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1. Introduction

We consider the canonical problem of first-order convex optimization, in which one aims to minimize a convex
function f : R? — R with access to an oracle that for any query x, returns (f(x), Vf(x)) the value of the function
and a subgradient of f at x. Arguably, this is one of the most fundamental problems in optimization, mathemati-
cal programming, and machine learning.

A classical question is how many oracle queries are required to guarantee finding an e-approximate minimizer
for any 1-Lipschitz convex functions f : RY — R over the unit ball. We denote by By(x,7) = {x' e R : |lx — x|, < €}
the ball centered in x of radius r. There exist methods that given first-order oracle access, only need O(dlog 1/¢)
queries, and this query complexity is worst-case optimal (Nemirovsky et al. [28]) when € < 1/Vd. Known meth-
ods achieving the optimal O(dlog 1/€) query complexity fall in the broad class of cutting-plane methods that
build upon the well-known ellipsoid method (Shor [35], Yudin and Nemirovskii [43]), which uses O(d*log 1/¢)
queries. These include the inscribed ellipsoid (Nesterov [29], Tarasov [38]), volumetric center or Vaidya’s method
(Atkinson and Vaidya [2], Vaidya [39]), approximate center of mass via sampling techniques (Bertsimas and
Vempala [5], Levin [19]), and recent improvements (Jiang et al. [16], Lee et al. [18]). Unfortunately, all of these
methods suffer from at least Q(d°log 1/€) time complexity, and they further require storing all subgradients or at
least an ellipsoid in R? and therefore, at least Q(d?log 1/€) bits of memory. These limitations are prohibitive for
large-scale optimization; hence, cutting-plane methods are viewed as rather impractical and less frequently used
for high-dimensional applications. On the other hand, the simplest, perhaps most commonly used and practical
gradient descent requires O(1/€2) queries, which is not optimal for € < 1/Vd, but only needs O(d) time per query
and O(dlog 1/€) memory.

A natural question is whether one can preserve the optimal query lower bounds from cutting-plane methods
with simpler methods: for instance, inspired by gradient descent techniques. Such hope is largely motivated by
the fact that in many different theoretical settings, cutting-plane methods have achieved state-of-the-art run
times, including semidefinite programming (Anstreicher [1], Lee et al. [18]), submodular optimization (Grotschel
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et al. [13], Jiang [14], Lee et al. [18], McCormick [23]), or equilibrium computation (Jiang and Leyton-Brown [15],
Papadimitriou and Roughgarden [32]). Toward this goal, Woodworth and Srebro [42] first posed this question in
terms of query complexity/memory trade-off. Given a certain number of bits of memory, which query complex-
ity is achievable? Although cutting-plane methods require Q(d*log 1/€) memory, gradient descent only requires
storing one vector, and as a result, it uses O(dlog 1/€) memory, which is information-theoretically optimal
(Woodworth and Srebro [42]); Q)(dlog 1/€) bits of memory are already required just to represent the answer to
the optimization problem. Understanding this trade-off could pave the way for the design of more efficient meth-
ods in convex optimization.

The first result in this direction was provided in Marsden et al. [22], where they showed that it is impossible
to be both optimal in query complexity and in memory. Specifically, they proved that any potentially random-
ized algorithm that uses at most 4'*>~° memory must make at least Q(d'**/) queries for all 6 € [0,1/4]." This
implies that a superlinear amount of memory d' is required to achieve the optimal rate of convergence (that
is achieved by algorithms using more than quadratic memory). However, this leaves open the fundamental
question of whether one can improve over the memory of cutting-plane methods while keeping optimal
query complexity.

Question (Conference on Learning Theory 2019 (Woodworth and Srebro [42])). Is it possible for a first-order
algorithm that uses at most O(d*>°) bits of memory to achieve query complexity O(dpolylog 1/€) when d =
Q(log 1/€) butd = o(1/¢€) for all ¢ > 0?

In this paper, building upon the techniques introduced in Marsden et al. [22], we provide a negative answer to
this question; quadratic memory is necessary to achieve the optimal query complexity with deterministic algo-
rithms. As a result, cutting-plane methods, including the standard center-of-mass algorithm, are Pareto optimal
up to logarithmic factors within the query complexity/memory trade-off. Our main result for convex optimiza-
tion is the following.

