in which Xi is served. By symmetry, we focus on the event A1. 
A first approach to enforce fairness would be to ask that A1 is independent of the position X1. Stated in a more flexi-
ble way, we enforce that the probability of service conditioned on the position exceeds a threshold ε > 0. We define 
geographic fairness as follows:

P(A1 |X1 � x) ≥ ε k
n , ∀x ∈K: (8) 

The discount factor k=n accounts for the fact that only k of the n points can be selected. Indeed, by symmetry, 
P(A1) � 1=nE[1A1+⋯ +1An] � k=n. The minimum service probability imposes visiting the full support of the distri-
bution. This can be viewed as a relaxed version of max-min fairness in which we maximize the value of ε > 0. How-
ever, under this requirement, the k-TSP loses its locality property, inducing a significant loss in efficiency, 
formalized in the following proposition.

Proposition 2. Assume that 
ffiffiffi
n
√
≪ k ≤ n. Under geographic fairness (Equation (8)), the length l of a fair k-TSP path 

satisfies

E[l] ≥ (1+ on(1))c · ε
k
ffiffiffi
n
√

Z

K

ffiffi
f

p
, 

where c � 1=(e
ffiffiffiffi
π
√
) > 0 is a universal constant.

Proof. We show the result in the case of distributions on [0, 1]2 with piece-wise constant densities on a partition 
{Qq}

m2

q�1 defined as in Equation (4). From a given path visiting k points in the support [0, 1]2, we can construct a 
set of subpaths in each of the subsquares such that, together, they visit the same points and have same total 
length up to a constant dependent only on m—the length of the boundary of the subsquares partition (see Figure 
7). Because k≫

ffiffiffi
n
√

, with high probability, lTSP(k, n) ≥ ck=
ffiffiffi
n
√
→∞ for some constant c>0. In particular, the addi-

tional constant length of the boundary is negligible compared with the length of the path visiting k points. We 
can now lower bound the length of the path in each subsquare separately. Denote by nq the number of points vis-
ited by the considered path in Qq and Bi, q the event that Xi lies in subsquare Qq. Under the fairness constraint 
(Equation (8)), we have P[Ai |Bi, q] ≥ εk=n. Then, E[nq] � nE[1A1∩B1, q] ≥ nP[B1, q] · εk=n � fq · εk:

Then, if lq denotes the length of the path reduced to subsquare Qq, we lower bound lq with the nq�TSP on sub-
square Qq, which has at least (1� η)nfk=m2 points with high probability for any fixed η > 0. Using the proof of the 
k-TSP lower bound (Theorem 2), with high probability, we have

lq ≥ lTSP, Qq(nq, Nq) ≥
nq

ffiffiffiffiffiffiffiffiffiffiffi
1� η

p

e
ffiffiffiffiffiffiffiffiffi
πfqn

p �O log 2n
ffiffiffi
n
√

� �

:
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Taking the expectation and summing these inequalities yields the desired result on the fair k-TSP length, in 
which the 1� on(1) term corresponds to conditioning on the high-probability event. w

As a result, the fairness ratio of a geographically fair k-TSP for k≫
ffiffiffi
n
√

compared with the k-TSP length (Theorem 
2) is Ω(

ffiffiffiffiffiffiffiffiffiffi
‖f ‖∞

p R

K

ffiffi
f

p
): In Proposition 2, we assume k≫

ffiffiffi
n
√

for simplicity, but the same nonlocal behavior also arises 
in the general case k→∞. Essentially, the geographically fair k-TSP loses the factor corresponding to the power of 
choosing which area to serve and the resulting fairness ratio can be arbitrarily large when the density is highly 
concentrated.

5.1.2. Population-Based Fairness. As suggested by the proof of probabilistic bounds in Section 3 and the fairness 
ratio of geographical fairness, the k-TSP is fundamentally spatially unfair. That is, the flexibility to choose which 
points to visit leads to disregarding zones with low density. Vice versa, imposing to visit all regions with a geo-
graphic fairness objective leads to a large loss in efficiency. In response, we now propose a second fairness notion to 
mitigate the price of fairness.

