
Quadratic Memory Is Necessary for Optimal Query Complexity 
in Convex Optimization: Center of Mass Is Pareto Optimal
Moïse Blanchard,a,* Junhui Zhang,a Patrick Jailleta 

a Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 
*Corresponding author 
Contact: moiseb@mit.edu, https://orcid.org/0000-0003-0593-8666 (MB); junhuiz@mit.edu, https://orcid.org/0009-0008-5922-1058 (JZ); 
jaillet@mit.edu, https://orcid.org/0000-0002-8585-6566 (PJ) 

Received: July 8, 2023 
Revised: July 11, 2024 
Accepted: September 5, 2024 
Published Online in Articles in Advance: 
November 20, 2024 

MSC2020 Subject Classifications: Primary: 
68Q25 

https://doi.org/10.1287/moor.2023.0208 

Copyright: © 2024 INFORMS

Abstract. We give query complexity lower bounds for convex optimization and the 
related feasibility problem. We show that quadratic memory is necessary to achieve the 
optimal oracle complexity for first-order convex optimization. In particular, this shows that 
center-of-mass cutting-plane algorithms in dimension d, which use Õ(d2) memory and 
Õ(d) queries, are Pareto optimal for both convex optimization and the feasibility problem, 
up to logarithmic factors. Precisely, building upon techniques introduced in previous 
works, we prove that to minimize 1-Lipschitz convex functions over the unit ball to 1=d4 

accuracy, any deterministic first-order algorithms using at most d2�δ bits of memory must 
make Ω̃(d1+δ=3) queries for any δ ∈ [0, 1]. For the feasibility problem, in which an algorithm 
only has access to a separation oracle, we show a stronger trade-off; for at most d2�δ mem
ory, the number of queries required is Ω̃(d1+δ). This resolves a Conference on Learning 
Theory 2019 open problem.

Funding: This work was partly supported by the Air Force Office of Scientific Research [Grant FA9550- 
19-1-0263] and the Office of Naval Research [Grant N00014-18-1-2122]. 

Keywords: convex optimization • feasibility problem • first-order methods • cutting plane • center of mass • memory lower bounds •
query complexity

1. Introduction
We consider the canonical problem of first-order convex optimization, in which one aims to minimize a convex 
function f : Rd→ R with access to an oracle that for any query x, returns (f (x),∇f (x)) the value of the function 
and a subgradient of f at x. Arguably, this is one of the most fundamental problems in optimization, mathemati
cal programming, and machine learning.

A classical question is how many oracle queries are required to guarantee finding an ɛ-approximate minimizer 
for any 1-Lipschitz convex functions f : Rd→ R over the unit ball. We denote by Bd(x, r) � {x′ ∈ Rd : ‖x� x′‖2 ≤ ɛ}
the ball centered in x of radius r. There exist methods that given first-order oracle access, only need O(d log 1=ɛ)
queries, and this query complexity is worst-case optimal (Nemirovsky et al. [28]) when ɛ≪ 1=

ffiffiffi
d
√

. Known meth
ods achieving the optimal O(d log 1=ɛ) query complexity fall in the broad class of cutting-plane methods that 
build upon the well-known ellipsoid method (Shor [35], Yudin and Nemirovskii [43]), which uses O(d2log 1=ɛ)
queries. These include the inscribed ellipsoid (Nesterov [29], Tarasov [38]), volumetric center or Vaidya’s method 
(Atkinson and Vaidya [2], Vaidya [39]), approximate center of mass via sampling techniques (Bertsimas and 
Vempala [5], Levin [19]), and recent improvements (Jiang et al. [16], Lee et al. [18]). Unfortunately, all of these 
methods suffer from at least Ω(d3log 1=ɛ) time complexity, and they further require storing all subgradients or at 
least an ellipsoid in Rd and therefore, at least Ω(d2log 1=ɛ) bits of memory. These limitations are prohibitive for 
large-scale optimization; hence, cutting-plane methods are viewed as rather impractical and less frequently used 
for high-dimensional applications. On the other hand, the simplest, perhaps most commonly used and practical 
gradient descent requires O(1=ɛ2) queries, which is not optimal for ɛ≪ 1=

ffiffiffi
d
√

, but only needs O(d) time per query 
and O(d log 1=ɛ)memory.

A natural question is whether one can preserve the optimal query lower bounds from cutting-plane methods 
with simpler methods: for instance, inspired by gradient descent techniques. Such hope is largely motivated by 
the fact that in many different theoretical settings, cutting-plane methods have achieved state-of-the-art run 
times, including semidefinite programming (Anstreicher [1], Lee et al. [18]), submodular optimization (Grötschel 

2941 

MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 50, No. 4, November 2025, pp. 2941–2971 

ISSN 0364-765X (print), ISSN 1526-5471 (online) https://pubsonline.informs.org/journal/moor 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

mailto:moiseb@mit.edu
https://orcid.org/0000-0003-0593-8666
mailto:junhuiz@mit.edu
https://orcid.org/0009-0008-5922-1058
mailto:jaillet@mit.edu
https://orcid.org/0000-0002-8585-6566
https://doi.org/10.1287/moor.2023.0208


et al. [13], Jiang [14], Lee et al. [18], McCormick [23]), or equilibrium computation (Jiang and Leyton-Brown [15], 
Papadimitriou and Roughgarden [32]). Toward this goal, Woodworth and Srebro [42] first posed this question in 
terms of query complexity/memory trade-off. Given a certain number of bits of memory, which query complex
ity is achievable? Although cutting-plane methods require Ω(d2log 1=ɛ) memory, gradient descent only requires 
storing one vector, and as a result, it uses O(d log 1=ɛ) memory, which is information-theoretically optimal 
(Woodworth and Srebro [42]); Ω(d log 1=ɛ) bits of memory are already required just to represent the answer to 
the optimization problem. Understanding this trade-off could pave the way for the design of more efficient meth
ods in convex optimization.

The first result in this direction was provided in Marsden et al. [22], where they showed that it is impossible 
to be both optimal in query complexity and in memory. Specifically, they proved that any potentially random
ized algorithm that uses at most d1:25�δ memory must make at least Ω̃(d1+4=3δ) queries for all δ ∈ 0, 1=4[ ].1 This 
implies that a superlinear amount of memory d1:25 is required to achieve the optimal rate of convergence (that 
is achieved by algorithms using more than quadratic memory). However, this leaves open the fundamental 
question of whether one can improve over the memory of cutting-plane methods while keeping optimal 
query complexity.
Question (Conference on Learning Theory 2019 (Woodworth and Srebro [42])). Is it possible for a first-order 
algorithm that uses at most O(d2�δ) bits of memory to achieve query complexity Õ(d polylog 1=ɛ) when d �
Ω(logc 1=ɛ) but d � o(1=ɛc) for all c > 0?

In this paper, building upon the techniques introduced in Marsden et al. [22], we provide a negative answer to 
this question; quadratic memory is necessary to achieve the optimal query complexity with deterministic algo
rithms. As a result, cutting-plane methods, including the standard center-of-mass algorithm, are Pareto optimal 
up to logarithmic factors within the query complexity/memory trade-off. Our main result for convex optimiza
tion is the following.

Theorem 1. For ɛ � 1=d4 and any δ ∈ [0, 1], a deterministic first-order algorithm guaranteed to minimize 1-Lipschitz con
vex functions over the unit ball with ɛ accuracy uses at least d2�δ bits or makes Ω̃(d1+δ=3) queries.

A key component of cutting-plane methods is that they merely rely on the subgradient information at each 
query to restrict the search space. As a result, these can be used to solve the larger class of feasibility problems 
that are essential in mathematical programming and optimization. In a feasibility problem, one aims to find 
an ɛ-approximation of an unknown vector x? and has access to a separation oracle. For any query x, the separa
tion oracle either returns a separating hyperplane g from x to Bd(x?,ɛ)—such that 〈g, x� z〉 > 0 for any 
z ∈ Bd(x?,ɛ)—or signals that ‖x� x?‖ ≤ ɛ. This class of problems is broader than convex optimization because the 
negative subgradient always provides a separating hyperplane from a suboptimal query to the optimal set. 
Hence, feasibility and convex minimization problems are closely related, and it is often the case that obtaining 
query lower bounds for the feasibility problem simplifies the analysis while still providing key insights for the 
more restrictive convex optimization problem (Nemirovsky et al. [28], Nesterov [30]).

As a result, a similar fundamental question is to understand the query complexity/memory trade-off for the 
feasibility problem. As noted above, any lower bound for convex optimization yields the same lower bound for 
the feasibility problem. Here, we can significantly improve over the previous trade-off.

Theorem 2. For ɛ � 1=(48d2
ffiffiffi
d
√
) and any δ ∈ [0, 1], a deterministic algorithm guaranteed to solve the feasibility problem 

over the unit ball with ɛ accuracy uses at least d2�δ bits of memory or makes at least Ω̃(d1+δ) queries.

1.1. Literature Review
Recently, there has been a series of studies exploring the trade-offs between sample complexity and memory con
straints for learning problems, such as linear regression (Sharan et al. [34], Steinhardt and Duchi [36]), principal 
component analysis (Mitliagkas et al. [24]), learning under the statistical query model (Steinhardt et al. [37]), and 
other general learning problems (Beame et al. [4], Brown et al. [7], Brown et al. [8], Garg et al. [12], Kol et al. [17], 
Moshkovitz and Moshkovitz [25], Moshkovitz and Moshkovitz [26]).

For parity problems that meet certain spectral (mixing) requirements, Raz [33] first proved by a computation 
tree argument that an exponential number of random samples is needed if the memory is subquadratic. Similar 
trade-offs have been obtained when the learning problem satisfies other types of properties (Beame et al. [4], 
Garg et al. [12], Kol et al. [17], Moshkovitz and Moshkovitz [25], Moshkovitz and Moshkovitz [26]). It should be 
noted that all of the above-mentioned results hold for learning problems over finite fields (i.e., the concept classes 
are finite). For continuous problems, Sharan et al. [34] was the first to apply the framework of Raz [33] and 
showed a sample complexity lower bound for memory-constrained linear regression.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2942 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



In contrast to learning with random samples, there is limited understanding of the memory-constrained opti
mization and feasibility problem. Nemirovsky et al. [28] demonstrated that in the absence of memory constraints, 
finding an ɛ-approximate solution for Lipschitz convex functions requires Ω(d log 1=ɛ) queries, which can be 
achieved by the center-of-mass method using O(d2log2 1=ɛ) bits of memory. At the other extreme, gradient 
descent needs Ω(1=ɛ2) queries but only O(d log 1=ɛ) bits of memory, the minimum memory needed to represent 
a solution. These two extreme cases are represented by the dashed pink “impossible region” and the dashed 
green “achievable region” in Figure 1. Since then, Marsden et al. [22] showed that there is a trade-off between 
memory and query for convex optimization; it is impossible to be both optimal in query complexity and mem
ory. Their lower bound is represented by the solid pink “impossible region” in Figure 1. In this paper, we signifi
cantly improve these results to match the quadratic upper bound of cutting-plane methods. Additionally, there 
has been recent progress in the study of query complexity for randomized algorithms (Woodworth and Srebro 
[40], Woodworth and Srebro [41]).

On the algorithmic side, the aforementioned methods that achieve O(poly(d)) query complexity (Atkinson and 
Vaidy [2], Bertsimas and Vempala [5], Jiang et al. [16], Lee et al. [18], Levin [19], Nesterov [29], Shor [35], Tarasov 
[38], Vaidya [39], Yudin and Nemirovskii [43]) all require at least Ω(d2log 1=ɛ) bits of memory. There is also sig
nificant literature on memory-efficient optimization algorithms, such as the limited-memory Broyden–Fletcher– 
Goldfarb–Shanno (BFGS) algorithm (Liu and Nocedal [21], Nocedal [31]). However, the convergence behavior 
for even the original BFGS on nonsmooth convex objectives is still a challenging, open question (Lewis and Over
ton [20]).

1.1.1. Comparison with Marsden et al. [22]. Our proof techniques build upon those introduced in Marsden et al. 
[22]. We follow the proof strategy that they introduced to derive lower bounds for the memory/query complex
ity. Below, we delineate which ideas and techniques are borrowed from Marsden et al. [22] and which are the 
novel elements that we introduce. Details on these proof elements are given in Section 2.4.

First, Marsden et al. [22] define a class of difficult functions for convex optimization of the following form:

F(x) � max ‖Ax‖∞ � η0, η0 max
i≤N

v⊤i x� iγ
� �� �

, (1) 

where A ~ U({61}d=2×d
) is a matrix with 61 entries sampled uniformly, and vi ~ U(d�1=2{61}d) are sampled inde

pendently, uniformly within the rescaled hypercube. To give intuition on this class, the term ‖Ax‖∞� η0 acts as a 
barrier; to observe subgradients from the other term, one needs to use queries x that are approximately within 
the null space of A. The second term maxi≤Nv⊤i x� iγ is the “Nemirovski” function, which was used in previous 
works (Balkanski and Singer [3], Bubeck et al. [9], Nemirovski [27]) to obtain lower bounds in parallel convex 

Figure 1. (Color online) Trade-offs between available memory and first-order oracle complexity for minimizing 1-Lipschitz con
vex functions over the unit ball (adapted from Marsden et al. [22] and Woodworth and Srebro [40]). The bottom-left dashed “L”- 
shaped region (top-right dashed inverted “L”- shaped region, respectively) corresponds to historical information-theoretic lower 
bounds (upper bounds, respectively) on the memory and query complexity. The light bottom-left solid region corresponds to the 
recent lower-bound trade-off from Marsden et al. [22], which holds for randomized algorithms. In our work, we show that the 
dark solid region is not achievable for any deterministic algorithms. For the feasibility problem, we also show that the dark 
dashed region is not achievable either for any deterministic algorithms. 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2943 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



optimization. At a high level, the limitation in the lower bounds from Marsden et al. [22] comes from the fact 
that one is limited in the number N of vectors v1, : : : , vN that can be used in the Nemirovski function. To resolve 
this issue, we introduce adaptivity within the choice of a modified Nemirovski function. At a high level, we 
choose the vectors v1, : : : , vN depending on the queries of the algorithm, which allows us to fit in more terms. In 
turn, this allows us to improve the lower bounds.

As a second step, Marsden et al. [22] relate the optimization problem on the defined class of functions to an 
orthogonal vector game. In this game, the goal is to find vectors that are approximately orthogonal to a matrix A 
with access to row queries of A. The argument is as follows; because of the barrier term ‖Ax‖∞� η0, optimizing 
the Nemirovski function requires exploring independent directions of the null space of A, which is performed at 
informative queries. With our new class of functions, we can adapt this logic. However, the adaptivity in the vec
tors vi provides information to the learner on A in addition to the queried rows of A. We, therefore, need to mod
ify the game by introducing an orthogonal vector game with hints, where hints encapsulate this extra 
information.

For the last step, Marsden et al. [22] give an information-theoretic argument to provide a query complexity 
lower bound on the defined orthogonal vector game. Following the same structure, we show that a similar argu
ment holds for our modified game. The main added difficulty resides in bounding the information leakage from 
the hints, and we show that these provide no more information than the memory itself.

As a last remark, the lower bounds provided in Marsden et al. [22] hold for randomized algorithms, whereas 
the adaptivity of our procedure only applies to deterministic algorithms.

1.2. Outline of the Paper
Our main results for the trade-off between memory and query complexity for optimization and the feasibility 
problem have been presented in Section 1 (Theorems 1 and 2). In Section 2, we formally define memory- 
constrained algorithms and provide a brief overview of our proof techniques and contributions. Our proofs for 
convex optimization are given in Section 3. We introduce the optimization procedure, which adaptively constructs 
a hard family of functions; additionally, we provide a reduction to this hard family from an orthogonal vector 
game with hints, and we show a memory-sample trade-off (Proposition 5) for the game, which completes the 
proof of Theorem 1. Last, in Section 4, we consider the feasibility problem and with a similar methodology, prove 
Theorem 2.

2. Formal Setup and Overview of Techniques
Standard results in oracle complexity give the minimal number of queries for algorithms to solve a given prob
lem. However, this does not account for possible restrictions on the memory available to the algorithm. In this 
paper, we are interested in the trade-off between memory and query complexity for both convex optimization 
and the feasibility problem. Our results apply to a large class of memory-constrained algorithms. We give below a 
general definition of the memory constraint for algorithms with access to an oracle O : S→R taking as input a 
query q ∈ S and returning as response O(q) ∈R.

Definition 1 (M-Bit Memory-Constrained Deterministic Algorithm). Let O : S→R be an oracle. An M-bit memory- 
constrained deterministic algorithm is specified by a query function ψquery : {0, 1}M→ S and an update function 
ψupdate : {0, 1}M × S ×R→ {0, 1}M. The algorithm starts with the memory state Memory0 � 0M and iteratively 
makes queries to the oracle. At iteration t, it makes the query qt � ψquery(Memoryt�1) to the oracle, receives the 
response rt �O(qt), and then, updates its memory Memoryt � ψupdate(Memoryt�1, qt, rt).