Theorem 1. For e =1/d* and any 6 € [0,1], a deterministic first-order algorithm guaranteed to minimize 1-Lipschitz con-
vex functions over the unit ball with € accuracy uses at least d*~° bits or makes Q(d"*%/3) queries.

A key component of cutting-plane methods is that they merely rely on the subgradient information at each
query to restrict the search space. As a result, these can be used to solve the larger class of feasibility problems
that are essential in mathematical programming and optimization. In a feasibility problem, one aims to find
an e-approximation of an unknown vector x* and has access to a separation oracle. For any query x, the separa-
tion oracle either returns a separating hyperplane g from x to Bj(x*,e)—such that (g,x —z)>0 for any
z € By(x*, e)—or signals that ||x — x*|| < e. This class of problems is broader than convex optimization because the
negative subgradient always provides a separating hyperplane from a suboptimal query to the optimal set.
Hence, feasibility and convex minimization problems are closely related, and it is often the case that obtaining
query lower bounds for the feasibility problem simplifies the analysis while still providing key insights for the
more restrictive convex optimization problem (Nemirovsky et al. [28], Nesterov [30]).

As a result, a similar fundamental question is to understand the query complexity/memory trade-off for the
feasibility problem. As noted above, any lower bound for convex optimization yields the same lower bound for
the feasibility problem. Here, we can significantly improve over the previous trade-off.

Theorem 2. For € = 1/(4842Vd) and any 6 € [0,1], a deterministic algorithm guaranteed to solve the feasibility problem
over the unit ball with € accuracy uses at least d*~° bits of memory or makes at least Q(d'+?) queries.

1.1. Literature Review

Recently, there has been a series of studies exploring the trade-offs between sample complexity and memory con-
straints for learning problems, such as linear regression (Sharan et al. [34], Steinhardt and Duchi [36]), principal
component analysis (Mitliagkas et al. [24]), learning under the statistical query model (Steinhardt et al. [37]), and
other general learning problems (Beame et al. [4], Brown et al. [7], Brown et al. [8], Garg et al. [12], Kol et al. [17],
Moshkovitz and Moshkovitz [25], Moshkovitz and Moshkovitz [26]).

For parity problems that meet certain spectral (mixing) requirements, Raz [33] first proved by a computation
tree argument that an exponential number of random samples is needed if the memory is subquadratic. Similar
trade-offs have been obtained when the learning problem satisfies other types of properties (Beame et al. [4],
Garg et al. [12], Kol et al. [17], Moshkovitz and Moshkovitz [25], Moshkovitz and Moshkovitz [26]). It should be
noted that all of the above-mentioned results hold for learning problems over finite fields (i.e., the concept classes
are finite). For continuous problems, Sharan et al. [34] was the first to apply the framework of Raz [33] and
showed a sample complexity lower bound for memory-constrained linear regression.
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Figure 1. (Color online) Trade-offs between available memory and first-order oracle complexity for minimizing 1-Lipschitz con-
vex functions over the unit ball (adapted from Marsden et al. [22] and Woodworth and Srebro [40]). The bottom-left dashed “L”-
shaped region (top-right dashed inverted “L”- shaped region, respectively) corresponds to historical information-theoretic lower
bounds (upper bounds, respectively) on the memory and query complexity. The light bottom-left solid region corresponds to the
recent lower-bound trade-off from Marsden et al. [22], which holds for randomized algorithms. In our work, we show that the
dark solid region is not achievable for any deterministic algorithms. For the feasibility problem, we also show that the dark
dashed region is not achievable either for any deterministic algorithms.
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In contrast to learning with random samples, there is limited understanding of the memory-constrained opti-
mization and feasibility problem. Nemirovsky et al. [28] demonstrated that in the absence of memory constraints,
finding an e-approximate solution for Lipschitz convex functions requires ()(dlog 1/€) queries, which can be
achieved by the center-of-mass method using O(d?log” 1/e) bits of memory. At the other extreme, gradient
descent needs Q(1/€?) queries but only O(dlog 1/¢) bits of memory, the minimum memory needed to represent
a solution. These two extreme cases are represented by the dashed pink “impossible region” and the dashed
green “achievable region” in Figure 1. Since then, Marsden et al. [22] showed that there is a trade-off between
memory and query for convex optimization; it is impossible to be both optimal in query complexity and mem-
ory. Their lower bound is represented by the solid pink “impossible region” in Figure 1. In this paper, we signifi-
cantly improve these results to match the quadratic upper bound of cutting-plane methods. Additionally, there
has been recent progress in the study of query complexity for randomized algorithms (Woodworth and Srebro
[40], Woodworth and Srebro [41]).