Consider the setting in which points belong to different populations, for instance, based on racial, gender, or age- 
based demographics. We aim to design solutions of the k-TSP that treat these populations fairly. For instance, one 
can think of a company constructing an efficient routing procedure, ensuring fairness between distinct subpopula-
tions of customers.

Consider P populations such that points are sampled according to the density f � f1+⋯ +fP, where fi corresponds 
to the distribution of population i � 1, : : : , P. For instance, we can view the sampling process as sampling a point 
according to density f and then assigning population i to this point with probability fi(X)=f (X). Population-based 
fairness asks to serve a fair number of points from each population. We propose deterministic and randomized 
notions of population-based fairness.

5.1.2.1. Deterministic Population-Based Fairness. A natural approach to population-based fairness involves find-
ing a path visiting a fixed proportion pi of points from each population i � 1, : : : , P. For instance, with pi � 1=P, this 
means that the k-TSP tour visits the same number of points from each population; with pi �

R
fi, this means that the k- 

TSP tour serves each population proportionally to its overall size. However, we argue that this notion of fairness can 
be too restrictive and lead to an important loss in terms of efficiency.

Because the fair k-TSP has to visit a fixed proportion of points from each population in the same local area, we 
can lower bound the length of the fair k-TSP by the length of the (pik)-TSP for density fi in this local area. In particu-
lar, the tour is constrained to visit the zone maximizing the local density of the least-represented population minifi, 
which leads to the following estimate for the length l of a fair k-TSP under deterministic population-based fairness:

E[l] ≥ (1+ on(1))c ·
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖mini fi‖∞n

p , 

Figure 7. Consider a k-TSP path on the left figure. We partition the path into subpaths in each subsquare shown in the right 
figure. The length of the original k-TSP path and the sum of length of the subpaths differs at most by O(B), where B denotes the 
length of the boundary of the partition. In particular, when k≫

ffiffiffi
n
√

, the k-TSP length grows to infinity. Therefore, the constant 
boundary length is negligible compared with the k-TSP length. 
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where c>0 is a constant depending only on P and the fixed proportions pi. Further, solving the k-TSP locally 
on the region of maximum-minimum population density ‖mini fi‖∞ achieves this lower bound up to a 
constant by Theorem 2. Hence, the efficiency fairness ratio for deterministic population-based fairness is 
Θ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖f ‖∞=‖mini fi‖∞

p
): When the populations are distributed equally over the space K, this ratio can be close to 

one. In contrast, when populations are segregated, this ratio can be arbitrarily large. For instance, consider the 
simple case of p�2 populations with truncated Gaussian densities centered in distant points. In this case, 
‖min fi‖∞ can be arbitrarily small compared with ‖f ‖∞ (see Figure 8 for an illustration in one dimension). Fur-
ther, we can note that, if two populations do not have intersecting support, the length of any fair k-TSP is Ω(1), 
whereas the length of the k-TSP vanishes whenever k≪

ffiffiffi
n
√

. Hence, the price of fairness may still be arbitrarily 
large under deterministic population-based fairness.

5.1.2.2. Randomized Population-Based Fairness. In light of these limitations, randomized population-based 
fairness seeks a distribution of k-TSP tours as opposed to a single solution. We only ensure that the k-TSP tour visits 
a fixed proportion pi of points from each population in expectation, but every single k-TSP tour may deviate from 
the proportions pi. Again, pi � 1=P corresponds to equal service (in expectation), and pi �

R
fi corresponds to propor-

tional service (in expectation). Such randomization allows for more flexibility than deterministic fairness because 
individual paths of the output distribution can possibly serve populations heterogeneously.