The algorithm can stop making queries at any iteration, and the last query is its final output. Notice that the 
memory constraint applies only between each query but not for internal computations (i.e., the computation of 
the update ψupdate and the query ψquery can potentially use unlimited memory). This is a rather weak memory 
constraint on the algorithm; a fortiori, our negative results also apply to stronger notions of memory-constrained 
algorithms. In Definition 1, we ask the query and update functions to be time invariant. In our context, this is 
without loss of generality; any M-bit algorithm using T queries with time-dependent query and update functions 
(Marsden et al. [22], Woodworth and Srebro [42]) can be turned into an (M+ ⌈logT⌉)-bit time-invariant algorithm 
by storing the iteration number t as part of the memory. The query lower bounds that we provide are at most 
T ≤ poly(d). Hence, the additional log T �O(log d) bits to the memory size M do not affect our main results: Theo
rems 1 and 2.

In this paper, we use the above-described framework to study the interplay between query complexity and 
memory for two fundamental problems in optimization and machine learning.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2944 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



2.1. Convex Optimization
We first consider convex optimization, in which one aims to minimize a 1-Lipschitz convex function f : Rd→ R 
over the unit ball Bd(0, 1) ⊂ Rd. The goal is to output a point x̃ ∈ Bd(0, 1) such that f (x̃) ≤ minx∈Bd(0, 1)f (x) + ɛ, referred 
to as ɛ-approximate points. The optimization algorithm has access to a first-order oracle OCO : Rd→ R × Rd, which 
for any query x, returns the couple (f (x),∂f (x)), where ∂f (x) is a subgradient of f at the query point x.

Remark 1. The above requirement for ɛ-approximate optimality is weaker than asking to find a point that is at 
distance ɛ from arg minx∈Bd(0, 1) f (x) (for 1-Lipschitz convex functions). As a result, our lower bounds for ɛ-approx
imate optimality hold a fortiori for the problem where one aims to find a point at a distance at most ɛ from the 
solution set.

2.2. Feasibility Problem
Second, we consider the trade-off between memory and query complexity for the feasibility problem, where the 
goal is to find an element x̃ ∈Q for a convex set Q ⊂ Bd(0, 1). Instead of a first-order oracle, the algorithm has 
access to a separation oracle OF : Rd→ {Success} ∪ Rd. For any query x ∈ Rd, the separation oracle either returns 
Success, reporting that x ∈Q, or provides a separating vector g ∈ Rd: that is, such that for all x′ ∈Q,

〈g, x� x′〉 > 0:

We say that an algorithm solves the feasibility problem with accuracy ɛ > 0 if it can solve any feasibility problem 
for which the successful set contains a ball of radius ɛ (i.e., such that there exists x? ∈ Bd(0, 1) satisfying 
Bd(x?,ɛ) ⊂Q).

The feasibility problem is at least as hard as convex optimization in the following sense; an algorithm that 
solves the feasibility problem with accuracy ɛ=L can be used to solve L-Lipschitz convex optimization problems 
by feeding the subgradients from first-order queries to the algorithm as separating hyperplanes. Alternatively, 
from any 1-Lipschitz function f, one can derive a feasibility problem, where the feasibility set is Q � {x ∈
Bd(0, 1), f (x) ≤ f ? + ɛ} and the separation oracle at x ∉Q is a subgradient ∂f (x) at x.

2.3. Overview of the Proof in Marsden et al. [22]
To ease the presentation, we first give an overview of the proof techniques from Marsden et al. [22], which we 
build upon. We recall that the family of functions that they use is given in Equation (1). The first term ‖Ax‖∞� η0 
acts as a barrier term; to observe subgradients from the other term, one needs the query x to satisfy ‖Ax‖∞ ≤ 2η0. 
These are called informative queries. They must lie approximately in the orthogonal space to the lines of A; that is, 
they approximately belong to the null space of A denoted Ker(A). Note that function F is designed so that intui
tively, its minimum is given by the second term. Hence, an optimization algorithm needs to make informative 
queries in order to optimize F.

The second term maxi∈[N]v⊤i x� iγ is referred to as a Nemirovski function. If γ is set appropriately to 
γ �Ω(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
), an algorithm that optimizes this function must discover the subgradients v1, : : : , vN in this exact 

order. In fact, for any k ≥ 1, choosing γ �Ω(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k log d=d

p
), they prove that (1) subgradients v1, : : : , vN are discovered 

exactly in this order and that (2) any query that visits a new vector vi does not lie close to the subspace formed 
by the last k informative vectors, a property known as robust linear independence. Indeed, for the last claim, from 
high-dimensional concentration, for a random unit vector v and a k-dimensional subspace E, ‖PE(v)‖ �
Θ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k log d=d

p
).

As a result, at any point when optimizing F, in order to observe the next k subgradients from the Nemirovski 
function, one needs to make k informative queries that are robustly independent and close to Ker(A). The crux of 
the optimization difficulty is that the algorithm receives information about A only through the subgradients of 
‖Ax‖∞: that is, one row at a time. This motivates the definition of the following (simplified) game. 

1. Oracle. Sample A ~ U({61}d=2×d
).

2. Player. Based on A, store an M-bit message Message.
3. Player. Using only Message (but not A), query some rows of A, and output vectors y1, : : : , yk.
4. The player wins if the returned vectors are all approximately in Ker(A) and are robustly independent; that is, 
‖PSpan(yj , j< i)⊥(yi)‖ ≥ β for all i ∈ [k] for some fixed parameter β.
They show that to win this game, the player should either (1) make Ω(d) row queries or (2) use memory 
M �Ω(kd). Roughly speaking, their result shows that to find k robustly independent vectors roughly in Ker(A), 
either (1) we need to query all rows of A (once we know A, finding vectors in its null space is easy), or (2) we 
need to store these vectors directly in memory, which requires Õ(kd) bits of memory. Setting k ≈ CM=d for some 
large constant C, where M is the bit memory of the algorithm, ensures that only the first scenario happens.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2945 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



With these ingredients at hand, assuming that the algorithm needs to discover all N subgradients v1, : : : , vN of the 
Nemirovski term, this gives a query lower bound of Ω(d) × (N=k). Unfortunately, the maximum number of useful 
Nemirovski vectors N is bounded by the value of γ; one needs N ≤ N0 � Õ(γ�2=3). Beyond this value, for any j >N0, 
we would have v⊤j x� jγ ≤ maxi∈[N0]v⊤i x� iγ for all x ∈ Bd(0, 1); hence, further terms are irrelevant to optimize F. This 
gives a final query lower bound of Ω(Nd=k) �Ω(Nd2=M) � Ω̃((d2=M)4=3

) for M-bit memory algorithms.

2.4. Overview of the Proof Strategy and Innovations
Because the techniques for Theorems 1 and 2 are similar, we mostly focus on main ideas used to derive lower 
bounds for convex optimization. Although our proof borrows techniques from Marsden et al. [22], we introduce 
key innovations involving adaptivity to improve the lower bounds up to the maximum quadratic memory for 
deterministic algorithms—up to logarithmic factors. We recall, however, that the bounds in Marsden et al. [22] 
hold for randomized algorithms as well. In the proofs, we aim to optimize the dependence of the parameters in 
d. Constants, however, are not necessarily optimized.

As a road map, our proof has three main components (see Figure 2). We first show that solving the general 
memory-constrained convex optimization problem implies solving an optimization procedure (Proposition 1). Neces
sary properties on the optimization procedure are proven in Propositions 2 and 3. We then further relate the opti
mization procedure to an orthogonal vector game with hints (Proposition 4), on which we prove memory/query 
trade-offs in Proposition 5.

2.4.1. Main Limitations for Improving the Lower Bounds. As per the computations in Section 2.3, one of the main 
barriers to improving the lower bounds is the limit on the number N of Nemirovski vectors that can be used. Ide
ally, if one could ensure N �Ω(d), which is the maximum possible value, then this would directly give a lower- 
bound trade-off up to quadratic memory O(d2). Our adaptive construction uses a different form of functions, but 
roughly speaking, we will be able to ensure precisely N � Ω̃(d) for the feasibility problem. However, for the opti
mization problem, we will only be able to reach the value N � k(d=k)1=3, which still provides a query lower bound 
of Ω(Nd=k) �Ω(d(d=k)1=3

) � Ω̃(d(d2=M)1=3
).

As a preview, given the bound N0 �O(γ�2=3), one of the goals of the adaptive construction is to decrease the 
value of γ from Ω(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k log d=d

p
) to O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
), which is the minimum value that still ensures the subgradients 

v1, : : : , vN to be observed in this exact order. We also use a two-layer construction to further reduce the value of γ 
for the last layer, which we discuss below. We recall that in the construction of Marsden et al. [22], having γ �
Ω(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k log d=d

p
) was necessary for k informative queries to be robustly independent.

2.4.2. An Adaptive Optimization Procedure. Instead of using a fixed distribution of convex functions as a hard 
instance as in Equation (1), we construct the hard functions adaptively. To do so, we design an optimization proce
dure, which for any algorithm, constructs a hard family of convex functions adaptively on its queries from the fol
lowing family of convex functions with appropriately chosen parameters η,γ1,γ2, pmax, lp,δ > 0:

FA, v(x) �max ‖Ax‖∞� η,ηv⊤0 x,η max
p≤pmax, l≤ lp

v⊤p, lx� pγ1� lγ2

� �� �

: (2) 

We take A ~ U({61}n×d
) and v0 ~ U(Dδ) uniformly sampled in the beginning, where Dδ ⊂ Sd�1 is a (finite) discreti

zation of the sphere. As in Equation (1), these functions include the barrier term ‖Ax‖∞� η, and queries x that sat
isfy ‖Ax‖∞ ≤ 2η are called informative; these lie approximately in Ker(A). The second term ηv⊤0 x is used to 
ensure that solutions with low objective (in particular, with the objective at most ηγ1=2) have norm bounded 
away from zero. As a result, these informative queries, once renormalized, will still belong approximately to the 
null space of A denoted Ker(A).

The main novelty in the construction is captured by the third term, which is constructed adaptively along the 
optimization process. This construction proceeds by periods p � 1, 2, : : : , pmax designed so that during each period 
p ∈ [pmax], the algorithm is forced to visit a subspace of Ker(A) of fixed dimension k � Ω̃(M=d). Here, k is a param
eter that plays the same role as in Marsden et al. [22]; assuming that the algorithm needs to visit a subspace of 
dimension k, then it should make at least k queries approximately in Ker(A) that are robustly linearly 

Figure 2. General proof structure. OVG, orthogonal vector game; Prop., proposition. 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2946 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



independent. The hope is that because k � Ω̃(M=d) (the algorithm cannot store these queries directly in memory), 
this requires making Ω̃(d) queries to the gradient oracle, yielding a final query lower bound of Ω̃(pmaxd).

For each period p, to ensure that the algorithm visits a subspace of Ker(A) of dimension k, we iteratively construct vec
tors vp, 1, : : :vp, lp as follows. Suppose that at the beginning of a step of period p, one has defined vectors vp, 1, : : : , vp, l. 
• The procedure first evaluates the explored subspace of the algorithm during this period. More precisely, the 

procedure keeps track of exploratory queries xip, 1 , : : : , xip, r during period p up to the current step. The exploratory 
subspace is then Span(xip, 1 , : : : , xip, r).
• If a query with a sufficiently low objective is queried, we sample a new vector vp, l+1, which is approximately 

orthogonal to the exploratory subspace. The corresponding new term in the objective is v⊤p, l+1x� pγ1� (l+ 1)γ2.
Once this new term is added to the objective, the algorithm is constrained to make queries with an additional 
component along the direction �vp, l+1. Because this vector is approximately orthogonal to all previous queries, 
this forces the algorithm to query vectors linearly independent from all previous queries in period p. The period 
then ends once the dimension of the exploratory subspace reaches k, having defined lp vectors vp, 1, : : : , vp, lp . As 
discussed above, the exploratory subspace must increase dimension for any additional such vector. Thus, after 
lp ≤ k vectors, period p ends (Lemma 2).

As a comparison with the family of functions from Equation (1), the third term of Equation (2) now plays the 
role of the Nemirovski function, and the total number of Nemirovski terms is intuitively N ≈ pmaxk because each 
layer p ∈ [pmax] constructs lp ≤ k vectors vp, 1, : : : , vp, lp .

2.4.3. Benefits of Adaptivity. We now expand on how the adaptive terms allow for improving the lower bound 
of Marsden et al. [22] to match the quadratic upper bound of cutting-plane methods. As we mentioned above, one 
of the limitations in the functions of the form Equation (1) comes from the fact that the offset in the Nemirovski func
tion is γ �Ω(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k log d=d

p
). This offset was necessary to ensure that with high probability, (1) subgradients v1, : : : , vN 

are discovered exactly in this order—in fact, this is also ensured whenever γ �Ω(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
)—and (2) any query that 

visits a new vector vi must not lie in the subspace formed by the last k last informative vectors. In our procedure, how
ever, this is not necessary anymore because during each period p ∈ [pmax], a k-dimensional subspace of Ker(A) is forced 
to be explored; that is, property (2) is already satisfied. Hence, we only need to ensure property (1). More precisely, we 
check that the optimization procedure is equivalent to running the optimization algorithm with the final constructed 
function. This is the goal of Proposition 1, and we provide the main ideas below.

We need to ensure that the algorithm first observes the subgradients of period 1 (that is, v1, 1, : : : , v1, l1 ) and then 
those of period 2 until those of period pmax. This is the purpose of the offset γ1, which can, therefore, be taken as 
γ1 �O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
).

Within each period p, we also need to ensure that the subgradients vp, 1, : : : , vp, lp would be discovered in that order 
when running the optimization algorithm with the final constructed function. For this second layer, we will be able to 
further reduce the value of the offset γ2. The vectors vp, l for l ∈ [lp] are constructed so that they are approximately 
orthogonal to any query x that was previously made during period p. Hence, we will be able to show that

max
l≤ l′ ≤ lp

v⊤p, l′ x� pγ1� l′γ2 ≤ �pγ1� (l� 1)γ2�
γ2
2 : (3) 

This gives an offset �γ2=2 compared with the previous terms maxl′ ≤ l�1v⊤p, l′ x� pγ1� l′γ2, which in turn, ensures 
that such a query x could not have observed the vectors vp, l′ for l′ ≥ l. In fact, we can take γ2 as small as desired; 
taking γ2 � Õ(γ1=d) is sufficient. Because there are at most lp ≤ k terms per period, the total offset per period still 
satisfies lpγ2 ≤ kγ2≪ γ1. In words, because the vectors vp, l are constructed perpendicular to exploration spaces 
within each period, the offset needed within each period is negligible.

Now that the offset parameters γ1 and γ2 have been reduced, we can increase the number of useful Nemir
ovski terms. Formally, it remains to estimate the maximum number of periods pmax that we can fit in the con
struction. First, using standard arguments, we show (Proposition 2) that

min
x∈Bd(0, 1)

FA, v(x)
η

≤ �Ω̃
1
ffiffiffiffi
N
√

� �

, 

where N � pmaxk is roughly the number of Nemirovski terms. On the other hand, suppose that an algorithm does 
not complete all pmax periods; say it does not observe vp, l. Then, if xT is the output of the algorithm, by concentra
tion bounds, we have

v⊤p, lxT � pγ1� lγ2 ≥�(p+ 1)γ1� lγ2 ≥�O(pmaxγ1):

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2947 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Note that if we choose pmax � Θ̃((d=k)1=3
), we have 1=

ffiffiffiffi
N
√
� 1=

ffiffiffiffiffiffiffiffiffiffiffi
pmaxk

p
≫ pmaxγ1. Then, combining the three previ

ous inequalities precisely shows that for pmax � Θ̃((d=k)1=3
), an algorithm needs to complete pmax periods in order 

to find an approximate minimizer of FA, v. Hence, the total number of Nemirovski terms is Ω̃(k(d=k)1=3
) as 

desired. Full details are given in Proposition 3, which completes the reduction from the optimization procedure 
to convex optimization.

2.4.4. An Orthogonal Vector Game with Hints. A crucial part of the proof is to prove that with the constructed 
optimization procedure, at each period p, to find k exploratory queries approximately in Ker(A) and robustly 
independent, the algorithm needs to perform Ω̃(d) queries to the gradient oracle.

We link the optimization of the above-mentioned constructed functions with an orthogonal vector game with 
hints (Proposition 4). As in the game introduced by Marsden et al. [22] (see Section 2.3), the goal for the player is 
to find k linearly independent vectors approximatively in Ker(A). To do so, the player can access an M-bit mes
sage Message and make m queries to rows of A. We now give some brief intuition about their information- 
theoretic query lower bound. Suppose that M ≤ ckd for a small constant c > 0. To win, the output vectors 
y1, : : : , yk should be robustly independent, which intuitively implies that the algorithm needs to visit roughly k 
distinct dimensions of Ker(A). Each new dimension of Ker(A) must be (approximately) orthogonal to all lines 
of A. Hence, this provides additional mutual information O(k) for every line of A, including the d=2�m lines 
that were not observed through queries. This extra information on A can only be explained by the message, 
which has M bits. Hence, M ≥O(k)(d=2�m). Setting the constant c > 0 appropriately, this shows that 
m �Ω(d).

In our case, the optimization procedure ensures that the algorithm needs to explore k dimensions of Ker(A)
in each period. However, each query yields a response from the optimization oracle that can either be a line 
of A (corresponding to the term ‖Ax‖∞ � η of Equation (2)) or v0 (term ηv⊤0 x of Equation (2)) or be previously 
defined vectors vp, ′l, ′ . Now, because the vectors vp′, l′ have been constructed adaptively on the queries of the 
algorithm, which themselves may depend on lines of A, during a period p, responses vp′, l′ for p′ < p are a 
source of information leakage for A from previous periods. As a result, the query lower bound on the game 
introduced by Marsden et al. [22] is not sufficient for our purposes. Instead, we introduce an orthogonal vec
tor game with hints, where hints correspond exactly to these vectors vp′, l′ from previous periods. Informally, 
the game corresponds to a simulation of one of the periods of the optimization procedure; for each query x, 
the oracle returns the subgradient that would have been returned in the optimization procedure, up to minor 
details. The formal definition of the orthogonal vector game with hints is given in Game 1; we give here its 
general structure for intuition. 