On the algorithmic side, the aforementioned methods that achieve O(poly(d)) query complexity (Atkinson and
Vaidy [2], Bertsimas and Vempala [5], Jiang et al. [16], Lee et al. [18], Levin [19], Nesterov [29], Shor [35], Tarasov
[38], Vaidya [39], Yudin and Nemirovskii [43]) all require at least Q(d*log 1/€) bits of memory. There is also sig-
nificant literature on memory-efficient optimization algorithms, such as the limited-memory Broyden-Fletcher—
Goldfarb-Shanno (BFGS) algorithm (Liu and Nocedal [21], Nocedal [31]). However, the convergence behavior
for even the original BFGS on nonsmooth convex objectives is still a challenging, open question (Lewis and Over-
ton [20]).

1.1.1. Comparison with Marsden et al. [22]. Our proof techniques build upon those introduced in Marsden et al.
[22]. We follow the proof strategy that they introduced to derive lower bounds for the memory/query complex-
ity. Below, we delineate which ideas and techniques are borrowed from Marsden et al. [22] and which are the
novel elements that we introduce. Details on these proof elements are given in Section 2.4.

First, Marsden et al. [22] define a class of difficult functions for convex optimization of the following form:

—_ _ Ta  :
Fw) = max{ sl o 1o (maxorx -~ 7) |, 1)

where A ~U ({il}d/ 2><d) is a matrix with =1 entries sampled uniformly, and v; ~ U(d~"/ 2{tl}d) are sampled inde-
pendently, uniformly within the rescaled hypercube. To give intuition on this class, the term [|Ax||,, — 1, acts as a
barrier; to observe subgradients from the other term, one needs to use queries x that are approximately within
the null space of A. The second term max;<nv; x — iy is the “Nemirovski” function, which was used in previous
works (Balkanski and Singer [3], Bubeck et al. [9], Nemirovski [27]) to obtain lower bounds in parallel convex
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optimization. At a high level, the limitation in the lower bounds from Marsden et al. [22] comes from the fact
that one is limited in the number N of vectors vy, ...,vyN that can be used in the Nemirovski function. To resolve
this issue, we introduce adaptivity within the choice of a modified Nemirovski function. At a high level, we
choose the vectors vy, ..., vy depending on the queries of the algorithm, which allows us to fit in more terms. In
turn, this allows us to improve the lower bounds.

As a second step, Marsden et al. [22] relate the optimization problem on the defined class of functions to an
orthogonal vector game. In this game, the goal is to find vectors that are approximately orthogonal to a matrix A
with access to row queries of A. The argument is as follows; because of the barrier term [|Ax||,, — 17,, optimizing
the Nemirovski function requires exploring independent directions of the null space of A, which is performed at
informative queries. With our new class of functions, we can adapt this logic. However, the adaptivity in the vec-
tors v; provides information to the learner on A in addition to the queried rows of A. We, therefore, need to mod-
ify the game by introducing an orthogonal vector game with hints, where hints encapsulate this extra
information.

For the last step, Marsden et al. [22] give an information-theoretic argument to provide a query complexity
lower bound on the defined orthogonal vector game. Following the same structure, we show that a similar argu-
ment holds for our modified game. The main added difficulty resides in bounding the information leakage from
the hints, and we show that these provide no more information than the memory itself.

As a last remark, the lower bounds provided in Marsden et al. [22] hold for randomized algorithms, whereas
the adaptivity of our procedure only applies to deterministic algorithms.