For simplicity, we consider the case in which densities fi are piece-wise constant on a partition {Qj} of the 
unit square [0, 1]2 in m2 subsquares of equal size (1=m) × (1=m), that is, fi �

Pm2

j�1 fi, j1Qj . We can relax this assump-
tion by approximating continuous densities with piece-wise densities on the partition for large enough m. 
However, this simplification is useful to provide intuition on the proposed randomized population-based fair-
ness scheme. We write the total density as f �

Pm2

j�1 fj1Qj . Without loss of generality, we can omit subsquares 
that do not contain points and assume that the total density is positive fj > 0 for all subsquares Qj. Recall that 
the condition k≪ n ensures that a path visiting k points can be constructed locally for n large enough. We ana-
lyze the randomized approximating scheme in which we select a subsquare Qj with probability qj and then 
compute an approximating k-TSP path in this subsquare, using the algorithm proposed in Section 3.2. By sym-
metry, the k-TSP in subsquare Qj visits (fi, j=fj)k points from population j in expectation. Therefore, the random-
ized fairness constraint for our scheme imposes that

Xm2

j�1
qj

fi, j

fj
� pi, ∀i � 1, : : : , P: (9) 

By Theorem 2, if l denotes the length of the k-TSP path output by the randomized scheme,

E[l] � Θ
Xm2

j�1
qj

k� 1
(fjn)

1
2 1+ 1

k�1( )

0

@

1

A, (10) 

where c> 0 is a universal constant. The optimal set of probabilities qj can be obtained by solving a simple linear pro-
gram minimizing the objective (Equation (10)) under the population-based fairness constraint (Equation (9)) on the 

Figure 8. (Color online) Case of two populations with truncated Gaussian densities f1 and f2. Under deterministic population- 
based fairness, the fair k-TSP tour needs to visit points at which min(f1, f2) is maximal (i.e., at x � 1/2) instead of visiting points 
at which f � f1 + f2 is maximal (x ≈ 1=4 or x ≈ 3=4). In contrast, under randomized population-based fairness, the fair k-TSP 
tour can visit points at x ≈ 1=4 with probability 1/2 and points at x ≈ 3=4 with probability 1/2. In this example, deterministic 
population-based fairness yields an arbitrarily large fairness ratio and randomized population-based fairness has a fairness 
ratio of one. 
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probability simplex. We obtain

min
Xm2

j�1
qj f�

1
2 1+ 1

k�1( )
j ,

s:t:
Xm2

j�1
qj

fi, j

fj
� pi, ∀i � 1, : : : , P,

Xm2

j�1
qj � 1,

qi ≥ 0, ∀i � 1, : : : , P:

Summing all fairness constraints (Equation (9)) shows that the preceding linear program contains at most P linearly 
independent equations. Thus, there exist an optimal probability q∗ with at most P positive entries. In other words, 
instead of visiting all m2 subsquares, there exists an optimal strategy for the randomized fair scheme visiting at 
most P different subsquares.

For instance, consider completely segregated populations, that is, populations with disjoint support. Recall that, 
in this setting, deterministic population-based fairness has an infinite fairness ratio. This is not the case for random-
ized population-based fairness. Specifically, under randomized population-based fairness, an optimal strategy con-
sists of choosing one subsquare that maximizes the density fi for each population, then randomly selecting the 
subsquare to perform the k-TSP consistently with the fairness constraints (see Figure 8 for an illustration in one 
dimension).

We can also add a tolerance ε ≥ 0 for the fairness by relaxing Equation (9) to

pi� ε ≤
Xm2

j�1
qj

fi, j

fj
≤ pi + ε, ∀i � 1, : : : , P:

This constraint yields a new linear program for which there still exists an optimal sparse solution q∗ with at most 
P+1 nonzero entries. The ε�tolerance acts as a regularization term. When ε ≥ 1, the corresponding algorithm is 
blind to the fairness constraints, thus amounting to the k-TSP in the case k≫ 1: it only visits points in the maximum 
density subsquare (Section 3.3). On the other hand, when ε�0, we recover the strict fairness constraint Equation 
(9). Denoting by qε�the optimal probability distribution, the fairness ratio when 1≪ k≪ n corresponds to the ratio 
of the linear program objective for the chosen tolerance parameter ε�and the objective for tolerance one, that is, 
Θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxj fj

p Pm2

j�1 qεj =
ffiffiffi
fj

p� �
, strictly improving over the fairness ratio for deterministic fairness.