1. Oracle. Sample A ~ U({61}d=4×d
).

2. Player. Based on A, construct vectors v1, : : : , vd according to a specific procedure that mimics the construction 
of vectors vp, l in the optimization procedure.

3. Player. Based on A, store an M-bit message Message, and submit a response function g, which takes values in 
Bd(0, 1) and outputs wither a row of A or a vector from v1, : : : , vd.

4. Player. Using only Message (but not A), make some queries to the response function g, and output vectors 
y1, : : : , yk.

5. The player wins if the returned vectors are approximately in Ker(A) and robustly independent.

2.4.5. Bounding the Information Leakage. The next step of the proof is to give lower bounds on the number of 
queries needed to solve the orthogonal vector game with hints (Proposition 5). The main difficulty is to bound 
the information leakage from these hints. We recall that hints are of the form vp′, l′ , which have been constructed 
adaptively on the queries of the algorithm during period p′. In particular, these contain information on the lines 
of A queried during period p′ < p, which may be complementary with those queried during period p. If this total 
information leakage through the hints yields a mutual information with Ker(A) significantly higher than that of 
the M bits of Message, obtained lower bounds cannot possibly reflect any trade-off with memory constraints. It 
is, therefore, essential to obtain information leakage at most O(M) � Õ(dk).

To solve this issue, we introduce a discretization Dδ of the unit sphere where the vectors vp, l take value. Next, 
we show that each individual vector vp′, l′ from previous periods can only provide information Õ(k) on the matrix 
A. To have an intuition on this, note that for any (at most) k vectors x1, : : : , xk, the volume of the subset of the unit 
sphere Sd�1 of vectors approximately orthogonal to x1, : : : , xk, say S(x1, : : : , xk) � {y ∈ Sd�1 : |y⊤xi | ≤ d�3, i ≤ k}, is 
qk �O(1=d3k). Hence, because the vector v is roughly taken uniformly at random within Dδ ∩ S(x1, : : : , xk), we can 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2948 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



show that the mutual information of v with the initial vectors x1, : : : , xk is at most O(�log qk) �O(k log d). As a 
result, even if m � d, the total information leakage through the vectors vp′, l′ from previous periods is at most 
O(kd log d). This is comparable with the information of Message; hence, the main information-theoretic argument 
can be conserved. The formal proof involves anticoncentration bounds on the distance of a random unit vector to 
a linear subspace of dimension k (Lemma 4) as well as a more involved discretization procedure than the one 
presented above. In summary, by introducing adaptive functions through the optimization procedure, we show 
that the same memory-sample trade-off holds for the orthogonal vector game with hints and the game without 
hints introduced in Marsden et al. [22], up to logarithmic factors.

3. Memory-Constrained Convex Optimization
To prove our results, we need to use discretizations of the unit sphere Sd�1. It will be convenient to ensure 
that the partitions induced by these discretizations have equal area, which can be done with the following 
lemma.

Lemma 1 (Feige and Schechtman [11, Lemma 21]). For any 0 < δ < π=2, the sphere Sd�1 can be partitioned into N(δ) �
(O(1)=δ)d equal volume cells, each of diameter at most δ.

We denote by Vδ � {Vi(δ), i ∈ [N(δ)]} the corresponding partition and consider a set of representatives Dδ �
{bi(δ), i ∈ [N(δ)]} ⊂ Sd�1 such that for all i ∈ [N(δ)], bi(δ) ∈ Vi(δ). With these notations, we can define the discretiza
tion function φδ as follows:

φδ(x) � bi(δ), x ∈ Vi(δ):

3.1. Definition of the Difficult Class of Optimization Problems
In this section, we present the class of functions that we use to prove our lower bounds. Throughout the paper, 
we pose n � ⌈d=4⌉. We first define some useful functions. For any A ∈ Rn×d, we define gA as follows:

gA(x) � aimin , imin �min{i ∈ [n], |a⊤i x | � ‖Ax‖∞}:

With this function, we can define a subgradient function for x ⊢→ ‖Ax‖∞:

g̃A(x) � ɛgA(x), ɛ � sign(gA(x)
⊤x):

We are now ready to introduce the class of functions, which we use for our lower bounds. These are of the fol
lowing form:

FA, v(x) � max ‖Ax‖∞ � η, ηv⊤0 x, η max
p≤ pmax

max
l≤ lp

v⊤p, lx� pγ1 � lγ2

� �� �

:

Here, A ∈ {61}n×d is a matrix. Also, v0 and the terms vp, l are vectors in Rd. More precisely, these vectors will lie 
in the discretization Dδ for δ � 1=d3. We postpone the definition of pmax and lp for p ≤ pmax. Last, we use the fol
lowing choice for the remaining parameters: η � 2=d3, γ1 � 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
, and γ2 � γ1=4d. For convenience, we also 

define the functions

FA(x) �max{‖Ax‖∞ � η,ηv⊤0 x}

FA, v, p, l(x) �max ‖Ax‖∞ � η,ηv⊤0 x,η max
(p′, l′ )≤lex(p, l), l′ ≤ lp′

v⊤p′, l′ x� p′γ1� l′γ2

 !( )

, 

with the convention FA, v, 1, 0 � FA. The functions FA, v, p, l will encapsulate the current state of the function to be 
minimized; it will be updated adaptively on the queries of the algorithm. We also define a subgradient function 
for FA, v, p, l by first favoring lines of A and then vectors from v in case of ties as follows:

∂FA, v, p, l(x) �

g̃A(xt) if FA, v, l, p(x) � ‖Ax‖∞ � η,
ηv0 otherwise and if FA, v, l, p(x) � ηv⊤0 x,

ηvp, l otherwise and if (p, l) � arg max
(p′, l′ )≤lex(p, l)

v⊤p′, l′x� p′γ1� l′γ2:

8
>>><

>>>:

In the last case, ties are broken by lexicographic order. We define ∂FA, v � ∂FA, v, pmax, lpmax 
similarly.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2949 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



We consider a so-called optimization procedure, which will construct the sequence of vectors v � (vp, l) adaptively 
on the responses of the considered algorithm. Throughout this section, we use a parameter 1 ≤ k ≤ d=3� 1—which 
will be taken as k � Θ̃(M=d), where M is the memory of the algorithm—and let pmax be the largest number that satis
fies the following constraint:

pmax ≤ min{(cd, 1d� 1)=k, cd, 2(d=k)1=3
� 1}, (4) 

where cd, 1 � 1=(902 log2d) and cd, 2 � 1=(81 log2=3d).

Procedure 1 (The Optimization Procedure for Algorithm alg)
Input: d, k, pmax, algorithm alg
Part 1: Procedure to adaptively construct v 
1 Sample A ~ U({61}n×d

) and v0 ~ U(Dδ)

2 Initialize the memory of alg to 0, and let p � 1, r � l � 0
3 for t ≥ 1, do
4 if t > d2, then set (P, L) � (p, l), and break the for loop;
5 Run alg with current memory to obtain a query xt
6 if FA(x) > η, then //Noninformative query
7 return (‖Axt‖∞� η, g̃A(xt)) as response to alg
8 else //Informative query
9 if r ≤ k� 1 and FA, v, p, l(xt) ≤ �ηγ1=2 and ‖PSpan(xip, r′ , r′ ≤ r)⊥ (xt)‖=‖xt‖ ≥

γ2
4 , then

10 Set ip, r+1 � t and increment r← r+ 1
11 if FA, v, p, l(xt) < �η(pγ1 + lγ2 + γ2=2) and r < k, then
12 Compute Gram–Schmidt decomposition bp, 1, : : : , bp, r of xip, 1 , : : : , xip, r

13 Sample yp, l+1 uniformly on Sd�1 ∩ {z ∈ Rd : |b⊤p, r′z | ≤ d�3, ∀r′ ≤ r}
14 Define vp, l+1 � φδ(yp, l+1) and increment l← l+ 1
15 else if FA, v, p, l(xt) < �η(pγ1 + lγ2 + γ2=2) and p+ 1 ≤ pmax, then
16 Set lp � l and ip+1, 1 � t
17 Compute the Gram–Schmidt decomposition bp+1, 1 of xip+1, 1

18 Sample yp+1, 1 uniformly on Sd�1 ∩ {z ∈ Rd : |b⊤p+1, 1z | ≤ d�3}
19 Define vp+1, 1 � φδ(yp+1, 1), increment p← p+ 1, and reset l � r � 1
20 else if FA, v, p, l(xt) < �η(pγ1 + lγ2 + γ2=2), then //End of the construction
21 Set lpmax � l, ipmax+1, 1 � t
22 Set (P, L) � (pmax, l), and break the for loop
23 return (FA, v, p, l(xt),∂FA, v, p, l(xt)) as response to alg
24 end
Part 2: Procedure once v, P, L are constructed 
25 for t′ ≥ t, do return (FA, v, P, L(xt′ ),∂FA, v, P, L(xt′ )) as response to the query xt′

The optimization procedure is described in Procedure 1. First, we sample independently A ~ U({61}n×d
) and 

v0 ~ U(Dδ). The matrix A and vector v0 are then fixed for the rest of the learning procedure. Next, we describe 
the adaptive procedure to return subgradients. It proceeds by periods until pmax periods are completed unless 
the total number of iterations reaches d2, in which case the construction procedure ends as well. First, we say that 
a query is informative if FA(x) ≤ η. The procedure proceeds by periods p ∈ [pmax] and in each period, constructs 
the vectors vp, 1, : : : , vp, k iteratively. We are now ready to describe the procedure at time t when the new query xt 
is queried. Let p ≥ 1 be the index of the current period and vp, 1, : : : , vp, l be the vectors of this period constructed 
so far; the first period is p � 1, and we allow l � 0 here. As will be seen in the construction, we always have l ≥ 1 
except at the very beginning, for which we use the notation FA, v, 1, 0 � FA. Together with these vectors, the oracle 
keeps in memory indices ip, 1, : : : , ip, r with r ≤ k of exploratory queries. The constructed vectors from previous peri
ods are vp′, l′ for p′ < p and l′ ≤ lp′ . 

(Case 1) If xt is not informative (i.e., FA(x) > η), then the procedure returns (‖Axt‖∞� η, g̃A(xt)).
(Case 2) Otherwise, we follow the next steps. If r ≤ k� 1,

FA, v, p, l(xt) ≤ �
ηγ1

2 , and
‖PSpan(xip, r′ , r′ ≤ r)⊥ (xt)‖

‖xt‖
≥
γ2
4 , 

we set ip, r+1 � t and increment r. In this case, we say that xt is exploratory. 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2950 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



(Case 2a) Recalling that FA, v, p, l is constructed so far, if FA, v, p, l(xt) ≥ η(�pγ1� lγ2� γ2=2), we do not do 
anything.

(Case 2b) Otherwise and if r < k, let bp, 1, : : : , bp, r be the result from the Gram–Schmidt decomposition 
of xip, 1 , : : : , xip, r . Then, let yp, l+1 be a sample of the distribution obtained by the uniform distribution 

yp, l+1 ~ U Sd�1 ∩ {z ∈ Rd : |b⊤p, r′z | ≤ d�3, ∀r′ ≤ r}
� �

. We then pose vp, l+1 � φδ(yp, l+1). Having defined this new 
vector, we increment l.

(Case 2c) Otherwise, if r � k, this ends period p. We write the total number of vectors defined during period 
p as lp :� l. If p+ 1 ≤ pmax, period p + 1 starts from t � ip+1, 1. Similarly to above, let bp+1, 1 be the result of 
the Gram–Schmidt procedure on xp+1, 1, and we sample yp+1, 1 according to a uniform distribution 
yp+1, 1 ~ U Sd�1 ∩ {z ∈ Rd : |b⊤p+1, 1z | ≤ d�3}

� �
. Then, we pose vp+1, 1 � φδ(yp+1, 1). We can then increment p and 

reset l � r � 1.
After these steps, with the current values of p and l, we return (FA, v, p, l(xt),∂FA, v, l, p(xt)).
If we finished the last period p � pmax or if we reached a total number of iterations d2, the construction phase of 

the function ends. In both cases, let us denote by P, L the last defined period and vector vP, L. In particular, we 
have p ≤ pmax. From now on, the final function to optimize is FA, v, P, L, and the oracle is a standard first-order ora
cle for this function using the subgradient function ∂FA, v, P, L.

We will relate this procedure to the standard convex optimization problem and prove query lower bounds 
under memory constraints for this procedure. Before doing so, we formally define what we mean by solving this 
optimization procedure.

Definition 2. Let alg be an algorithm for convex optimization. We say that an algorithm alg is successful for the 
optimization procedure with probability q ∈ [0, 1] and accuracy ɛ > 0 if taking A ~ U({61}n×d

), running alg with 
the responses given by the procedure, and denoting by x?(alg) the final answer returned by alg, with probability 
at least q over the randomness of A, v0 and of the procedure, one has

FA, v, P, L(x?(alg)) ≤ min
x∈Bd(0,1)

FA, v, P, L(x) + ɛ:

3.2. Properties and Validity of the Optimization Procedure
We begin this section with a simple lemma showing that during each period p, at most lp ≤ k vectors 
vp, 1, : : : , vp, lp are constructed.

Lemma 2. At any time of the construction procedure, l ≤ r. In particular, because r ≤ k, we have lp ≤ k for all periods 
p ≤ pmax.

Proof. Fix a period p. We prove this by induction. The claim is satisfied for any l � 1 when p ≥ 2 because in this 
case, at the first time t � ip, 1 of the period p, we also construct the first vector vp, 1. For p � 1, note that the first 
informative query t that falls in case (2b) or case (2c) is exploratory. Indeed, in these cases, we have 
FA, v, 1, 0(xt) < η(�γ1� γ2=2) ≤ �ηγ1=2, and the second criterion for an exploratory query is immediate 
‖PSpan(xi1, r′ , r′ ≤0)(xt)‖ � 0 because no indices i1, r′ have been defined yet.

We now suppose that the claim holds for l� 1 ≥ 1. Let tp, l be the time when vp, l is constructed and ip, 1, : : : , ip, r 
be the indices constructed until the beginning of iteration tp, l. If a new index ip, r′ was constructed in times 
(tp, l�1, tp, l), then the claim holds immediately. Suppose that this is not the case. Note that tp, l falls in case (2b), 
which means in particular that

η(v⊤p, l�1xtp, l � pγ1� (l� 1)γ2) ≤ FA, v, p, l�1(xtp, l) < η(�pγ1� (l� 1)γ2� γ2=2):

As a result,

|y⊤p, l�1xtp, l | ≥ |v
⊤
p, l�1xtp, l | � δ >

γ2
2 � δ:

Next, when r ≥ l� 1 is the number of indices constructed so far, we decompose yp, l�1 � α1bp, 1+⋯ +αrbp, r + ỹp, l�1, 
where ỹp, l�1 ∈ Span(xip, r′ , r′ ≤ r)⊥. Now, by construction of yp, l�1, one has |αr′ | ≤ d�3 for all r′ ≤ r. Thus,

‖ỹp, l�1� yp, l�1‖ ≤

ffiffi
r
√

d3 ≤
1

d2
ffiffiffi
d
√ :

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2951 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Therefore,

‖PSpan(xip, r′ , r′ ≤ r)⊥(xtp, l)‖ ≥ | ỹ
⊤
p, l�1xtp, l | ≥ |y

⊤
p, l�1xtp, l | �

1
d2

ffiffiffi
d
√ >

γ2
2 �

1
d2

ffiffiffi
d
√ � δ ≥

γ2
4 :

As a result, tp, l is exploratory; hence, ip, r+1 � tp, l. This ends the proof of the recursion and the lemma. w

We recall that P and L denote the last defined period and vector vP, L. From Lemma 2, we have in particular 
P ≤ pmax and L ≤ k. In the next result, we show that with high probability, the returned values and vectors 
returned by the above procedure are consistent with a first-order oracle for minimizing the function FA, v, P, L.

Proposition 1. Let A ∈ {61}n×d and v0 ∈Dδ. On an event E of probability at least 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2 on the randomness of 

the procedure for some universal constant C > 0, all responses of the optimization procedure are consistent with a first-order 
oracle for the function FA, v, P, L; for any t ≥ 1, if (ft, gt) is the response of the procedure at time t for query xt, then ft �
FA, v, P, L(xt) and gt � ∂FA, v, P, L(xt).