1.2. Outline of the Paper

Our main results for the trade-off between memory and query complexity for optimization and the feasibility
problem have been presented in Section 1 (Theorems 1 and 2). In Section 2, we formally define memory-
constrained algorithms and provide a brief overview of our proof techniques and contributions. Our proofs for
convex optimization are given in Section 3. We introduce the optimization procedure, which adaptively constructs
a hard family of functions; additionally, we provide a reduction to this hard family from an orthogonal vector
game with hints, and we show a memory-sample trade-off (Proposition 5) for the game, which completes the
proof of Theorem 1. Last, in Section 4, we consider the feasibility problem and with a similar methodology, prove
Theorem 2.

2. Formal Setup and Overview of Techniques

Standard results in oracle complexity give the minimal number of queries for algorithms to solve a given prob-
lem. However, this does not account for possible restrictions on the memory available to the algorithm. In this
paper, we are interested in the trade-off between memory and query complexity for both convex optimization
and the feasibility problem. Our results apply to a large class of memory-constrained algorithms. We give below a
general definition of the memory constraint for algorithms with access to an oracle O : S — R taking as input a
query g € S and returning as response O(g) € R.

Definition 1 (M-Bit Memory-Constrained Deterministic Algorithm). Let O:S — R be an oracle. An M-bit memory-
constrained deterministic algorithm is specified by a query function ¢, : {0,1}" — S and an update function
Vupdate 0,1} xSx R — {0,1}". The algorithm starts with the memory state Memory, =0 and iteratively
makes queries to the oracle. At iteration ¢, it makes the query g, =1 qmy(Memory,,l) to the oracle, receives the
response r; = O(q;), and then, updates its memory Memory, = Lp”pdate(Memoryt_l,qt,rt).

The algorithm can stop making queries at any iteration, and the last query is its final output. Notice that the
memory constraint applies only between each query but not for internal computations (i.e., the computation of
the update 1,4, and the query 1., can potentially use unlimited memory). This is a rather weak memory
constraint on the algorithm; a fortiori, our negative results also apply to stronger notions of memory-constrained
algorithms. In Definition 1, we ask the query and update functions to be time invariant. In our context, this is
without loss of generality; any M-bit algorithm using T queries with time-dependent query and update functions
(Marsden et al. [22], Woodworth and Srebro [42]) can be turned into an (M + [log T')-bit time-invariant algorithm
by storing the iteration number f as part of the memory. The query lower bounds that we provide are at most
T < poly(d). Hence, the additional log T = O(logd) bits to the memory size M do not affect our main results: Theo-
rems 1 and 2.

In this paper, we use the above-described framework to study the interplay between query complexity and
memory for two fundamental problems in optimization and machine learning.
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2.1. Convex Optimization

We first consider convex optimization, in which one aims to minimize a 1-Lipschitz convex function f : R? — R
over the unit ball B;(0,1) c R?. The goal is to output a point ¥ € B4(0,1) such that f(¥) < min,ep,o,1)f (x) + €, referred
to as e-approximate points. The optimization algorithm has access to a first-order oracle Oco : R — R x R?, which
for any query x, returns the couple (f(x), df (x)), where Jf (x) is a subgradient of f at the query point x.

Remark 1. The above requirement for e-approximate optimality is weaker than asking to find a point that is at
distance € from arg minyep,o,1)f(x) (for 1-Lipschitz convex functions). As a result, our lower bounds for e-approx-
imate optimality hold a fortiori for the problem where one aims to find a point at a distance at most € from the
solution set.

2.2. Feasibility Problem

Second, we consider the trade-off between memory and query complexity for the feasibility problem, where the
goal is to find an element ¥ € Q for a convex set Q C B4(0,1). Instead of a first-order oracle, the algorithm has
access to a separation oracle O : R? — {Success} U R”. For any query x € R?, the separation oracle either returns
Success, reporting that x € Q, or provides a separating vector g € R: that is, such that for all ¥’ € Q,

(g, x—x")>0.

We say that an algorithm solves the feasibility problem with accuracy e > 0 if it can solve any feasibility problem
for which the successful set contains a ball of radius e (i.e., such that there exists x* € B4(0,1) satisfying
Bi(x*,€) C Q).