5.2. Fair TRP
Recall from Section 5.1.1 that geographical fairness can result in a significant loss in the objective of the for the k- 
TSP. This stems from the fact that the k-TSP is fundamentally local for small k (e.g., k≪

ffiffiffi
n
√

). In contrast, the TRP 
has a global objective and visits all points in the space. In this section, we see that our approximation scheme for the 
TRP can be adapted to geographical fairness without loss in fairness ratio, in particular, under max-min fairness. 
Additional results for other utility-based notions of fairness are given in the companion report (Blanchard et al. 
[13]), in which we show that the approximation scheme for the TRP can be efficiently adapted to account for this 
notion of fairness. In the game-theoretical setting, max-min fairness yields a Pareto optimal allocation by maximiz-
ing the minimum utility that all players derive (Bertsimas et al. [9]). In particular, whenever there exist efficient allo-
cations in which all players have the same utility, max-min fairness outputs this equitable allocation. In the case of 
the TRP, we model the utility of a point by a decreasing function of its latency. In this case, max-min fairness seeks 
the tour visiting all n points and minimizing the worst latency, that is, the latency of the point that is visited last. In 
other words, max-min fairness is equivalent to the TSP, which minimizes the total tour length. We show that our 
proposed algorithm for the TRP in Section 4.2 is asymptotically optimal for the TSP, hence max-min fair.

Proposition 3. The approximation algorithm for the TRP described in Section 4.2 is asymptotically max-min fair. Specifi-
cally, let l(TRP) be the maximum point latency for a TRP tour and l∗ be the minimum maximum point-latency, that is, the 
maximum point-latency of a max-min fair allocation. Then, E[l(TRP)] � (1+ on(1))E[l∗]:
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Proof. The approximation algorithm for the TRP consists in serving subsquares sequentially by order of decreas-
ing density. If σ�denotes this ordering, we first perform the TSP on subsquare Qσ(1) and then on Qσ(2) until Qσ(m2). 
Note that the total length of the edges linking subsquares is at most O(m2) �O(1), which is negligible compared 
with the total length of the tour Θ(

ffiffiffi
n
√
). We can then apply the BHH theorem to each subsquare to obtain

E[l(TRP)] � (1+ on(1))βTSP
ffiffiffi
n
√
Z

K

ffiffi
f

p
+O(1) � (1+ on(1))E[l(TSP)], 

where l(TSP) � l∗ is the length of the optimal TSP tour (hence, a max-min fair tour). w

6. Conclusion
In this paper, we give constant-factor probabilistic estimates for the k-TSP and TRP when points are sampled inde-
pendently according to a known distribution. Specifically, we show that the optimal k-TSP tour grows at a rate of 
Θ(k=nk=(2(k�1))) and the optimal TRP latency grows at a rate of Θ(n

ffiffiffi
n
√
). Moreover, our proofs for the upper bounds 

are constructive based on intuitive approximation schemes. For the k-TSP, a constant-factor approximation algo-
rithm involves performing a TSP tour in a zone with high point concentration. For the TRP, a constant-factor 
approximation algorithm involves creating a master a priori tour by visiting zones of decreasing probability density 
and then performing a TSP tour within each zone. We also proposed adaptations of these algorithms to capture fair-
ness considerations, namely, randomized population-based fairness for the k-TSP and geographic fairness for the 
TRP. As discussed in Section 2.3, these results can have significant practical implications for the design of transpor-
tation and logistics systems in which the operator strives to minimize customer or passenger wait times as opposed 
to merely minimizing operating costs or travel times.

It is worth noting that we analyze the k-TSP and TRP in the Euclidean plane, but the results can be generalized to 
Euclidean spaces of higher dimension with additional technicality. Furthermore, the upper bound given for the 
TRP uses the master-tour construction from Lemma 1 in order to approximate the TSP locally, which yields a sim-
ple a priori algorithm. However, directly using the TSP as subroutine improves the constant two in the upper 
bound for the TRP to βTSP, the constant appearing in the asymptotic length of the TSP. A natural question is 
whether this constant βTSP is tight. This gives an equivalence result of the TRP latency as opposed to our constant- 
factor estimates. However, in our analysis, improving the constant of our lower bound for the TRP requires improv-
ing the constant of the k-TSP lower bound. In particular, this asks whether, for large k (e.g., k �Ω(log n)), the length 
of the k-TSP is ~ βTSPk=

ffiffiffi
n
√

. We leave this question open for future research. Finally, we refer to the companion 
report (Blanchard et al. [13]) for additional extensions on the k-TSP bounds and the fair TRP.
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Appendix. Proof of Lemma 7