Proof. Consider a given iteration t. We aim to show that (ft, gt) � (FA, v, P, L(xt),∂FA, v, P, L(xt)). By construction, if 
t ≥ d2, the result is immediate. Now, suppose t ≤ d2. We first consider the case when xt is noninformative (1). By 
definition, FA(xt) > η. Because for any (p, l) ≤lex (P, L), one has |v⊤p, lxt | ≤ ‖vp, l‖‖xt‖ ≤ 1, we have

FA, v, P, L(xt) �max FA(xt),η max
(p, l)≤ lex(P,L)

v⊤p, lx� pγ1� lγ2

� �� �

� FA(xt):

As a result, the response of the procedure for xt is consistent with FA, v, P, L, and the returned subgradient is 
g̃A(xt) � ∂FA, v, P, L(xt). Therefore, it suffices to focus on informative queries (2). We will denote by tp, l the index of 
the iteration when vp, l has been defined for (p, l) ≤lex (P, L). Consider a specific couple (p, l)≤lex(P, L), and let r 
denote the number of constructed indices on or before tp, l. Let bp, 1, : : : , bp, r be the corresponding vectors resulting 
from the Gram–Schmidt procedure on xip, 1 , : : : , xip, r . Then, conditionally on the history until time tp, l, the vector 
vp, l was defined as vp, l � φδ(yp, l), where yp, l is sampled as ~ U(Sd�1 ∩ {z ∈ Rd : |b⊤p, r′z | ≤ d�3, ∀r′ ≤ r}). As a result, 
from Lemma A.1, for any t ≤ tp, l, we have

P |x⊤t vp, l | ≥ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log d

d

r

+
2
d2

 !

≤
6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log d

p

d6 :

We then define the following event:

E �
\

(p, l) ≤lex(P, L)

\

t≤ tp, l

|x⊤t vp, l | < 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log d

d

r

+
2
d2

( )

, 

which by the union bound, has probability P(E) ≥ 1� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log d

p
=d2. We are now ready to show that the construc

tion procedure is consistent with optimizing FA, v, P, L on the event E. As seen before, we can suppose that xt is infor
mative (2). Using the same notations as before, because E is met, for any p < p′ ≤ P and l′ ≤ lp′ , we have for d ≥ 2,

v⊤p′, l′xt� p′γ1� l′γ2 < 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log d

d

r

+
1
d
� pγ1� γ1 ≤ �pγ1�

γ1
2 ≤ �pγ1� dγ2�

γ2
2 , 

where we used 3
ffiffiffi
2
√
+ 1 ≤ 6 and 2dγ2 ≤ γ1=2. As a result, we obtain that

max
(p′, l′ )≤lex(P,L),p′>p

v⊤p′, l′ xt� p′γ1� l′γ2 < �pγ1� lγ2�
γ2
2 :

Next, we consider the case of vectors vp, l′ , where l ≤ l′ ≤ lp and tp, l′ ≥ t (this also includes the case when we 
defined vp, l at time t � tp, l). We write l̃ for the smallest such index l. As a remark, l̃ ∈ {l, l+ 1}. Note that if such 
indices exist, this means that before starting iteration t, the procedure has not yet reached r � k. There are two 
cases. If xt was exploratory, we have t � ip, r; hence, ‖PSpan(bp, r′ , r′ ≤ r)⊤(xt)‖ � 0. If xt is not exploratory, either

‖PSpan(bp, r′ , r′ ≤ r)⊤(xt)‖ <
γ2
4 ‖xt‖ ≤

γ2
4 , (5) 

or we have FA, v, p, l(xt) >�ηγ1=2. We start with the last scenario when FA, v, p, l(xt) >�ηγ1=2. Then, on E, one has

max
(p, l)<lex(p′, l′ )≤lex(P,L)

v⊤p′, l′xt� p′γ1� l′γ2 ≤ �γ1 + 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log d

d

r

+
1
d ≤ �

γ1
2 :

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2952 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



As a result, this shows that FA, v, P, L(xt) � FA, v, p, l(xt). Hence, using a first-order oracle from FA, v, l, p at xt is already 
consistent with FA, v, P, L. Thus, for whichever case (case (2a), case (2b), or case (2c)) is performed, because these 
can only increase the knowledge on v, the response given by the construction procedure is consistent with mini
mizing FA, v.

It remains to treat the first two scenarios in which we always have Equation (5). In particular, when writing xt �

α1bp, 1+⋯ +αrbp, r + x̃t where x̃t � PSpan(bp, r′ , r′ ≤ r)⊥(xt), we have ‖x̃t‖ < γ2=4. As a result, for l̃ ≤ l′ ≤ lp, one has for

|v⊤p, l′ xt | ≤ |y⊤p, l′ xt | + δ ≤ |α1 | |y⊤p, l′bp, 1 |+⋯ +|αr | |y⊤p, l′bp, r | + ‖x̃t‖ + δ

< ‖a‖1
1
d3 +
γ2
4 + δ

≤
γ2
4 +

1
d2

ffiffiffi
d
√ +

1
d3 ≤

γ2
2 , 

where in the last inequality, we used d ≥ 3. As a result, provided that l̃ exists, this shows that

max
l̃ ≤ l′ ≤ lp

v⊤p, l′xt� pγ1� l′γ2 � v⊤p, l̃xt� pγ1� l̃γ2 < �pγ1� l̃γ2 +
γ2
2 : (6) 

On the other hand, if t � ip+1, 1, the same reasoning works for t viewing it as in period p + 1, which shows for this 
case that

max
l′ ≤ lp+1

v⊤p+1, l′xt� (p+ 1)γ1� l′γ2 � v⊤p+1, 1xt� (p+ 1)γ1� γ2 < �(p+ 1)γ1�
γ2
2 : (7) 

As a conclusion of these estimates, we showed that on E, we have

FA, v, P, L(xt) �max{FA, v, p, l(xt),η(v⊤p′, l′ xt� p′γ1� l′γ2)} :� F̃A, v, t(xt), 

where (p′, l′ ) is the very next vector that is defined after starting iteration t (potentially, it has tp′, l′ � t if we 
defined a vector at this time). It now suffices to check that the value and the vector returned by the procedure are 
consistent with the right-hand side. By construction, if we constructed vp′, l′ at step t (case (2b) or case (2c)), then 
the procedure directly uses a first-order oracle for F̃A, v, t. Further, by construction of the subgradients because 
they break ties lexicographically in (p, l), the returned subgradient is exactly ∂FA, v, P, L(xt). It remains to check that 
this is the case when no vector vp′, l′ is defined at step t: case (2a). This corresponds to the case when 
FA, v, p, l(xt) ≥ η(�pγ1� lγ2� γ=2). Now, in this case, the upper-bound estimates from Equations (6) and (7) imply 
that

v⊤p′, l′ xt� p′γ1� l′γ2 < �pγ1� lγ2� γ=2, 

and as a result, FA, v, P, L(xt) � FA, v, p, l(xt). Therefore, using a first-order oracle of FA, v, p, l at xt is valid, and the break 
of ties of the subgradient of F̃A, v, t is the same as the break of ties of ∂FA, v, P, L(xt). This ends the proof that on E, 
the procedure gives responses consistent with an optimization oracle for FA, v, P, L with subgradient function 
∂FA, v, P, L. Because P(E) ≥ 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2 for some constant C > 0, this ends the proof of the proposition. w

Last, we provide an upper bound on the optimal value of FA, v, P, L.

Proposition 2. Let A ~ U({61}n×d
) and v0 ~ U(Dδ). For any algorithm alg for convex optimization, let v be the resulting 

set of vectors constructed by the randomized procedure. With probability at least 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d over the randomness of 

A, v0 and v, we have
min

x∈Bd(0,1)
FA, v(x) ≤ �

η

40
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p

for some universal constant C > 0.

Proof. For simplicity, let us enumerate all of the constructed vectors v1, : : : , vlmax by order of construction. Hence, 
lmax ≤ pmaxk. We use the same enumeration for y1, : : : , ylmax

. Now, let Cd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40(lmax + 1)log d

p
, and consider the fol

lowing vector:

x̄ ��
1

Cd

Xlmax

l�0
PSpan(ai, i≤n)⊥ (vl):

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2953 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



In particular, note that we included v0 in the sum. For convenience, we write PA⊥ instead of PSpan(ai, i≤n)⊥ . Also, 
for convenience, let us define zl �

P
l′ ≤ lPA⊥(vl). Fix an index 1 ≤ l ≤ lmax. Then, by Lemma A.1, with 

t0 :�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log d=d

p
+ 2d�2, we have

P( |PA⊥(vl+1)
⊤zl | > t0‖zl‖) � P( |v⊤l+1PA⊥(zl) | > t0‖zl‖)

≤ P( |v⊤l+1PA⊥(zl) | > t0‖PA⊥(zl)‖)

≤
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log d

p

d2 :

Similarly, we have that
P( |v⊤l+1zl | > t0‖zl‖) ≤

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log d

p

d2 :

Now, consider the event E � ∩l≤ lmax{ |v
⊤
l zl�1 | , |PA⊥(vl)

⊤zl�1 | ≤ t0‖zl‖}, which because lmax ≤ d, by the union 
bound has probability at least 1� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log d

p
=d. Then, on E, for any l < lmax,

‖zl+1‖
2
≤ ‖zl‖

2
+ ‖PA⊥(vl+1)‖

2
+ 2 |PA⊥(vl+1)

⊤zl | ≤ ‖zl‖
2
+ 1+ 2t0‖zl‖:

We now prove by induction that ‖zl‖
2
≤ 40 log d · (l+ 1), which is clearly true for z0 because ‖z0‖ � ‖PA⊥(v0)‖ ≤

‖v0‖ ≤ 1. Suppose this is true for l < lmax. Then, using the above equation and the fact that t0 ≤ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
for 

d ≥ 4,

‖zl+1‖
2
≤ 40 log d · (l+ 1) + 1+ 6

ffiffiffiffiffi
40
√

log d
ffiffiffiffiffiffiffiffiffi
l+ 1

d

r

≤ 40 log d · (l+ 2), 

where we used lmax + 1 ≤ d, which completes the induction. In particular, on E, we have that ‖x̄‖ ≤ 1. Now, 
observe that by construction, x̄ ∈ Span(ai, i ≤ n)⊥ so that ‖Ax̄‖∞ � 0. Next, for any 0 ≤ l ≤ lmax, we have

v⊤l x̄ ��
v⊤l zlmax

Cd
��

1
Cd
‖PA⊥(vl)‖

2
+ v⊤l zl�1 +

X

l< l′ ≤ lmax

v⊤l PA⊥(vl′ )

0

@

1

A:

We will give estimates on each term of the above equation. First, if the indices ip, 1, : : : , ip, r were defined before 
defining vl, we denote ỹ � PSpan(xip, r′ , r′ ≤ r)⊥ (yl), the component of yl that is perpendicular to the explored space at 
that time. Then, we can write yl � α

l
1bp, 1+⋯ +αl

rbp, 1 + ỹl and note that

‖ỹl‖ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‖yl‖� (α
l
1)

2
� : : : � (αl

r)
2

q

≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k
d6

r

≥ 1� 1
d5 :

Then, we have
‖PA⊥(vl)‖ ≥ ‖PA⊥(yl)‖� δ

≥ ‖PSpan(ai, i≤ n, bp, r′ , r≤ r′)⊥ (yl)‖� δ

� ‖PSpan(ai, i≤ n, bp, r′ , r≤ r′)⊥ (ỹl)‖� δ

≥

�
�
�
�

�
�
�
�PSpan(ai, i≤ n, bp, r′ , r′ ≤ r)⊥

ỹl
‖ỹl‖

� ��
�
�
�

�
�
�
��

1
d5 � δ:

As a result, because δ � d�3, this shows that

‖PA⊥(vl)‖
2
≥

�
�
�
�

�
�
�
�PSpan(ai, i≤n, bp, r′ , r′ ≤ r)⊥

ỹl
‖ỹl‖

� ��
�
�
�

�
�
�
�

2
� 2δ:

Now, observe that dim(Span(ai, i ≤ n, bp, r′ , r′ ≤ r)⊥) ≥ d� n� k, whereas ỹl=‖ỹl‖ is a uniformly random unit vector 
in Span(bp, r′ , r ≤ r′)⊥. Therefore, using Proposition A.1, we obtain for t < 1,

P ‖PA⊥(vl)‖
2
+ 2δ� d� n� k

d ≤ �t
� �

≤ P
�
�
�

�
�
�PSpan(ai, i≤n, bp, r′ , r′ ≤ r)⊥

ỹ l
‖ỹ l‖

� ��
�
�

�
�
�
2
�

d� n� k
d

≤ �t
� �

≤ e�(d�k)t2
:

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2954 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



As a result, because d� n� k ≥ d=2, we obtain

P ‖PA⊥(vl)‖
2
≤

1
2� 2

ffiffiffiffiffiffiffiffiffiffi
log d

d

r

� 2δ
 !

≤
1
d2 :

Now, define F � ∩l≤ lmax{‖PA⊥(vl)‖
2
≥ 1=2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log d=d
q

� 2δ}, which because lmax + 1 ≤ d and by the union bound 

has probability at least P(F ) ≥ 1� 1=d. Next, we turn to the last term. For any 0 ≤ l < lmax, we now focus on the 
sequence (

Pl+u
l′ �l+1 v⊤l PA⊤(yl′ ))1≤u≤ lmax�l and first note that this is a martingale. These increments are symmetric 

(because yl′ is symmetric) even conditionally on A and vl, yl, : : : , yl′�1. Next, let t1 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log d=d

p
+ 2d�2. Note that 

for d ≥ 4, we have t1 ≤ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d=d

p
. Further, by Lemma A.1,

P( |v⊤l PA⊤(yl′ ) | > t1) � P( |PA⊤(vl)
⊤yl′ | > t1) ≤

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log d

p

d4 , 

where we used the fact that PA⊥ is a projection. Let Gl � ∩l< l′ ≤ lmax
{ |v⊤l PA⊤(vl′ ) | ≤ t1}, which by the union bound 

has probability P(Gl) ≥ 1� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log d

p
=d3. Next, we define Il, u � (v⊤l PA⊤(yl+u) ∧ t1) ∨ (�t1), the increments capped 

at absolute value t1. Because v⊤l PA⊤(yl+u) is symmetric, so is Il, u. As a result, these are bounded increments of a 
martingale, to which we can apply the Azuma–Hoeffding inequality:

P
Xlmax�l

u�1
Il, u

�
�
�
�
�

�
�
�
�
�
≤ 2t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(lmax� l)log d
q

 !

≥ 1� 2
d2 :

We denote by Hl this event. Now, observe that on Gl, the increments Il, u and v⊤l PA⊤(yl+u) coincide for all 
1 ≤ u ≤ lmax� l. As a result, on Gl ∩Hl, we obtain

X

l< l′ ≤ lmax

v⊤l PA⊥(vl′ )

�
�
�
�
�
�

�
�
�
�
�
�
≤

X

l< l′ ≤ lmax

v⊤l PA⊥(yl′ )

�
�
�
�
�
�

�
�
�
�
�
�
+ (lmax� 1)δ

≤
Xlmax�l

u�1
Il, u

�
�
�
�
�

�
�
�
�
�
+ (d� 2)δ

≤ 2t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lmaxlog d
q

+ (d� 2)δ:

Then, on the event E ∩ F ∩ ∩l≤ lmaxGl ∩Hl, for any 1 ≤ l ≤ lmax, one has

v⊤l zlmax ≥
1
2� 2

ffiffiffiffiffiffiffiffiffiffi
log d

d

r

� t0‖zl‖� 2t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lmaxlog d
q

�
1
d2

≥
1
2� 2

ffiffiffiffiffiffiffiffiffiffi
log d

d

r

� 3 log d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

40 lmax + 1
d

r

� 8 log d
ffiffiffiffiffiffiffiffi
lmax

d

r

�
1
d2

≥
1
2� 30 log d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmax + 1

d

r

≥
1
6 , 

where in the last inequalities, we used the fact that lmax ≤ kpmax ≤ cd, 1d� 1, where cd, 1 � 1=(902 log2d) as per Equa
tion (4). As a result, we obtain that on E ∩ F ∩ ∩l≤ lmaxGl ∩Hl, which has probability at most 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d for some 

constant C > 0,

max
p≤pmax, l≤ k

v⊤p, lx̄ ≤ �
1

6Cd
≤ �

1
40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p :

Because ‖Ax̄‖∞ � 0 and η ≥ η=(40
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p
), this shows that

FA, v(x̄) ≤ �
η

40
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p :

This ends the proof of the proposition. w

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2955 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



3.3. Reduction from Convex Optimization to the Optimization Procedure
According to Proposition 1, with probability at least 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2, the procedure returns responses that are 

consistent with a first-order oracle of the function FA, v, P, L, where vP, L is the last vector to have been defined. 
Now, observe that for any constructed vectors v, the function FA, v, P, L is 

ffiffiffi
d
√

-Lipschitz. As a result, if there exists 
an algorithm for convex optimization that guarantees ɛ accuracy for 1-Lipschitz functions, by rescaling, there 
exists an algorithm alg that is successful for the optimization procedure with probability 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2 and ɛ

ffiffiffi
d
√

accuracy. In the next proposition, we show that to be successful, such an algorithm needs to properly define the 
complete function FA, v (i.e., to complete all periods until pmax).

Proposition 3. Let alg be a successful algorithm for the optimization procedure with probability q ∈ [0, 1] and precision 
η=(2

ffiffiffi
d
√
). Suppose that alg performs at most d2 queries during the optimization procedure. Then, when running alg with the 

responses of the optimization procedure, alg succeeds and ends the period pmax with probability at least q�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d for 

some universal constant C > 0.

Proof. Let x?(alg) � xT denote the final answer of alg when run with the optimization procedure. By hypothesis, 
we have T ≤ d2. As before, let P ≤ pmax and L ≤ k be the indices such that the last vector constructed by the opti
mization procedure is vP, L. Let E be the event when alg run on the optimization procedure does not end period 
pmax. We focus on E and consider two cases.