The feasibility problem is at least as hard as convex optimization in the following sense; an algorithm that
solves the feasibility problem with accuracy €/L can be used to solve L-Lipschitz convex optimization problems
by feeding the subgradients from first-order queries to the algorithm as separating hyperplanes. Alternatively,
from any 1-Lipschitz function f, one can derive a feasibility problem, where the feasibility set is Q ={x €
B4(0,1),f(x) < f*+€} and the separation oracle at x ¢ Q is a subgradient Jf (x) at x.

2.3. Overview of the Proof in Marsden et al. [22]

To ease the presentation, we first give an overview of the proof techniques from Marsden et al. [22], which we
build upon. We recall that the family of functions that they use is given in Equation (1). The first term [|Ax]|,, — 7,
acts as a barrier term; to observe subgradients from the other term, one needs the query x to satisfy ||Ax|,, < 27,,.
These are called informative queries. They must lie approximately in the orthogonal space to the lines of A; that is,
they approximately belong to the null space of A denoted Ker(A). Note that function F is designed so that intui-
tively, its minimum is given by the second term. Hence, an optimization algorithm needs to make informative
queries in order to optimize F.

The second term maxienjv; x —iy is referred to as a Nemirovski function. If y is set appropriately to
y =Q(y/logd/d), an algorithm that optimizes this function must discover the subgradients vy, ..., vy in this exact
order. In fact, for any k > 1, choosing y = Q(y/klogd/d), they prove that (1) subgradients vy, ..., vy are discovered
exactly in this order and that (2) any query that visits a new vector v; does not lie close to the subspace formed
by the last k informative vectors, a property known as robust linear independence. Indeed, for the last claim, from
high-dimensional concentration, for a random unit vector v and a k-dimensional subspace E, ||[Pg(v)||=
O(y/klogd/d).

As a result, at any point when optimizing F, in order to observe the next k subgradients from the Nemirovski
function, one needs to make k informative queries that are robustly independent and close to Ker(A). The crux of
the optimization difficulty is that the algorithm receives information about A only through the subgradients of
|Ax||.: that is, one row at a time. This motivates the definition of the following (simplified) game.

1. Oracle. Sample A ~ U({+1}">),

2. Player. Based on A, store an M-bit message Message.

3. Player. Using only Message (but not A), query some rows of A, and output vectors y,, ..., y,.

4. The player wins if the returned vectors are all approximately in Ker(A) and are robustly independent; that is,

||P5pm(yj, j<iy- ()l > p for all i € [k] for some fixed parameter .
They show that to win this game, the player should either (1) make ((d) row queries or (2) use memory
M = Q(kd). Roughly speaking, their result shows that to find k robustly independent vectors roughly in Ker(A),
either (1) we need to query all rows of A (once we know A, finding vectors in its null space is easy), or (2) we
need to store these vectors directly in memory, which requires O(kd) bits of memory. Setting k ~ CM/d for some
large constant C, where M is the bit memory of the algorithm, ensures that only the first scenario happens.
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With these ingredients at hand, assuming that the algorithm needs to discover all N subgradients vy, ..., vy of the
Nemirovski term, this gives a query lower bound of Q(d) x (N/k). Unfortunately, the maximum number of useful
Nemirovski vectors N is bounded by the value of y; one needs N < Ny = O(y~?/). Beyond this value, for any j > No,
we would have v/ x — jy < maxie|n, v x — iy for all x € B4(0,1); hence, further terms are irrelevant to optimize F. This
gives a final query lower bound of Q(Nd/k) = Q(Nd? /M) = Q((d?/ M)*3) for M-bit memory algorithms.

2.4. Overview of the Proof Strategy and Innovations

Because the techniques for Theorems 1 and 2 are similar, we mostly focus on main ideas used to derive lower
bounds for convex optimization. Although our proof borrows techniques from Marsden et al. [22], we introduce
key innovations involving adaptivity to improve the lower bounds up to the maximum quadratic memory for
deterministic algorithms—up to logarithmic factors. We recall, however, that the bounds in Marsden et al. [22]
hold for randomized algorithms as well. In the proofs, we aim to optimize the dependence of the parameters in
d. Constants, however, are not necessarily optimized.