Lemma 7 (Repeated for Convenience). Let f be a density on K ⊂ [0, 1]2. For any ε > 0, there exists a density φ�of the form φ(x) �
P

1≤k≤m2φk1Qk (x) such that ‖φ� f ‖1 ≤ ε�and 
�
�
�
RR

K2 gφ �
RR

K2 gf

�
�
� ≤ ε:

Proof. By the Cauchy–Schwarz inequality, ‖
ffiffi
f

p
‖1 ≤

ffiffiffiffiffiffiffiffi
‖f ‖1

p
� 1. Let ε > 0 and M such that 

R

K
f 1f>M ≤ ε. Then, we can take a den-

sity φε�of the right form such that ‖φε � f ‖1 ≤ ε,ε3=2=M and ‖
ffiffiffiffiffiffi
φε

p
�

ffiffi
f

p
‖1 ≤ ε:We can also choose φε�such that all φk are distinct. 

For the sake of simplicity, we write φ�instead of φε�for the next derivations. Again, we have ‖
ffiffiffiffi
φ

p
‖1 ≤ 1. First,

Z Z

K2
gf (1 |φ(x)�f (x) | ≥

ffiffi
ε
√ + 1 |φ(y)�f (y) | ≥

ffiffi
ε
√ )dxdy ≤

Z

K

ffiffiffiffiffiffiffiffi

f (x)
q

1 |φ(x)�f (x) | ≥
ffiffi
ε
√ dx+

Z

K

f (y)1 |φ(y)�f (y) | ≥
ffiffi
ε
√ dy:

By Cauchy–Schwarz, 
R

K

ffiffiffiffiffiffiffiffi
f (x)

p
1 |φ(x)�f (x) | ≥

ffiffi
ε
√ dx ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

K
1 |φ(x)�f (x) |>

ffiffi
ε
√ dx

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‖φ� f ‖1=
ffiffiffi
ε
√q

≤ ε1=4, where we use Markov’s inequality. 
Also,

Z

K

f (y)1 |φ(y)�f (y) |≥
ffiffi
ε
√ dy ≤

Z

K

f (y)1f (y)>M +M
Z

K

1 |φ(y)�f (y) | ≥
ffiffi
ε
√ dy ≤ ε+M ‖φ� f ‖1ffiffiffi

ε
√ ≤ 2ε:
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Similarly, we obtain
ZZ

K2
gφ(1 |φ(x)�f (x) | ≥

ffiffi
ε
√ + 1 |φ(y)�f (y) | ≥

ffiffi
ε
√ )dxdy ≤ ε1=4 +

Z

K

φ(y)1 |φ(y)�f (y) | ≥
ffiffi
ε
√ dy

≤ ε1=4 + ‖φ� f ‖1 +
Z

K

f (y)1 |φ(y)�f (y) | ≥
ffiffi
ε
√ dy

≤ ε1=4 + 3ε:

It now remains to bound the integral of gf � gφ�when |φ(x)� f (x) | , |φ(y)� f (y) | <
ffiffiffi
ε
√

.
Z Z

K2
(gf � gφ)1 |φ(x)�f (x) | , |φ(y)�f (y) |<

ffiffi
ε
√ dxdy

�
�
�
�

�
�
�
�

≤

Z Z

K2

�
�
�
�
�
f (y)

ffiffiffiffiffiffiffiffi

f (x)
q

�φ(y)
ffiffiffiffiffiffiffiffiffi

φ(x)
q

�
�
�
�
�
dxdy

+

Z Z

x, y∈K
|φ(x)�f (x) | , |φ(y)�f (y) |<

ffiffiffi
ε
√

1φ(y)<φ(x) +
1φ(y)�φ(x)

2 � 1f (y)<f (x) �
1f (y)�f (x)

2

� �

f (y)
ffiffiffiffiffiffiffiffi

f (x)
q

dxdy

�
�
�
�
�
�

�
�
�
�
�
�

≤

Z Z

K2
f (y)