First, suppose that T > tP, L (i.e., the last vector was not constructed at time T). As a result, either this means 
that xT corresponds to a noninformative query—case (1)—in which case FA, v, P, L(xT) ≥ FA(xT) ≥ η, or this means 
that FA, v, P, L(xt) ≥ η(�Pγ1� Lγ2� γ=2)—case (2a).

Second, we now suppose that T � tP, L (i.e., the last vector was constructed at time T). Then, by construction of 
vP, L and yP, L, we have indices iP, 1, : : : , iP, r ≤ T such that with the Gram–Schmidt decomposition bP, 1, : : : , bP, r of 
xiP, 1 , : : : , xiP, r , we have |b⊤p, r′yP, L | ≤ d�3 for all r′ ≤ r. In particular, writing xT � α1bP, 1+⋯ +αrbP, r + x̃T, where 
x̃T ∈ Span(xiP, r′ , r′ ≤ r)⊥, either we have iP, r � T, in which case x̃T � 0, or xT was not exploratory, in which case we 
directly have FA, v, P, L(xT) ≥ FA, v, P, L�1(xT) >�ηγ1=2, or we have ‖x̃T‖ < ‖xT‖γ2=4 ≤ γ2=4. For all remaining cases 
to consider, we obtain

|v⊤P, LxT | ≤ |y⊤P, LxT | + δ ≤
‖a‖1

d3 + ‖x̃T‖ + δ ≤
1
d3 +

1
d2

ffiffiffi
d
√ +

γ2
4 <

γ2
2 :

In the last inequality, we used d ≥ 4. This shows that FA, v, P, L(xT) ≥ η(�Pγ1� Lγ2� γ2=2). As a result, in all cases, 
this shows that FA, v, P, L(x?(alg)) ≥ η(�Pγ1� Lγ2� γ2=2) ≥�η(pmax + 1)γ1. Now, define the event

F � min
x∈Bd(0,1)

FA, v(x) ≤ �
η

40
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p

( )

:

By Proposition 2, we have P(F ) ≥ 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d. Now, from Equation (4),

(pmax + 1)3=2
≤

1
60γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k log d

p :

Thus,

(pmax + 1)γ1 ≤
1

60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(pmax + 1)log d

p ≤
1

60
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p :

Then, because FA, v, P, L ≤ FA, v, this shows that on E ∩ F ,

FA, v, P, L(x?(alg)) ≥�η(pmax + 1)γ1 ≥ min
x∈Bd(0,1)

FA, v(x) +
η

120
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kpmax + 1)log d

p

> min
x∈Bd(0,1)

FA, v, P, L(x) +
η

2
ffiffiffi
d
√ , 

where in the last inequality, we used kpmax ≤ cd, 1d� 1. As a result, let G be the event when alg succeeds for preci
sion ɛ � η=(2

ffiffiffi
d
√
). By hypothesis, P(G) ≥ q. Now, from the above equations, one has E ∩ F ∩ G � ∅. Therefore, 

P(G ∩ Ec) ≥ P(G)�P(G ∩ E ∩ F )�P(F c) ≥ q�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d: This ends the proof of the proposition. w

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2956 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



3.4. Reduction from an Orthogonal Vector Game with Hints to the Optimization Procedure
We are now ready to introduce an orthogonal vector game, where the main difference with the game introduced 
in Marsden et al. [22] is that the player can provide additional hints. The game is formally described in Game 1.

Let us first describe the game from Marsden et al. [22]. At the start of the game, an oracle samples a random 
matrix A ~ U({61}n×d

), where the number of rows n is fixed (say, n � ⌊d=4⌋). The final goal of the player is to out
put k vectors y1, : : : , yk, where k is a parameter of the game, that are approximately orthogonal to A and also 
robustly linearly independent. Precisely, for some parameters α, β of the game, these should satisfy

‖Ayi‖∞ ≤ α and ‖PSpan(y1, : : : , yi�1)
⊥ (yi)‖2 ≥ β, i ∈ [k]:

To find these vectors, the player can only use an M-bit message Message that was previously constructed with 
the knowledge of A and query m rows of A. Marsden et al. [22] showed that to solve this game, a player either 
needs a large memory for Message or needs to query most of the rows of A.

In Game 1, the player has further access to hints, which are vectors v1, : : : , vl that have also been constructed 
previously using the knowledge of A. In this game, when making queries in line 9–12, the player first submits a 
vector z ∈ Rd and then receives a response g(z), where g is a function that takes as values either the rows of A or 
the hints v1, : : : , vd and that was also previously specified by the player. For technical reasons, we also allow the 
response g to return an additional number in [d2] (see line 8 of Game 1; in any case, this number will carry little 
information about A). The game, therefore, has two phases. First, knowing A, the player chooses Message, the 
hints v1, : : : , vd, and a response function g (lines 2–8 of Game 1). Second, the player aims to output solution vec
tors y1, : : : , yk using only Message and m queries to g.

Note that if the hints v1, : : : , vd could be specified by the player without constraints, the player could directly 
choose as hints some solution vectors v1, : : : , vk that are orthogonal to A and robustly independent. Then, the 
player would easily win in the second phase with at most m � k queries to g. Instead, the hints v1, : : : , vd are con
structed in a very specific way that exactly mimics the construction of the vectors vp, l in Procedure 1. To con
struct each vector vl in the first phase, the player submits at most k vectors xl, 1, : : : , xl, rl (these mimic exploratory 
queries). The vector vl is then obtained after discretizing a random vector approximately orthogonal to 
xl, 1, : : : , xl, rl as in lines 12 and 13 of Procedure 1. The goal in the next sections will be to show that even with the 
additional information from the hints, the game is still hard to win for the player.

Game 1 (Orthogonal Vector Game with Hints)
Input: d, k, m, M, α, β 
1 Oracle: Set n← ⌊d=4⌋, sample A ~ U({61}n×d

)

2 Player: Observe A
3 for l ∈ [d], do
4 Player: Based on A and any previous queries and responses, submit at most k vectors xl, 1, : : : , xl, rl

5 Oracle: Perform the Gram–Schmidt decomposition bl, 1, : : : , bl, rl of xl, 1, : : : , xl, rl . Then, sample a vector yl ∈

Sd�1 according to a uniform distribution U(Sd�1 ∩ {z ∈ Rd :∀r ≤ rl, |b⊤l, rz | ≤ d�3}). As response to the query, 
return vl � φδ(yl) to the player.

6 end
7 Player: Based on A, all previous queries and responses, store an M-bit message Message

8 Player: Based on A, all previous queries and responses, submit a function g : Bd(0, 1) → ({aj, j ≤ n} ∪ {vl, l ≤
d}) × [d2] to the oracle

9 for i ∈ [m], do
10 Player: Based on Message and any previous queries x1, : : : , xi�1 and responses g1, : : : , gi�1 from this loop 

phase, submit a query zi ∈ Rd

11 Oracle: As the response to query zi, return gi � g(zi)

12 end
13 Player: Based on all queries and responses from this phase {zi, gi, i ∈ [m]} and on Message, return some vec

tors y1, : : : , yk to the oracle
14 The player wins if the returned vectors have unit norm and satisfy for all i ∈ [k]

1 ‖Ayi‖∞ ≤ α
2 ‖PSpan(y1, : : : , yi�1)

⊥ (yi)‖2 ≥ β

We first prove that solving the optimization procedure implies solving the orthogonal vector game with hints.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2957 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Proposition 4. Let m ≤ d. Suppose that there is an M-bit algorithm that is successful for the optimization procedure with 
probability q for accuracy ɛ � η=(2

ffiffiffi
d
√
) and uses at most mpmax queries. Then, there is an algorithm for Game 1 for para

meters d, k, m, M,α � 2η=γ1,β � γ2=4
� �

, for which the player wins with probability at least q�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d for some uni

versal constant C > 0.

Proof. Let alg be an M-bit algorithm solving the feasibility problem with mpmax queries with probability at least q. 
We now describe the strategy for Game 1.

In the first part of the strategy, the player observes A. First, submit an empty query to the oracle to obtain a 
vector v0, which as a result, is uniformly distributed among Dδ. We then proceed to simulate the optimization 
procedure for alg using parameters A and v0 (lines 3–6 of Game 1). Precisely, whenever a new vector vp, l needs 
to be defined according to the optimization procedure, the player submits the corresponding vectors xip, 1 , : : : , xip, r 

to the oracle and receives in return a vector that defines vp, l. In this manner, the player simulates exactly the opti
mization procedure. In all cases, the number of queries in this first phase is at most 1+ kpmax ≤ d. For the remain
ing queries to perform, the player can query whichever vectors; these will not be used in the rest of the strategy. 
If the simulation did not end period pmax, the complete procedure fails. We now describe the rest of the proce
dure when period pmax was ended. During the simulation, the algorithm records the time ip, 1 when period p 
started for all p ≤ pmax + 1. Recall that for pmax + 1, we only define ipmax+1, 1; this is the time that ends period pmax. 
Now, by hypothesis, ipmax+1, 1 ≤ mpmax. As a result, there must be a period p ≤ pmax that uses at most m queries: 
ip+1, 1� ip, 1 ≤ m. We define the memory Message to be the memory of alg just before starting iteration ip, 1 at the 
beginning of period p (line 7 of Game 1). Next, because the period pmax was ended, the vectors vp, l for p ≤
pmax, l ≤ lp were all defined. The player can, therefore, submit the function gA, v to the oracle (line 8 of Game 1) as 
follows:

gA, v : x ⊢→

(gA(x), 1) if FA, v(x) � ‖Ax‖∞ � η,
(v0, 2) otherwise and if FA, v(x) � ηv⊤0 x,
(vp, l, 2+ (p� 1)k+ l) otherwise and if

(p, l) � arg max
(p′, l′ )≤lex(pmax, lpmax )

v⊤p′, l′x� pγ1� lγ2:

8
>>>>><

>>>>>:

(8) 

Intuitively, the first component of gA, v gives the subgradient ∂FA, v to the following two exceptions; we always 
return ai instead of 6ai, and we return v0 (vp, l, respectively) instead of ηv0 (ηvp, l, respectively). The second term 
of gA, v has values in [2+ pmaxk]. Hence, because 2+ pmaxk ≤ d2, the function gA, v takes values in ({aj, j ≤ n} ∪ {vl, 
l ≤ d}) × [d2].

The strategy then proceeds to play the orthogonal vector game in a second part (lines 9–12 of Game 1) and 
uses the responses of the oracle to simulate the run of alg for the optimization procedure in period p. To do so, 
we set the memory state of the algorithm alg to be Message. Then, for the next m iterations, we proceed as fol
lows. At iteration i of the process, we run alg with its current state to obtain a new query zi, which is then sub
mitted to the oracle of the orthogonal vector game to get a response (gi, si). We then use this response to 
simulate the response that was given by the optimization procedure in the first phase, computing (vi, g̃ i) as 
follows:

(vi, g̃ i) �

( |g⊤i zi | � η, sign(g⊤i zi)gi) si � 1,
(ηg⊤i zi,ηgi) si � 2,
(η(g⊤i zi� pγ1� lγ2),ηgi) si � 2+ (p� 1)k+ l, p ≤ pmax, 1 ≤ l ≤ k:

8
><

>:
(9) 

We can easily check that in all cases, vi � FA, v(zi) and that g̃ i � ∂FA, v(zi). We then pass (vi, g̃ i) as a response to alg 
for the query zi, so it can update its state. Further, having defined i1 � 1, the player can keep track of exploratory 
queries by checking whether

vi ≤ �
ηγ1

2 and
‖PSpan(zir′ , r′ ≤ r)⊥ (zi)‖

‖zi‖
≥
γ2
4 , 

where i1, : : : , ir are the indices defined so far. We perform m such iterations unless alg stops and use the last 
remaining queries arbitrarily. Next, we check if the last index ik was defined. If not, we pose ik �m+ 1 and let 
zm+1 be the next query of alg. The final returned vectors are zi1=‖zi1‖, : : : , zik=‖zik‖. This ends the description of the 
player’s strategy.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2958 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Algorithm 1 (Strategy of the Player for the Orthogonal Vector Game with Hints)
Input: d, k, pmax, m, algorithm alg
Part 1: Strategy to store Message knowing A 
1 Initialize the memory of alg to be 0
2 Submit ∅ to the oracle, and use the response as v0
3 Run alg with the optimization procedure knowing A and v0 until first exploratory query xi1, 1

4 for p ∈ [pmax], do
5 Let Memoryp be the current memory state of alg and ip, 1 be the current iteration step
6 Run alg with the feasibility procedure until period p ends at iteration step ip+1, 1. If alg stopped before, return 

the strategy fails. When needed to sample a unit vector vp′, l′ , submit vectors xip′, 1 , : : :xip′, r′ to the oracle, 
where ip′, 1, : : : , ip′, r′ are the exploratory queries defined at that stage. We use the corresponding response of 
the oracle as vp′, l′

7 if ip+1, 1� ip, 1 ≤ m, then
8 Set Message �Memoryp
9 end
10 for Remaining queries to perform to the oracle, do Submit arbitrary query (e.g., ∅);
11 if Message has not been defined yet, then return The strategy fails;
12 Submit gA, v to the oracle as defined in Equation (8)
Part 2: Strategy to make queries 
13 Set the memory state of alg to be Message, and define i1 � 1, r � 1
14 for i ∈ [m], do
15 Run alg with current memory to obtain a query zi
16 Submit zi to the oracle from Game 1 to get response (gi, si)

17 Compute (vi, g̃ i) using zi, gi, and si as defined in Equation (9), and pass (vi, g̃ i) as response to alg
18 if vi ≤ �ηγ1=2 and ‖PSpan(zir′ , r′ ≤ r)⊥ (zi)‖=‖zi‖ ≥ γ2=4, then
19 Set ir+1 � i, and increment r← r+ 1
20 end
Part 3: Strategy to return vectors 
21 if index ik has not been defined yet, then
22 With the current memory of alg, find a new query zm+1, and set ik �m+ 1
23 return {zi1=‖zi1‖, : : : , zik=‖zik‖} to the oracle

We now show that the player wins with good probability. First, because alg makes at most mpmax ≤ d2 queries, 
by Proposition 3, on an event E of probability at least q�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d, alg succeeds and ends the period pmax. On E, 

by construction, the first phase of the strategy does not fail. Now, we show that in the second phase (lines 9–12 
of Game 1), the queried vectors coincide exactly with the queried vectors from the corresponding period p in the 
first phase (lines 3–6 of Game 1). To do so, we only need to check that the responses provided to alg coincide 
with the response given by the optimization procedure. First, recall that on E, all periods are completed; hence, 
FA, v, P, L � FA, v. Next, by Proposition 1, the responses of the procedure are consistent with optimizing FA, v, P, L and 
subgradients ∂FA, v, P, L on an event F of probability at least 1�C′

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2. Therefore, on E ∩ F , it suffices to 

check that the responses provided to alg are consistent with FA, v, which we already noted; at every step i, 
(vi, g̃ i) � (FA, v(zi),∂FA, v(zi)). This proves that the responses and queries coincide exactly with those given by the 
optimization procedure on E ∩ F .

Next, by construction, the chosen phase p had at most m iterations. Thus, on E ∩ F , among z1, : : : , zm+1, we 
have the vectors xip, 1 , : : : , xip,k . Further, if ik was not defined during part 2 of the strategy, this means that ik �m+ 1 
as defined in the player’s strategy (lines 21 and 22 of Algorithm 1). As a result, for all u ≤ k, we have ziu � xip,u . 
We now show that the returned vectors xip, 1=‖xip, 1‖, : : : , xip,k=‖xip,k‖ are successful for Game 1. First, because 
ip, 1, : : : , ip, k are exploratory queries, we have directly for u ≤ k,

‖PSpan(xip,v , v<u)⊥ (xip,u)‖

‖xip,u‖
≥
γ2
4 :

Next, if l is the index of the last constructed vector vp, l before ip, u in the optimization procedure, one has 
FA, v, p, l(xip,u ) ≤ �ηγ1=2. Therefore, ‖Axip,u‖∞ ≤ FA, v, p, l(xip,u ) + η ≤ η. Further, ηv⊤0 xip,u ≤ FA, v, p, l(xip,u ) ≤ �ηγ1=2. 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2959 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



This proves that ‖xip,u‖ ≥ γ1=2. Putting the previous two inequalities together yields
‖Axip,u‖∞

‖xip,u‖
≤

2η
γ1
:

As a result, this shows that the returned vectors are successful for Game 1 for the desired parameters α � 2η=γ1 
and β � γ2=4. Thus, the player wins on E ∩ F , which has probability at least q� (C+C′)

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2 by the union 

bound. This ends the proof of the proposition. w

3.5. Query Lower Bound for the Orthogonal Vector Game with Hints
Before proving a lower bound on the necessary number of queries for Game 1, we need to introduce two results. 
The first one is a known concentration result for vectors in the hypercube. It shows that for a uniform vector in 
the hypercube, being approximately orthogonal to k orthonormal vectors has exponentially small probability in k.

Lemma 3 (Marsden et al. [22]). Let h ~ U({61}d). Then, for any t ∈ (0, 1=2] and any matrix Z � [z1, : : : , zk] ∈ Rd×k with 
orthonormal columns,

P(‖Z⊤h‖∞ ≤ t) ≤ 2�cHk:

We will also need an anticoncentration bound for random vectors, which intuitively provides a lower bound 
for the previous concentration result. The following lemma shows that for a uniformly random unit vector, being 
orthogonal to k orthonormal vectors is still achievable with exponentially small probability in k.