As a road map, our proof has three main components (see Figure 2). We first show that solving the general
memory-constrained convex optimization problem implies solving an optimization procedure (Proposition 1). Neces-
sary properties on the optimization procedure are proven in Propositions 2 and 3. We then further relate the opti-
mization procedure to an orthogonal vector game with hints (Proposition 4), on which we prove memory/query
trade-offs in Proposition 5.

2.4.1. Main Limitations for Improving the Lower Bounds. As per the computations in Section 2.3, one of the main
barriers to improving the lower bounds is the limit on the number N of Nemirovski vectors that can be used. Ide-
ally, if one could ensure N = Q(d), which is the maximum possible value, then this would directly give a lower-
bound trade-off up to quadratic memory O(d?). Our adaptive construction uses a different form of functions, but
roughly speaking, we will be able to ensure precisely N = Q(d) for the feasibility problem. However, for the opti-
mization problem, we will only be able to reach the value N = k(d/ k)3, which still provides a query lower bound
of Q(Nd/k) = Q(d(d/k)"?) = Qd(d?/M)3).

As a preview, given the bound Ny = O(y~%?), one of the goals of the adaptive construction is to decrease the
value of y from Q(y/klogd/d) to O(y/logd/d), which is the minimum value that still ensures the subgradients
v1,...,0N to be observed in this exact order. We also use a two-layer construction to further reduce the value of y
for the last layer, which we discuss below. We recall that in the construction of Marsden et al. [22], having y =
Q(y/klogd/d) was necessary for k informative queries to be robustly independent.

2.4.2. An Adaptive Optimization Procedure. Instead of using a fixed distribution of convex functions as a hard
instance as in Equation (1), we construct the hard functions adaptively. To do so, we design an optimization proce-
dure, which for any algorithm, constructs a hard family of convex functions adaptively on its queries from the fol-
lowing family of convex functions with appropriately chosen parameters 1,y,,7,, Pmax, lp, 6 > 0:

Fa,o(x) = max{IIAxllm = 1,105 m( max_ v, X —py; — le) } )
P<Pmax, <1y

We take A ~ U ({il}"Xd) and vy ~ U(D;) uniformly sampled in the beginning, where Ds C S*lisa (finite) discreti-
zation of the sphere. As in Equation (1), these functions include the barrier term ||Ax||., — 17, and queries x that sat-
isfy ||Ax||, < 21 are called informative; these lie approximately in Ker(A). The second term nojx is used to
ensure that solutions with low objective (in particular, with the objective at most 17y, /2) have norm bounded
away from zero. As a result, these informative queries, once renormalized, will still belong approximately to the
null space of A denoted Ker(A).

The main novelty in the construction is captured by the third term, which is constructed adaptively along the
optimization process. This construction proceeds by periods p=1,2, ..., pua designed so that during each period
P € [Pmax], the algorithm is forced to visit a subspace of Ker(A) of fixed dimension k = Q(M/d). Here, kis a param-
eter that plays the same role as in Marsden et al. [22]; assuming that the algorithm needs to visit a subspace of
dimension k, then it should make at least k queries approximately in Ker(A) that are robustly linearly

Figure 2. General proof structure. OVG, orthogonal vector game; Prop., proposition.

Prop. 2,3 Prop. 5
Prop. 1 P Pro P

— — p. 4
convex optimization |—>| optimization procedure |—> OVG with hints
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independent. The hope is that because k = Q(M/d) (the algorithm cannot store these queries directly in memory),
this requires making Q(d) queries to the gradient oracle, yielding a final query lower bound of Q (p;.xd).

For each period p, to ensure that the algorithm visits a subspace of Ker(A) of dimension k, we iteratively construct vec-
tors vy, 1, ... vy, as follows. Suppose that at the beginning of a step of period p, one has defined vectors vy, 1, ..., vy, 1.

e The procedure first evaluates the explored subspace of the algorithm during this period. More precisely, the
procedure keeps track of exploratory queries x;, ,,...,%;,, during period p up to the current step. The exploratory
subspace is then Span(xip,l, . ,xiw).

e If a query with a sufficiently low objective is queried, we sample a new vector v, ;,1, which is approximately
orthogonal to the exploratory subspace. The corresponding new term in the objective is z;;, X —py; — I+ 1)y,
Once this new term is added to the objective, the algorithm is constrained to make queries with an additional
component along the direction —v,, ;,1. Because this vector is approximately orthogonal to all previous queries,
this forces the algorithm to query vectors linearly independent from all previous queries in period p. The period
then ends once the dimension of the exploratory subspace reaches k, having defined [, vectors vy,1,...,v,1,. As
discussed above, the exploratory subspace must increase dimension for any additional such vector. Thus, after
I, < k vectors, period p ends (Lemma 2).