�
�
�
�
�

ffiffiffiffiffiffiffiffi

f (x)
q

�

ffiffiffiffiffiffiffiffiffi

φ(x)
q

�
�
�
�
�
dxdy+

Z Z

K2

�
�
�
�
�
f (y)�φ(y)

�
�
�
�
�

ffiffiffiffiffiffiffiffiffi

φ(x)
q

dxdy

+

Z Z

x, y∈K, | f (x)�f (y) |<2
ffiffi
ε
√

1φ(y)<φ(x) +
1φ(y)�φ(x)

2 � 1f (y)<f (x) �
1f (y)�f (x)

2

� �

f (y)
ffiffiffiffiffiffiffiffi

f (x)
q

dxdy

�
�
�
�
�

�
�
�
�
�

≤ 2ε+ 1
2m2 ‖φ‖

3=2
∞ +

Z Z

x, y∈K, | f (x)�f (y) |<2
ffiffi
ε
√

1φ(y)<φ(x) � 1f (y)<f (x) �
1f (y)�f (x)

2

� �

f (y)
ffiffiffiffiffiffiffiffi

f (x)
q

dxdy

�
�
�
�
�

�
�
�
�
�
:

Now, consider the function g(z) :�
R

K
1f (x)�zdx: Note that 0 ≤ g ≤ 1 and 

P
z≥0g(z) ≤ 1: Therefore, the support of g is countable 

Supp(g) � {zi; i ≥ 1}. Then, 
RR

K2 1f (x)�f (y)f (y)
ffiffiffiffiffiffiffiffi
f (x)

p
dxdy �

P
iz

3=2
i g(zi)

2. We now look at the other terms. First note that

Z Z

f (x)�f (y)�zi

1φ(y)<φ(x)dxdy � 1
2

Z Z

f (x)�f (y)�zi

1φ(y)<φ(x)dxdy+
Z Z

f (x)�f (y)�zi

1φ(y)>φ(x)dxdy

 !

�
g(zi)

2

2 �
1
2

Z Z

f (x)�f (y)�zi

1φ(y)�φ(x)dxdy:

Therefore,
�
�
�
�
�

ZZ

f (x)�f (y)
1φ(y)<φ(x)f (y)

ffiffiffiffiffiffiffiffi

f (x)
q

dxdy� 1
2
X

i
z3=2

i g(zi)
2

�
�
�
�
�
≤
X

i

ZZ

f (x)�f (y)�zi

1φ(y)<φ(x)f (y)
ffiffiffiffiffiffiffiffi

f (x)
q

dxdy� 1
2 z3=2

i g(zi)
2

�
�
�
�
�

�
�
�
�
�

�
X

i
z3=2

i

ZZ

f (x)�f (y)�zi

1φ(y)<φ(x)dxdy� g(zi)
2

2

�
�
�
�
�

�
�
�
�
�
≤

1
2

ZZ

φ(y)�φ(x)
f (x)

ffiffiffiffiffiffiffiffi

f (y)
q

dxdy:

Because φk is distinct on each subsquare Qk, by the dominated convergence theorem, the right term vanishes when m grows. 
Indeed, 1φ(y)�φ(x) → 1x�y as m→∞, and {x � y} is a negligible set. Now, we take m sufficiently large such that the right term is 
upper bounded by δ. Finally,

Z Z

K2
gf � gφ

�
�
�
�

�
�
�
� ≤ 2ε1=4 + 7ε+ 1

2m2 ‖φ‖
3=2
∞ + δ+

Z Z

K2
1 | f (x)�f (y) |<2

ffiffi
ε
√ 1f (x)≠f (y) f (x)

ffiffiffiffiffiffiffiffi

f (y)
q

dxdy:

By the dominated convergence theorem, the right term vanishes as ε→ 0. Then, taking 0 ≤ ε ≤ δ�sufficiently small and then m 
sufficiently large, we can achieve |

RR

K2 gf � gφ | ≤ 2δ: Note that we also have ‖φε � f ‖1 ≤ ε ≤ δ. This ends the proof of the 
lemma. w
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