Lemma 4. Let k < d and x1, : : : , xk be k orthonormal vectors. Then,

Py~U(Sd�1) |x⊤i y | ≤ 1
d3 , ∀i ≤ k

� �

≥
1

ed�4 d3k :

Proof. Let y ~ U(Sd�1) be a uniformly random unit vector. Then, for i < k and any y1, : : : , yi�1 such that 
|y1 | , : : : , |yi�1 | ≤ 1=d3, we have

P |yi | ≤
1
d3 |y1, : : : , yi�1

� �

� Pu~U(Sd�i) |u1 | ≤
1

d3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (y2
1+⋯ +y2

i�1)
q

0

B
@

1

C
A

≥

R 1=d3

0 (1� y2)(d�i�1)=2dy
R 1

0 (1� y2)
(d�i�1)=2dy

≥
(1� d�6)d=2

d3 ≥
e�d�5

d3 , 

where in the last equation, we used d ≥ 2. Therefore, we can show by induction that P( |yi | ≤ 1=d3, ∀i ≤ k) ≥
e�kd�5

=d3k: Thus, by isometry, this shows that

P |x⊤i y | ≤
1
d3 , ∀i ≤ k

� �

≥
1

ed�4 d3k :

This ends the proof of the lemma. w

We are now ready to prove a query lower bound for Game 1. Precisely, we show that for appropriate choices 
of parameters, one needs m � Ω̃(d) queries. The proof is closely inspired from the arguments given in Marsden 
et al. [22]. The main added difficulty arises from bounding the information leakage of the provided hints. As 
such, our goal is to show that these do not provide more information than the message itself.

Proposition 5. Let k ≥ 20(M+ 3d log(2d) + 1)=(cHn), and let 0 < α,β ≤ 1 such that α(
ffiffiffi
d
√
=β)5=4

≤ 1=2. If the player 
wins the orthogonal vector game with hints (Game 1) with probability at least 1/2, then m ≥ cHd=(8(30 log d+ cH)).

Proof. We first define some notations. Let Y � [y1, : : : , yk] be the matrix storing the final outputs from the algo
rithm. Next, for the responses of the oracle (g1, s1), : : : , (gm, sm), we first store all of the scalar responses in a vector 
c � [s1, : : : , sm]. We now focus on the responses g1, : : : , gm. Next, let G̃ denote the matrix containing these 
responses of the oracle, which are lines of A. Let G be the matrix containing unique columns from G̃ augmented 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2960 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



with rows of A so that it has exactly m columns, which are all different rows of A. Last, let A′ be the matrix A 
once the rows from G are removed. Next, let Ṽ be a matrix containing the responses of the oracle that are vectors 
vl, ordered by increasing index l. As before, let V be the matrix Ṽ where we only conserve unique columns and 
append it with additional vectors vl so that V has exactly m columns. We denote by w1, : : : , wm these vectors and 
recall that they are vectors vl ordered by increasing order of index l. Last, we define a vector j of indices such 
that j(i) contains the information of which column of the matrices G or V corresponds gi. Precisely, if gi is a line a 
from A, we set j(i) � j, where j is the index of the column from G corresponding to a. Otherwise, if j is the index 
of the column from V corresponding to gi, we set j(i) �m+ j.

Next, we argue that Y is a deterministic function of Message, the matrices G, V, and the vector of indices j and 
c. First, c provides the scalar responses directly. For the d-dimensional component of the responses, first note that 
from G, V, and j, one can easily recover the vectors g1, : : : , gm. Next, using the algorithm for the second section of 
the orthogonal vector game with hints set with initial memory Message and the vectors g1, : : : , gm as responses 
of the oracle, one can inductively compute the queries x1, : : : , xm. Last, Y is a deterministic function of xi, gi, i ∈ [m]
and Message. This ends the claim that there is a function φ such that Y � φ(Message, G, V , j, c). Now, by the data 
processing inequality,

I(A′; Y |G, V , j, c) ≤ I(A′; Message |G, V, j, c) ≤ H(Message |G, V , j, c) ≤ M: (10) 

In the last inequality, we used the fact that Message uses at most M bits. Now, we have that
I(A′; Y |G, V, j, c) �H(A′ |G, V, j, c)�H(A′ |Y, G, V , j, c): (11) 

In the next steps, we bound the two terms. We start with the second term on the right-hand side of Equation (11) 
using similar arguments to the proof given in Marsden et al. [22]. Let E be the event when the player succeeds at 
Game 1. Now, consider the case when Y is a winning matrix. Then, we have ‖Ayi‖∞ ≤ α for all i ≤ k. As a result, 
any line a of A′ satisfies ‖Y⊤a‖∞ ≤ α. Further, we have that ‖PSpan(yj, j< i)⊥ (yi)‖ ≤ β for all i ≤ k. By Lemma B.1, 
there exist ⌈k=5⌉ orthonormal vectors Z � [z1, : : : , z⌈k=5⌉] such that for any x ∈ Rd, one has ‖Z⊤x‖∞ ≤ (

ffiffiffi
d
√
=β)5=4

‖Y⊤x‖∞. 
In particular, all lines a of A′ satisfy

‖Z⊤a‖∞ ≤
ffiffiffi
d
√

β

 !5=4

α ≤
1
2 , 

where we used the hypothesis in the parameters α and β. Now, by Lemma 3, one has

a ∈ {61}d : ‖Z⊤a‖∞ ≤
1
2

� ��
�
�
�

�
�
�
� ≤ 2dPh~U({61}d) ‖Z

⊤h‖∞ ≤
1
2

� �

≤ 2d�cH⌈k=5⌉:

Therefore, we proved that if Y′ is a winning vector, H(A′ |Y � Y′) ≤ (n�m)(d� cHk=5). Otherwise, if Y′ loses, we 
can directly use H(A′ |Y � Y′) ≤ (n�m)d. Combining these equations gives

H(A′ |Y, G, V , j, c) ≤ H(A′ |Y)
≤ P(Ec)(n�m)d+P(E)(n�m)(d� cHk=5)
≤ (n�m)(d�P(E)cHk=5):

Next, we turn to the first term of the right-hand side of Equation (11):

H(A′ |G, V, j, c) � H(A |G, V , j, c) � H(A |V)� I(A; G, j, c |V)
≥ H(A |V)�H(G, j, c)
≥ H(A |V)�md�m log(2m)�m log(d2)

� H(A)� I(A; V)�md� 3m log(2d)
� (n�m)d� 3m log(2d)� I(A; V):

In the second inequality, we use the fact that G uses md bits and j can be stored with m log(2m) bits. Now, by the 
chain rule,

I(A; V) �
X

i≤m
I(A; wi |w1, : : : , wi�1):

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2961 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Now, if wi � vl, recalling that the vectors wi′ � vl′ are ordered by increasing index of l′ , we have

I(A; wi |w1, : : : , wi�1) �H(wi |w1, : : : , wi�1)�H(wi |A, w1, : : : , wi)

≤ H(wi)�H(wi |A, w1, : : : , wi, xl, 1, : : : , xl, rl)

�H(wi)�H(wi |xl, 1, : : : , xl, rl)

≤ log |Dδ | �H(wi |xl, 1, : : : , xl, rl):

In the last equality, we used the fact that if bl, 1, : : : , bl, rl are the resulting vectors from the Gram–Schmidt decom
position of xl, 1, : : : , xl, rl , yl is generated uniformly in Sd�1 ∩ {y :∀r ≤ rl, |b⊤l, ry | ≤ d�3} independently from the past 
history, and vl � φδ(yl). Now, by Lemma 4, we know that

Pz~U(Sd�1)(∀r ≤ rl, |b⊤l, rz | ≤ d�3) ≥
1

ed�4 d3k :

As a result, for any bj(δ) ∈Dδ, one has

P(wi � bj(δ) |xl, 1, : : : , xl, rl) ≤
Pz~U(Sd�1)(z ∈ Vj(δ))

Pz~U(Sd�1)(∀r ≤ rl, |b⊤l, rz | ≤ d�3)
≤

ed�4 d3k

|Dδ |
, 

where we used the fact that each cell has the same area. In particular, this shows that

H(wi |xl, 1, : : : , xl, rl) � Eb~wi |xl, 1, : : : , xl, rl
[�logpwi |xl, 1, : : : , xl, rl

(b)] ≥ log |Dδ |

ed�4 d3k

� �

:

Hence,
I(A; wi |w1, : : : , wi�1) ≤ 3k log d + d�4 log e:

Putting everything together gives

I(A′; Y |G, V, j) ≥ (n�m)d� 3m log(2d)� 3km log d� 2md�4 � (n�m)(d� P(E)cHk=5)

≥
cH

10 k(n�m)� 3km log d� 1� 3d log(2d), 

where in the last equation, we used d ≥ 2. Together with Equation (10), this implies

m ≥ cHkn=10�M� 1� 3d log(2d)
k(3log d+ cH=10) :

As a result, because k ≥ 20 M+3d log(2d)+1
cHn and n ≥ d=4, we obtain

m ≥ cHn
60 log d+ 2cH

≥
cH

8(30 log d+ cH)
d:

This ends the proof of the proposition. w

We are now ready to prove the main result.

Proof of Theorem 1. We set n � ⌈d=4⌉ and k � ⌈20(M+ 3d log(2d) + 1)=(cHn)⌉. By Proposition 1, with probability at 
least 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2, the procedure is consistent with a first-order oracle for convex optimization. Hence, 

because the functions FA, v, P, L are 
ffiffiffi
d
√

-Lipschitz, any M-bit algorithm guaranteed to solve convex optimization 
within accuracy ɛ � η=(2d) � 1=d4 for 1-Lipschitz functions yields an algorithm that is successful for the optimiza
tion procedure with probability at least 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d2 and precision ɛ

ffiffiffi
d
√
� η=(2

ffiffiffi
d
√
). Suppose that it uses at 

most Q queries. Then, by Proposition 4, there is a strategy for Game 1 for parameters (d, k, ⌈Q=pmax⌉ + 1, M,α �
2η=γ1,β � γ2=4), in which the player wins with probability at least 1�C′

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d. Now, for d large enough, this 

probability is at least 1/2. Further,

2η
γ1

4
ffiffiffi
d
√

γ2

 !5=4

≤
(4=3)5=4

6 ηd3 ≤
1
2 :

Hence, by Proposition 5, one has

⌈Q=pmax⌉ + 1 ≥ cH

8(30 log d + cH)
d:

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2962 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Because pmax �Θ((d=k)1=3log�2=3d), this implies

Q �Ω
(d=k)1=3d
log5=3d

 !

�Ω
d5=3

(M+ log d)1=3log5=3d

 !

:

In particular, if M � d1+δ for δ ∈ [0, 1], the number of queries is Q � Ω̃(d1+(1�δ)=3). w

4. Memory-Constrained Feasibility Problem
4.1. Defining the Feasibility Procedure
Similarly to Section 3, we pose n � ⌈d=4⌉. Also, for any matrix A ∈ {61}n×d, we use the same functions gA and g̃A. 
We use similar techniques as those we introduced for the optimization problem. However, because in this case, 
the separation oracle only returns a separating hyperplane without any value considerations of an underlying 
function, Procedure 1 can be drastically simplified, which leads to improved lower bounds.

Let η0 � 1=(24d2), η1 � 1=(2
ffiffiffi
d
√
), δ � 1=d3, and k ≤ d=3� n be a parameter. Last, let pmax � ⌊(cd, 1d� 1)=(k� 1)⌋, 

where cd, 1 is the same quantity as in Equation (4). The feasibility procedure is defined in Procedure 2. The oracle 
first randomly samples A ~ U({61}n×d

) and v0 ~ U(Dδ). This matrix and vector are then fixed in the rest of the 
procedure. Whenever the player queries a point x such that ‖Ax‖∞ > η0 (v⊤0 x >�η1, respectively), the oracle 
returns g̃A(x) (v0, respectively). All other queries are called informative queries. With this definition, it now 
remains to define the separation oracle on informative queries. The oracle proceeds by periods in which the 
behavior is different. In each period p, the oracle constructs vectors vp, 1, : : : , vp, k�1 inductively and keeps in mem
ory some queries ip, 1, : : : , ip, k that will be called exploratory. The first informative query t will be the first explor
atory query and starts period 1.

Given a new query xt: 
(Case (f)1) If ‖Ax‖∞ > η0, the oracle returns g̃A(xt).
(Case (f)2) If v⊤0 xt >�η1, the oracle returns v0.
(Case (f)3) If xt was queried in the past sequence, the oracle returns the same vector that was returned 

previously.
(Case (f)4) Otherwise, let p be the index of the current period, and let vp, 1, : : : , vp, l be the vectors from the current 

period constructed so far together with their corresponding exploratory queries ip, 1: : : , ip, l < t. Potentially, if p � 1, 
one may not have defined any such vectors at the beginning of time t. In this case, let l � 0. 

(Case (f)4a) If max1≤ l′ ≤ lv⊤p, l′xt >�η1 (with the convention max∅ ��∞), the oracle returns vp, l′ , where 
l′ � arg maxl≤ rv

⊤
p, lxt. Ties are broken alphabetically.

(Case (f)4b) Otherwise, if l < k� 1, we first define ip, l+1 � t. Then, let bp, 1, : : : , bp, l+1 be the result from the 
Gram–Schmidt decomposition of xip, 1 , : : : , xip, l+1 , and let yp, l+1 be a sample of the distribution obtained by the uni
form distribution yp, l+1 ~ U(Sd�1 ∩ {z ∈ Rd : |b⊤p, rz | ≤ d�3, ∀r ≤ l+ 1}). We then pose vp, l+1 � φδ(yp, l+1). Having 
defined this new vector, the oracle returns vp, l+1. We then increment l.

(Case (f)4c) Otherwise, if r � k, we define ip, k � ip+1, 1 � t. If p+ 1 ≤ pmax, this starts the next period p + 1. As 
above, let bp+1, 1 be the result of the Gram–Schmidt decomposition of xip+1,1 and sample yp+1, 1 according to a uni
form yp+1, 1 ~ U(Sd�1 ∩ {z ∈ Rd : |b⊤p+1, 1z | ≤ d�3}). We then pose vp+1, 1 � φδ(yp+1, 1), and the oracle returns vp+1, 1. 
We can then increment p and reset l � 1.

The above construction ends when the period pmax is finished. At this point, the oracle has defined the vectors 
vp, l for all p ≤ pmax and l ≤ k. We then define the successful set as

QA, v � x ∈ Bd(0, 1) : ‖Ax‖∞ ≤ η0, v⊤0 x ≤ �η1, max
p≤pmax, l≤ k�1

v⊤p, lx ≤ �η1

� �

:

From now on, the procedure uses any separation oracle for QA, v as responses to the algorithm while making 
sure to be consistent with previous oracle responses if a query is exactly duplicated. We now define what we 
mean by solving the above feasibility procedure.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2963 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Procedure 2 (The Feasibility Procedure for Algorithm alg)
Input: d, k, pmax, algorithm alg 
1 Sample A ~ U({61}n×d

) and v0 ~ U(Dδ)

2 Initialize the memory of alg to 0, and let p � 1, l � 0
3 for t ≥ 1, do
4 Run alg with current memory to obtain a query xt
5 if ‖Axt‖ > η0, then return g̃A(xt) as response to alg;
6 else if v⊤0 xt >�η1, then return v0 as response to alg;
7 else if Query xt was made in the past, then return same vector that was returned for xt;
8 else
9 if max1≤ l′ ≤ lv⊤p, l′xt >�η1, then
10 return vp, l′ , where l′ � arg maxl≤ rv

⊤
p, lxt

11 else if l < k� 1, then
12 Let ip, l+1 � t, and compute Gram–Schmidt decomposition bp, 1, : : : , bp, l+1 of xip, 1 , : : : , xip, l+1

13 Sample yp, l+1 uniformly on Sd�1 ∩ {z ∈ Rd : |b⊤p, l′z | ≤ d�3, ∀l′ ≤ l+ 1}, and define
14 vp, l+1 � φδ(yp, l+1)
15 return vp, l+1 as response to alg and increment l← l+ 1
16 else if p+ 1 ≤ pmax, then
17 Set ip, k � ip+1, 1 � t, and compute the Gram–Schmidt decomposition bp+1, 1 of xip+1,1

18 Sample yp+1, 1 uniformly on Sd�1 ∩ {z ∈ Rd : |b⊤p+1, 1z | ≤ d�3}, and define vp+1, 1 � φδ(yp+1, 1)
19 return vp+1, 1 as response to alg, increment p← p+ 1, and reset l � 1
20 else Set ipmax, k � t, and break the for loop;
21 end
22 for t′ ≥ t, do Use any separation oracle for QA, v consistent with previous responses

Definition 3. Let alg be an algorithm for the feasibility problem. When running alg with the responses of the feasi
bility procedure, we denote by v the set of constructed vectors and x?(alg) the final answer returned by alg. We 
say that an algorithm alg is successful for the feasibility procedure with probability q ∈ [0, 1] if taking A ~ 
U({61}n×d

) with probability at least q over the randomness of A and of the procedure, x?(alg) ∈QA, v:

In the rest of this section, we first relate this feasibility procedure to the standard feasibility problem, and then, 
we prove query lower bounds to solve the feasibility procedure.

4.2. Reduction from the Feasibility Procedure to the Feasibility Problem
In the next proposition, we check that the above procedure indeed corresponds to a valid feasibility problem.