As a comparison with the family of functions from Equation (1), the third term of Equation (2) now plays the
role of the Nemirovski function, and the total number of Nemirovski terms is intuitively N = p;,..k because each
layer p € [pyax] constructs [, < k vectors vy 1,...,v,, I

2.4.3. Benefits of Adaptivity. We now expand on how the adaptive terms allow for improving the lower bound
of Marsden et al. [22] to match the quadratic upper bound of cutting-plane methods. As we mentioned above, one
of the limitations in the functions of the form Equation (1) comes from the fact that the offset in the Nemirovski func-
tion is y = Q(y/klogd/d). This offset was necessary to ensure that with high probability, (1) subgradients v1,...,v5
are discovered exactly in this order—in fact, this is also ensured whenever y = Q(y/logd/d)—and (2) any query that
visits a new vector v; must not lie in the subspace formed by the last k last informative vectors. In our procedure, how-
ever, this is not necessary anymore because during each period p € [pyax], a k-dimensional subspace of Ker(A) is forced
to be explored; that is, property (2) is already satisfied. Hence, we only need to ensure property (1). More precisely, we
check that the optimization procedure is equivalent to running the optimization algorithm with the final constructed
function. This is the goal of Proposition 1, and we provide the main ideas below.

We need to ensure that the algorithm first observes the subgradients of period 1 (that is, 1,1, ...,v1 ) and then
those of period 2 until those of period p,,.. This is the purpose of the offset y;, which can, therefore, be taken as
v, =0(y/logd/d).

Within each period p, we also need to ensure that the subgradients vy, 1, . ..,v,,;, would be discovered in that order
when running the optimization algorithm with the final constructed function. For this second layer, we will be able to
further reduce the value of the offset y,. The vectors v, ; for I € [I,] are constructed so that they are approximately
orthogonal to any query x that was previously made during period p. Hence, we will be able to show that

max o7 yx—pyy — 'y, < —pyy — (1= 1y, — 2. ©)

1<l <1,
This gives an offset —y,/2 compared with the previous terms max; 51717’; X =Py — I'y,, which in turn, ensures
that such a query x could not have observed the vectors v, y for I > I. In fact, we can take y» as small as desired;

taking y, = O(y, /d) is sufficient. Because there are at most [, < k terms per period, the total offset per period still
satisfies [, < ky, <y;. In words, because the vectors v, ; are constructed perpendicular to exploration spaces
within each period, the offset needed within each period is negligible.

Now that the offset parameters y; and y, have been reduced, we can increase the number of useful Nemir-
ovski terms. Formally, it remains to estimate the maximum number of periods p,.., that we can fit in the con-
struction. First, using standard arguments, we show (Proposition 2) that

min FA’v(x) <-Q <L),
x€By(0,1) 1 VN

where N = pjuck is roughly the number of Nemirovski terms. On the other hand, suppose that an algorithm does
not complete all p,,,,, periods; say it does not observe v, ;. Then, if x7 is the output of the algorithm, by concentra-
tion bounds, we have

vy X1 =Yy =1y, 2 —(p+ Dy =1y, 2 —O(pmaryy)-
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Note that if we choose pyy = o((d / k)l/ 3), we have 1/ VN=1 /\/Pmaxk > Pmaxy;- Then, combining the three previ-
ous inequalities precisely shows that for p,. = ©((d/k)"/?), an algorithm needs to complete p,,,.x periods in order
to find an approximate minimizer of Fu ,. Hence, the total number of Nemirovski terms is Q(k(d/ k)l/ %) as
desired. Full details are given in Proposition 3, which completes the reduction from the optimization procedure
to convex optimization.