Proposition 6. On an event of probability at least 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d, the procedure described above is a valid feasibility prob

lem. More precisely, the following hold. 
• There exists x̄ ∈ Bd(0, 1) such that ‖Ax̄‖∞ � 0, v⊤0 x̄ ≤ �4η1, and

max
p≤pmax, l≤ k�1

v⊤p, lx̄ ≤ �4η1:

• Let ɛ �min{η0=
ffiffiffi
d
√

,η1}=2. Then, Bd(x̄� ɛ(x̄=‖x̄‖), ɛ
�
⊆ Bd(0, 1) ∩ Bd(x̄, 2ɛ) ⊆QA, v:

• Throughout the run of the feasibility problem, the separation oracle always returned a valid cut: that is, for any iteration t, 
if xt denotes the query and gt is the returned vector from the oracle, one has

∀x ∈QA, v, 〈gt, xt� x〉 > 0:

Further, responses are consistent; if xt � xt′ , the responses of the procedure at times t and t′ coincide.

We use a similar proof to that of Proposition 2.

Proof. For convenience, we rename vp, l � v(p�1)(k�1)+l. Also, let lmax � pmax(k� 1) ≤ cd, 1d� 1. Next, let Cd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40lmax logd

p
. 

We define the vector

x̄ ��
1

Cd

Xlmax

l�0
PSpan(ai, i≤n)⊥ (vl):

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2964 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Because lmax ≤ pmax(k� 1) ≤ cd, 1d� 1, the same arguments as in the proof of Proposition 2 show that on an event 
E of probability at least 1�C

ffiffiffiffiffiffiffiffiffiffi
log d

p
=d, we have ‖x̄‖ ≤ 1 and

max
0≤ l≤ lmax

v⊤l x̄ ≤ �
1

40
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(lmax + 1)log d

p ≤ �
2
ffiffiffi
d
√ ��4η1, 

where in the second inequality, we used lmax ≤ cd, 1d� 1. Now, by construction, one has ‖Ax̄‖∞ � 0. This ends the 
proof of the first claim of the proposition. We now turn to the second claim, which is immediate from the fact 
that x ⊢→ ‖Ax‖∞ is 

ffiffiffi
d
√

-Lipschitz and both x ⊢→ v⊤0 x and x ⊢→maxp≤pmax, l≤kv⊤p, lx are 1-Lipschitz. Therefore, 
Bd(x̄� ɛx̄=‖x̄‖,ɛ) ⊆ Bd(0, 1) ∩ Bd(x̄, 2ɛ) ⊂QA, v. It now remains to check that the third claim is satisfied. It suffices to 
check that this is the case during the construction phase of the feasibility procedure: by construction of 
QA, v ⊂ {x : ‖Ax‖∞ ≤ η0}.

Hence, it suffices to check that for informative queries xt, the returned vectors gt are valid separating hyper
planes. By construction, these can only be either v0 or vp, l for p ≤ pmax, l ≤ k� 1. We denote by w this vector. Let 
t′ be the first time xt was queried. There are two cases. Either w was not constructed at time t′, in which case, by 
construction this means that we are in case ((f)2) or case ((f)4a). Both cases imply w⊤xt >�η1. Hence, w, which is 
returned by the procedure, is a valid separating hyperplane. Now, suppose that w � vp, l was constructed at time 
t′—case ((f)4b) or case ((f)4c). By construction, one has |b⊤p, ryp, l | ≤ d�3 for all r ≤ l. Decomposing xt � xip, l �

αbp, 1+⋯ +αlbp, l, we obtain
|x⊤t yp, l | ≤

‖a‖1
d3 ≤

1
d2

ffiffiffi
d
√ :

As a result, y⊤p, lxt ≥�1=(d2
ffiffiffi
d
√
). Now, because vp, l � φδ(yp, l), we have ‖vp, l� yp, l‖ ≤ δ. Hence, for any d ≥ 2,

w⊤xt ≥�1=(d2
ffiffiffi
d
√
)� δ >�η1:

Hence, w was a valid separating hyperplane. The last claim that the responses of the procedure are consistent 
over time is a direct consequence from its construction. This ends the proof of the proposition. w

As a simple consequence of this result, solving the feasibility problem is harder than solving the feasibility pro
cedure with high probability.

Proposition 7. Let alg be an algorithm that solves the feasibility problem with accuracy ɛ � 1=(48d2
ffiffiffi
d
√
). Then, it solves the 

feasibility procedure with probability at least 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d.

Proof. Let E be the event of probability at least 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d defined in Proposition 6. We show that on E, alg 

solves the feasibility procedure. On E, the feasibility procedure emulates a valid feasibility oracle. Further, on E, 
the successful set contains a closed ball of radius ɛ. As a result, on E, alg finds a solution to the feasibility problem 
emulated by the procedure. w

Next, we show that it is necessary to finish the pmax periods to solve the feasibility procedure.

Proposition 8. Fix an algorithm alg. Then, if E denotes the event when alg succeeds and B denotes the event when the pro
cedure ends period pmax with alg, then E ⊆ B.

Proof. Consider the case when the period pmax was not ended. Let x? denote the last query performed by alg. We 
consider the scenario in which x? fell. Let t be the first time when alg submitted query x?. For any of case ((f)1), 
case ((f)2), or case ((f)4a), by construction of QA, v, we already have xt ∉QA, v. It remains to check case ((f)4b) and 
case ((f)4c), for which the procedure constructs a new vector vp, l, where p is the index of the period of t and 
ip, 1, : : : , ip, l � t are the previous exploratory queries in period p. We decompose xt � xip, l � α1bp, 1 + αlbp, l. Now, by 
construction,

|x⊤t yp, l | � |x
⊤
ip, l

yp, l | ≤
‖a‖1

d3 ≤
1

d2
ffiffiffi
d
√ :

As a result, x⊤t vp, l ≥� |x⊤t yp, l | � δ ≥�d�2:5 � d�3 >�η1 for any d ≥ 2. Thus, xt � x? ∉QA, v. This shows that in order 
to succeed at the feasibility procedure, an algorithm needs to end all pmax periods. w

4.3. Reduction from the Orthogonal Vector Game with Hints
The remaining piece of our argument is to show that solving the feasibility procedure is harder than solving the 
orthogonal vector game with hints: Game 1.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2965 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Proposition 9. Let A ~ U({61}n×d
). If there exists an M-bit algorithm that solves the feasibility problem described above 

using mpmax queries with probability at least q over the randomness of the algorithm, choice of A, and the randomness of the 
separation oracle, then there is an algorithm for Game 1 for parameters d, k, m, M,α � η0=η1,β � η1=2

� �
, for which the 

player wins with probability at least q over the randomness of the player’s strategy and A.

Proof. Let alg be an M-bit algorithm solving the feasibility problem with mpmax queries with probability at least q. 
In Algorithm 2, we describe the strategy of the player in Game 1.

Algorithm 2 (Strategy of the Player for the Orthogonal Vector Game with Hints)
Input: d, k, pmax, m, algorithm alg
Part 1: Strategy to store Message knowing A 
1 Initialize the memory of alg to be 0
2 Submit ∅ to the oracle, and use the response as v0
3 Run alg with the optimization procedure knowing A and v0 until the first exploratory query xi1, 1

4 for p ∈ [pmax], do
5 Let Memoryp be the current memory state of alg and ip, 1 be the current iteration step
6 Run alg with the feasibility procedure until period p ends at iteration step ip+1, 1. If alg stopped before, return 

the strategy fails. When needed to sample a unit vector vp′, l′ , submit vectors xip′, 1 , : : :xip′, l′
to the oracle. We 

use the corresponding response of the oracle as vp′, l′

7 if ip+1, 1� ip, 1 ≤ m, then
8 Set Message �Memoryp
9 end
10 for Remaining queries to perform to the oracle, do Submit arbitrary query (e.g., ∅).
11 if Message has not been defined yet, then return The strategy fails;
12 Submit g̃A, v to the oracle as defined in Equation (12)
Part 2: Strategy to make queries 
13 Set the memory state of alg to be Message

14 for i ∈ [m], do
15 Run alg with current memory to obtain a query zi
16 Submit zi to the oracle from Game 1 to get response (gi, si)

17 Compute g̃ i using zi, gi, and si as defined in Equation (13), and pass g̃ i as response to alg
18 end
Part 3: Strategy to return vectors 
19 for l ∈ [k], do Set il to be the index i of the first query zi for which si � l if it exists;
20 if index ik has not been defined yet, then
21 With the current memory of alg, find a new query zm+1, and set ik �m+ 1
22 return {zi1=‖zi1‖, : : : , zik=‖zik‖} to the oracle

In the first part of the strategy, the player observes A. Then, they proceed to simulate the feasibility problem 
with alg using parameters A. When needed to sample a vector vp, l (v0, respectively), the player submits the corre
sponding queries xip, 1 , : : : , xip, l (∅, respectively) useful to define vp, l. The player then takes the response given by 
the oracle as that vector vp, l (v0, respectively), which simulates exactly a run of the feasibility procedure. Further, 
because 1+ pmax(k� 1) ≤ d, the player does not run out of queries. Importantly, during the run, the player keeps 
track of the length ip, k� ip, 1 of period p. The first time we encounter a period p with length at most m, we set 
Message �Memoryp, the memory state of alg at the beginning of period p. If there is no such period, the strategy 
fails. Also, if alg stopped before ending period pmax, the strategy fails. Next, the algorithm submits the following 
function g̃A, v to the oracle. Because the responses of the feasibility procedure are consistent over time, we adopt 
the following notation. For a previously queried vector x of alg, we denote g(x) the vector, which was returned to 
alg during the first part (lines 3–9 of Algorithm 2):

g̃A, v : x ⊢→

(0, 1) if x was never queried in the first part,
(ai, 1) otherwise and if g(x) ∈ {6ai}, i ≤ n,
(v0, 2) otherwise and if g(x) � v0,
(vp′, l′ , 2+ l′1p′�p + k1p′�p+1, l′�1) otherwise and if g(x) � vp′, l′ , p′ ≤ pmax, l ≤ k� 1:

8
>>>><

>>>>:

(12) 

Intuitively, the first component of g̃ gives the returned vector in the first period at the exception that we always 
return ai instead of {6ai}. The second term has values in [2+ k ≤ d2]: Hence, the submitted function is valid.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2966 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Next, in the second part of the algorithm, the player proceeds to simulate a run of the feasibility procedure 
with alg on period p. To do so, we first set the memory state of alg to Message. Each new query zi is submitted to 
the oracle of Game 1 to get a response (gi, si). Then, we compute g̃ i as follows:

g̃ i �
gi if si ≥ 2,
sign(g⊤i zi)gi if si � 1:

�

(13) 

One can easily check that g̃ i corresponds exactly to the response that was passed to alg in the first part of the 
strategy. The player then passes g̃ i to alg so that it can update its state. We repeat this process for m steps. Fur
ther, the player can also keep track of the exploratory queries; the index il of the first response satisfying si � 2+ l 
for l ≤ k� 1 (si � 2+ k, respectively) is the exploratory query, which led to the construction of vp, l (vp+1, 1, respec
tively) in the first part. Last, we check if the last index ik was defined. If not, we pose ik �m+ 1 and let zm+1 be the 
next query of alg with the current memory. The player then returns the vectors zi1=‖zi1‖, : : : , zik=‖zik‖. This ends 
the description of the player’s strategy.

By Proposition 8, on an event E of probability at least q, the algorithm alg succeeds and ends period pmax. As a 
result, similarly as in the proof of Proposition 4, because alg makes at most mpmax queries and there are pmax periods, 
there must be a period of length at most m. Hence, the strategy never fails at this phase of the player’s strategy on 
the event E. Further, we already checked that in the second phase, the vectors g̃ i passed to alg coincide exactly with 
the responses passed to alg in the first part. Thus, this shows that during the second part, the player simulates 
exactly the run of the feasibility problem on period p. More precisely, the queries coincide with the queries in the 
feasibility problem at times ip, 1, : : : , min{ip, k, ip, 1 +m� 1}. Now, because the first part succeeded on E, we have 
ip, k ≤ ip, 0 +m. Therefore, if ik has not yet been defined, this means that we had ip, k � ip, 1 +m. Hence, the next query 
with the current memory zm+1 is exactly the query xip,k for the feasibility problem. This shows that the vectors 
zi1 , : : : , zik coincide exactly with the vectors xip, 1 , : : : , xip,k when running alg on the feasibility problem in the first part.

We now show that the returned vectors are successful for Game 1. By construction, xip, 1 , : : : , xip,k are all informa
tive. In particular, ‖Axip, l‖∞ ≤ η0 for all 1 ≤ l ≤ k. Further, these queries did not fall in case ((f)2); hence, 
v⊤0 xip, l < �η1, which implies ‖xip, l‖ > η1 for all l ≤ k. As a result,

‖Axip, l‖∞

‖xip, l‖
≤
η0
η1
:

Next, fix l ≤ k� 1. By construction of yp, l,

‖PSpan(xi
p, l′

, l′ ≤ l)(yp, l)‖
2
�
X

l′ ≤ l

|b⊤p, l′yp, l |
2
≤

k
d6 ≤

1
d5 :

Hence,
‖vp, l � PSpan(xi

p, l′
, l′ ≤ l)⊥ (yp, l)‖ ≤ ‖PSpan(xi

p, l′
, l′ ≤ l)(yp, l)‖ + δ ≤

1
d5 + δ:

As a result, because x⊤p, l+1vp, l < �η1, we have

‖PSpan(xi
p, l′

, l′ ≤ l)⊥ (xp, l+1)‖ ≥ |x⊤p, l+1PSpan(xi
p, l′

, l′ ≤ l)⊥(yp, l) | > η1�
1
d5� δ ≥

η1
2 :

This shows that the returned vectors xip, 1=‖xip, 1‖, : : : , xip,k=‖xip,k‖ are successful for Game 1 with parameters α �
η0=η1 and β � η1=2. This ends the proof that strategy succeeds on E for these parameters, which ends the proof of 
the proposition. w

We are now ready to prove the main result.

Proof of Theorem 2. Suppose that there is an algorithm alg for solving the feasibility problem to optimality ɛ �
1=(48d2

ffiffiffi
d
√
) with memory M and at most Q queries. Let k � ⌈20(M+ 3d log(2d) + 1)=(cHn)⌉. By Proposition 7, it solves 

the feasibility procedure with parameter k with probability at least 1�C
ffiffiffiffiffiffiffiffiffiffi
log d

p
=d. By Proposition 9, there is an algorithm 

for Game 1 that wins with probability 1/3 with m � ⌈Q=pmax⌉ and parameters α � η0=η1 and β � η1=2. Now, we check that

α

ffiffiffi
d
√

β

 !5=4

≤ 12d2η0 �
1
2 :

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2967 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Hence, by Proposition 5, we have

m ≥ cH

8(30 log d + cH)
d:

This shows that

Q ≥ Ω pmax
d

log d

� �

� Ω
d2

klog3d

 !

� Ω
d3

(M + log d)log3d

 !

:

This implies that for a memory M � d2�δ with 0 ≤ δ ≤ 1, the number of queries is Q � Ω̃(d1+δ). w

5. Conclusion and Future Directions
In this work, we established lower bounds for the query complexity of memory-constrained algorithms for con
vex optimization and its related feasibility problem. Our findings highlight that quadratic memory is necessary 
for achieving the optimal oracle complexity in first-order convex optimization. By establishing these lower- 
bound trade-offs, our research contributes to a deeper understanding of the computational aspects of convex 
optimization.

It is worth noting that our lower bounds only apply to deterministic algorithms. Although many standard 
optimization methods are deterministic, generalizing our results to randomized algorithms is also desirable. We 
note that subsequent to our work, Chen and Peng [10] gave slightly weaker lower bounds, which hold for ran
domized algorithms and up to near-quadratic memory as well.

Last, providing memory-constrained algorithms for convex optimization beyond the standard cutting-plane 
methods and gradient descent approaches is an important question. As depicted in Figure 1 (see Marsden et al. 
[22] and Woodworth and Srebro [42]), to the best of our knowledge, no algorithms from the literature provided 
such oracle complexity/memory trade-offs in any regime ɛ≪ 1=

ffiffiffi
d
√

. The authors are investigating this question, 
and in a recent follow-up (Blanchard et al. [6]), we proposed a family of memory-constrained algorithms parame
trized by p ∈ [d], which provides an oracle complexity/memory trade-off for subpolynomial regimes: ln 1

ɛ
≫ lnd. 

Importantly, in the exponential regime ɛ ≤ d�Ω(d), our algorithm with p � d improves the oracle complexity of 
gradient descent while preserving the same memory usage.

Acknowledgments
A previous version of this work appeared at the 36th Annual Conference on Learning Theory.

Appendix A. Concentration Bounds
The following result gives concentration bounds for the norm of the projection of a random unit vector onto linear 
subspaces.

Proposition A.1. Let P be a projection in Rd of rank r, and let x ∈ Rd be a random vector sampled uniformly on the unit sphere 
x ~ U(Sd�1). Then, for every t > 0,

max P ‖P(x)‖2 � r
d ≥ t

� �
,P ‖P(x)‖2 � r

d ≤�t
� �n o

≤ e�dt2
:

Further, if r � 1 and d ≥ 2,

P ‖P(x)‖ ≥
ffiffiffiffiffiffiffiffiffiffiffi

t
d� 1

r !

≤ 2
ffiffi
t
√

e�t=2:

Proof. First, by isometry, we can assume that P is the projection onto the coordinate vectors e1, : : : er. Then, let y ~ N (0, 1)
be a normal vector. Note that x � y=‖y‖ ~ U(Sd�1). Further,

‖x‖2 ≥ r
d
+ t � 1� r

d
� t

� �Xr

i�1
y2

i ≥
r
d
+ t

� �Xd

i�r+1
y2

i :

Now, note that Z1 �
Pr

i�1 y2
i and Z2 �

Pd
i�r+1 y2

i are two independent random chi-squared variables of parameters r and d 
� r, respectively. Recall that the moment-generating function of Z ~ χ2(k) is E[esZ] � (1� 2s)�k=2 for s < 1/2. Therefore, for 
any

�
1

2(r=d+ t) < s < 1
2(1� r=d� t) , (A.1) 

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2968 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



one has

P ‖P(x)‖2 � r
d ≥ t

� �
≤ E exp s 1� r

d� t
� �

Z1 � s r
d+ t
� �

Z2

� �h i

�
1� 2s 1� r

d� t
� �� ��r=2

1+ 2s r
d+ t
� �� ��(d�r)=2 :

Now, let 

s � 1
2

1� r=d
1� r=d� t�

r=d
r=d + t

� �

, 

which satisfies Equation (A.1). The previous equation readily yields

P ‖P(x)‖2 � r
d ≥ t

� �
≤ exp �

d
2 dKL

r
d ;

r
d + t

� �� �

≤ e�dt2
:

In the last inequality, we used Pinsker’s inequality dKL(r=d; r=d+ t) ≥ 2δ(B(r=d), B(d=r+ t))2 � 2t2, where B(q) is the Ber
noulli distribution of parameter q. Replacing P with Id � P and r with d � r gives the other inequality:

P ‖P(x)‖2 � r
d ≤�t

� �
≤ e�dt2

:

This gives the first claim. For the second claim, supposing that r � 1 < d, from the above equation, we have

P ‖P(x)‖2 ≥ t
d

� �

≤ exp �
d
2 dKL

1
d

;
t
d

� �� �

�
ffiffi
t
√ 1� t

d
1� 1

d

 !(d�1)=2

≤
ffiffiffiffi
2t
√

e�t(d�1)=(2d):

Thus,

P ‖P(x)‖2 ≥ t
d� 1

� �

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(d� 1)

d

r
ffiffi
t
√

e�t=2, 

which ends the proof of the proposition. w

Next, we need the following lemma, which gives a concentration inequality for discretized samples in Dd and is 
approximately perpendicular to k ≤ d=3� 1 vectors.

Lemma A.1. Let 0 ≤ k ≤ d=3� 1 and x1, : : : , xk ∈ Bd(0, 1) be k orthonormal vectors in the unit ball, and x ∈ Bd(0, 1). Denote by µ
the distribution on the unit sphere corresponding to the uniform distribution y ~ U(Sd�1 ∩ {w ∈ Rd : |x⊤i w | ≤ d�3, ∀i ≤ k}). Let 
y ~ µ. Then, for t ≥ 2,

P |x⊤y | ≥
ffiffiffi
t
d

r

+
1
d2

 !

≤ 2
ffiffi
t
√

e�t=3:

Further, let δ ≤ 1 and z � φδ(y). Then, for t ≥ 4,

P |x⊤z | ≥
ffiffiffi
t
d

r

+
1
d2 + δ

 !

≤ 2
ffiffi
t
√

e�t=3:

Proof. We use the same notations as above and denote by E � {|x⊤i y | ≤ d�3, ∀i ≤ k} the event considered and y ~ µ. We 
decompose y � α1x1+⋯ +αkxk + y′, where y′ ∈ Span(xi , i ≤ k)⊥ :� E. Now, note that y′=‖y′‖ is a uniformly random unit vec
tor in E. As a result, using Proposition A.1, we obtain for any t ≥ 2,

P |x⊤y′ | ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t
d� k� 1

r !

� P |PE(x)⊤y′ | ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t
d� k� 1

r !

≤ 2
ffiffi
t
√

e�t=2:

Also, because by definition of µ, we have |αi | ≤ d�3 for all i ≤ k, we obtain |x⊤y | ≤ k=d3 + |x⊤y′ | ≤ 1=d2 + |x⊤y′ | . As a 
result, using the fact that d� k� 1 ≥ 2d=3, the previous equation shows that

P |x⊤y | ≥
ffiffiffiffiffi
3t
2d

r

+
1
d2

 !

≤ P |x⊤y′ | ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t
d� k� 1

r !

≤ 2
ffiffi
t
√

e�t=2:

Next, we use the fact that ‖z� y‖ � ‖φδ(y)� y‖ ≤ δ to obtain

P |x⊤z | ≥
ffiffiffi
t
d

r

+
1
d2 + δ

 !

≤ P |x⊤y | ≥
ffiffiffi
t
d

r

+
1
d2

 !

≤ 2
ffiffi
t
√

e�t=3:

This ends the proof of the lemma. w

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2969 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Appendix B. An Improved Result on Robustly Independent Vectors
The following lemma serves the same purpose as Marsden et al. [22, lemma 34]. Namely, from successful vectors of 
Game 1, it allows us to recover an orthonormal basis that is still approximately in the null space of A. The following ver
sion gives a stronger version that improves the dependence in d of our chosen parameters.

Lemma B.1. Let δ ∈ (0, 1], and suppose that we have r ≤ d unit norm vectors y1, : : : , yr ∈ R
d. Suppose that for any i ≤ k,

‖PSpan(yj , j<i)⊥ (yi)‖ ≥ δ:

Let Y � [y1, : : : , yr] and s ≥ 2. There exists ⌈r=s⌉ orthonormal vectors Z � [z1, : : : , z⌈r=s⌉] such that for any a ∈ Rd,

‖Z⊤a‖∞ ≤
ffiffiffi
d
√

δ

 !s=(s�1)

‖Y⊤a‖∞:

Proof. Let B � (b1, : : : , br) be the orthonormal basis given by the Gram–Schmidt decomposition of y1, : : : , yr. By definition 
of the Gram–Schmidt decomposition, we can write Y � BC, where C is an upper-triangular matrix. Further, its diagonal 
is exactly diag(‖PSpan(yl′ , l′<l)⊥ (yl)‖, l ≤ r). Hence,

det(Y) � det(C) �
Y

l≤r
‖PSpan(yl′ , l′<l)⊥ (yl)‖ ≥ δ

r:

We now introduce the singular value decomposition Y �Udiag(σ1, : : : ,σr)V⊤, where U ∈ Rd×r and V ∈ Rr×r have orthonor
mal columns and σ1 ≥⋯≥ σr. Next, for any vector z ∈ Rd, because the columns of Y have unit norm,

‖Yz‖2 ≤
X

l≤r
|zl | ‖yl‖2 ≤ ‖z‖1 ≤

ffiffiffi
d
√
‖z‖2:

In the last inequality, we used Cauchy–Schwartz. Therefore, all singular values of Y are upper bounded by σ1 ≤
ffiffiffi
d
√

. 
Thus, with r′ � ⌈r=s⌉,

δr ≤ det(Y) �
Yr

l�1
σl ≤ d(r′�1)=2σr�r′+1

r′ ≤ dr=2sσ(s�1)r=s
r′

so that σr′ ≥ δ
s=(s�1)=d1=(2s). We are ready to define the new vectors. We pose for all i ≤ r′, zi � ui the ith column of U. These 

correspond to the r′ largest singular values of Y and are orthonormal by construction. Then, for any i ≤ r′, we also have 
zi � ui � Yvi=σi, where vi is the ith column of V. Hence, for any a ∈ Rd,

|z⊤i a | � 1
σi
|v⊤i Y⊤a | ≤ ‖vi‖1

σi
‖Y⊤a‖∞ ≤

d1=2+1=(2s)

δs=(s�1) ‖Y
⊤a‖∞:

This ends the proof of the lemma. w

Endnote
1 Ω̃ and Õ hide polylog(d) factors.

References
0[1] Anstreicher KM (2000) The volumetric barrier for semidefinite programming. Math. Oper. Res. 25(3):365–380.
0[2] Atkinson DS, Vaidya PM (1995) A cutting plane algorithm for convex programming that uses analytic centers. Math. Programming 

69(1–3):1–43.
0[3] Balkanski E, Singer Y (2018) Parallelization does not accelerate convex optimization: Adaptivity lower bounds for non-smooth convex 

minimization. Preprint, submitted August 12, https://arxiv.org/abs/1808.03880.
0[4] Beame P, Oveis Gharan S, Yang X (2018) Time-space tradeoffs for learning finite functions from random evaluations, with applications 

to polynomials. Bubeck S, Perchet V, Rigollet P, eds. Proc. 31st Conf. Learn. Theory, vol. 75 (PMLR, New York), 843–856.
0[5] Bertsimas D, Vempala S (2004) Solving convex programs by random walks. J. ACM 51(4):540–556.
0[6] Blanchard M, Zhang J, Jaillet P (2023) Memory-constrained algorithms for convex optimization. Oh A, Naumann T, Globerson A, Saenko 

K, Hardt M, Levine S, eds. Advances in Neural Information Processing Systems, vol. 36 (Curran Associates Inc., Red Hook, NY), 6156–6189.
0[7] Brown G, Bun M, Smith A (2022) Strong memory lower bounds for learning natural models. Loh P-L, Raginsky M, eds. Proc. Thirty Fifth 

Conf. Learn. Theory, vol. 178 (PMLR, New York), 4989–5029.
0[8] Brown G, Bun M, Feldman V, Smith A, Talwar K (2021) When is memorization of irrelevant training data necessary for high-accuracy 

learning? Proc. 53rd Annual ACM SIGACT Sympos. Theory Comput. (Association for Computing Machinery, New York), 123–132.
0[9] Bubeck S, Jiang Q, Lee YT, Li Y, Sidford A (2019) Complexity of highly parallel non-smooth convex optimization. Wallach H, Larochelle 

H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, eds. Advances in Neural Information Processing Systems, vol. 32 (Curran Associates, 
Inc., Red Hook, NY).

[10] Chen X, Peng B (2023) Memory-query tradeoffs for randomized convex optimization. 2023 IEEE 64th Annual Sympos. Foundations Com
puter Sci. (FOCS) (IEEE Computer Society, Los Alamitos, CA), 1400–1413.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
2970 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://arxiv.org/abs/1808.03880


[11] Feige U, Schechtman G (2002) On the optimality of the random hyperplane rounding technique for max cut. Random Structures Algo
rithms 20(3):403–440.

[12] Garg S, Raz R, Tal A (2018) Extractor-based time-space lower bounds for learning. Proc. 50th Annual ACM SIGACT Sympos. Theory Com
put. (Association for Computing Machinery, New York), 990–1002.

[13] Grötschel M, Lovász L, Schrijver A (2012) Geometric Algorithms and Combinatorial Optimization, vol. 2 (Springer Science & Business Media, 
New York).

[14] Jiang H (2021) Minimizing convex functions with integral minimizers. Marx D, ed. Proc. 2021 ACM-SIAM Sympos. Discrete Algorithms 
(SODA) (Society for Industrial and Applied Mathematics, Philadelphia), 976–985.

[15] Jiang AX, Leyton-Brown K (2015) Polynomial-time computation of exact correlated equilibrium in compact games. Games Econom. Behav. 
91:347–359.

[16] Jiang H, Lee YT, Song Z, Wong SCw (2020) An improved cutting plane method for convex optimization, convex-concave games, and its 
applications. Proc. 52nd Annual ACM SIGACT Sympos. Theory Comput. (Association for Computing Machinery, New York), 944–953.

[17] Kol G, Raz R, Tal A (2017) Time-space hardness of learning sparse parities. Proc. 49th Annual ACM SIGACT Sympos. Theory Comput. 
(Association for Computing Machinery, New York), 1067–1080.

[18] Lee YT, Sidford A, Wong SCw (2015) A faster cutting plane method and its implications for combinatorial and convex optimization. 
2015 IEEE 56th Annual Sympos. Foundations Comput. Sci. (IEEE, Piscataway, NJ), 1049–1065.

[19] Levin AY (1965) An algorithm for minimizing convex functions. Doklady Akademii Nauk SSSR 160(6):1244–1247.
[20] Lewis AS, Overton ML (2013) Nonsmooth optimization via quasi-Newton methods. Math. Programming 141(1):135–163.
[21] Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math. Programming 45(1):503–528.
[22] Marsden A, Sharan V, Sidford A, Valiant G (2022) Efficient convex optimization requires superlinear memory. Loh P-L, Raginsky M, 

eds. Proc. Thirty Fifth Conf. Learn. Theory, vol. 178 (PMLR, New York), 2390–2430.
[23] McCormick ST (2005) Submodular function minimization. Handbooks Oper. Res. Management Sci. 12:321–391.
[24] Mitliagkas I, Caramanis C, Jain P (2013) Memory limited, streaming PCA. Burges CJ, Bottou L, Welling M, Ghahramani Z, Weinberger 

KQ, eds. Advances in Neural Information Processing Systems, vol. 26 (Curran Associates, Inc., Red Hook, NY), 2886–2894.
[25] Moshkovitz D, Moshkovitz M (2017) Mixing implies lower bounds for space bounded learning. Kale S, Shamir O, eds. Proc. 2017 Conf. 

Learn. Theory, vol. 65 (PMLR, New York), 1516–1566.
[26] Moshkovitz D, Moshkovitz M (2018) Entropy samplers and strong generic lower bounds for space bounded learning. Karlin AR, ed. 9th 

Innovations Theoret. Comput. Sci. Conf. (ITCS 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 94 (Schloss Dagstuhl–Leibniz- 
Zentrum für Informatik, Dagstuhl, Germany), 1–20.

[27] Nemirovski A (1994) On parallel complexity of nonsmooth convex optimization. J. Complexity 10(4):451–463.
[28] Nemirovsky A, Yudin D, Dawson E (1983) Problem Complexity and Method Efficiency in Optimization (Wiley, New York).
[29] Nesterov JE (1989) Self-concordant functions and polynomial-time methods in convex programming. Report, Central Economic and 

Mathematic Institute, USSR Academy of Science, Moscow.
[30] Nesterov Y (2003) Introductory Lectures on Convex Optimization: A Basic Course, vol. 87 (Springer Science & Business Media, New York).
[31] Nocedal J (1980) Updating quasi-newton matrices with limited storage. Math. Comput. 35(151):773–782.
[32] Papadimitriou CH, Roughgarden T (2008) Computing correlated equilibria in multi-player games. J. ACM 55(3):1–29.
[33] Raz R (2017) A time-space lower bound for a large class of learning problems. 2017 IEEE 58th Annual Sympos. Foundations Comput. Sci. 

(FOCS) (IEEE, Piscataway, NJ), 732–742.
[34] Sharan V, Sidford A, Valiant G (2019) Memory-sample tradeoffs for linear regression with small error. Proc. 51st Annual ACM SIGACT 

Sympos. Theory Comput. (Association for Computing Machinery, New York), 890–901.
[35] Shor NZ (1977) Cut-off method with space extension in convex programming problems. Cybernetics 13(1):94–96.
[36] Steinhardt J, Duchi J (2015) Minimax rates for memory-bounded sparse linear regression. Grünwald P, Hazan E, Kale S, eds. Proc. 28th 

Conf. Learn. Theory, vol. 40 (PMLR, New York), 1564–1587.
[37] Steinhardt J, Valiant G, Wager S (2016) Memory, communication, and statistical queries. Feldman V, Rakhlin A, Shamir O, eds. 29th 

Annual Conf. Learn. Theory, vol. 49 (PMLR, New York), 1490–1516.
[38] Tarasov SP, Khachiyan LG, Erlikh II (1988) The method of inscribed ellipsoids. Soviet Math. Doklady 37:226–230 [English translation].
[39] Vaidya PM (1996) A new algorithm for minimizing convex functions over convex sets. Math. Programming 73(3):291–341.
[40] Woodworth BE, Srebro N (2016) Tight complexity bounds for optimizing composite objectives. Lee D, Sugiyama M, Luxburg U, Guyon 

I, Garnett R, eds. Advances in Neural Information Processing Systems, vol. 29 (Curran Associates, Inc., Red Hook, NY), 3646–3654.
[41] Woodworth BE, Srebro N (2017) Lower bound for randomized first order convex optimization. Preprint, submitted September 11, 

https://arxiv.org/abs/1709.03594.
[42] Woodworth B, Srebro N (2019) Open problem: The oracle complexity of convex optimization with limited memory. Beygelzimer A, Hsu 

D, eds. Proc. Thirty-Second Conf. Learn. Theory, vol. 99 (PMLR, New York), 3202–3210.
[43] Yudin DB, Nemirovskii AS (1976) Informational complexity and efficient methods for the solution of convex extremal problems. Matekon 

13(2):22–45.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity 
Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941–2971, © 2024 INFORMS 2971 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
3.

76
.9

9.
10

] 
on

 2
0 

N
ov

em
be

r 
20

25
, a

t 0
6:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://arxiv.org/abs/1709.03594

	Quadratic Memory Is Necessary for Optimal Query Complexity in Convex Optimization: Center of Mass Is Pareto Optimal
	Introduction
	Formal Setup and Overview of Techniques
	Memory-Constrained Convex Optimization
	Memory-Constrained Feasibility Problem
	Conclusion and Future Directions