2.4.4. An Orthogonal Vector Game with Hints. A crucial part of the proof is to prove that with the constructed
optimization procedure, at each period p, to find k exploratory queries approximately in Ker(A) and robustly
independent, the algorithm needs to perform Q(d) queries to the gradient oracle.

We link the optimization of the above-mentioned constructed functions with an orthogonal vector game with
hints (Proposition 4). As in the game introduced by Marsden et al. [22] (see Section 2.3), the goal for the player is
to find k linearly independent vectors approximatively in Ker(A). To do so, the player can access an M-bit mes-
sage Message and make m queries to rows of A. We now give some brief intuition about their information-
theoretic query lower bound. Suppose that M < ckd for a small constant ¢ > 0. To win, the output vectors
Y,,---, Y, should be robustly independent, which intuitively implies that the algorithm needs to visit roughly k
distinct dimensions of Ker(A). Each new dimension of Ker(A) must be (approximately) orthogonal to all lines
of A. Hence, this provides additional mutual information O(k) for every line of A, including the d/2 — m lines
that were not observed through queries. This extra information on A can only be explained by the message,
which has M bits. Hence, M > O(k)(d/2 —m). Setting the constant ¢ > 0 appropriately, this shows that
m = Q(d).

In our case, the optimization procedure ensures that the algorithm needs to explore k dimensions of Ker(A)
in each period. However, each query yields a response from the optimization oracle that can either be a line
of A (corresponding to the term ||Ax||,, — 1 of Equation (2)) or vy (term nov]x of Equation (2)) or be previously
defined vectors v,,,,. Now, because the vectors v, y have been constructed adaptively on the queries of the
algorithm, which themselves may depend on lines of A, during a period p, responses v,, ; for p’ < p are a
source of information leakage for A from previous periods. As a result, the query lower bound on the game
introduced by Marsden et al. [22] is not sufficient for our purposes. Instead, we introduce an orthogonal vec-
tor game with hints, where hints correspond exactly to these vectors v,, y from previous periods. Informally,
the game corresponds to a simulation of one of the periods of the optimization procedure; for each query x,
the oracle returns the subgradient that would have been returned in the optimization procedure, up to minor
details. The formal definition of the orthogonal vector game with hints is given in Game 1; we give here its
general structure for intuition.

1. Oracle. Sample A ~ U({+1}"/*),

2. Player. Based on A, construct vectors vy, ...,v; according to a specific procedure that mimics the construction
of vectors v, ; in the optimization procedure.

3. Player. Based on A, store an M-bit message Message, and submit a response function g, which takes values in
B,4(0,1) and outputs wither a row of A or a vector from vy, ..., v,.

4. Player. Using only Message (but not A), make some queries to the response function g, and output vectors

Y- Y
5. The player wins if the returned vectors are approximately in Ker(A) and robustly independent.

2.4.5. Bounding the Information Leakage. The next step of the proof is to give lower bounds on the number of
queries needed to solve the orthogonal vector game with hints (Proposition 5). The main difficulty is to bound
the information leakage from these hints. We recall that hints are of the form v, ;, which have been constructed
adaptively on the queries of the algorithm during period p’. In particular, these contain information on the lines
of A queried during period p’ < p, which may be complementary with those queried during period p. If this total
information leakage through the hints yields a mutual information with Ker(A) significantly higher than that of
the M bits of Message, obtained lower bounds cannot possibly reflect any trade-off with memory constraints. It
is, therefore, essential to obtain information leakage at most O(M) = O(dk).

To solve this issue, we introduce a discretization D; of the unit sphere where the vectors v, l~take value. Next,
we show that each individual vector v, ; from previous periods can only provide information O(k) on the matrix
A. To have an intuition on this, note that for any (at most) k vectors x1, ..., xx, the volume of the subset of the unit
sphere S%-1 of vectors approximately orthogonal to x1,...,xx, say S(x1,...,x) ={y € g1, lyTx;| <d=3,i <k}, is
gx = O(1/d%). Hence, because the vector v is roughly taken uniformly at random within Ds N S(x3, ..., xx), we can
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show that the mutual information of v with the initial vectors x;,...,x; is at most O(—loggx) = O(klogd). As a
result, even if m = d, the total information leakage through the vectors v, ; from previous periods is at most
O(kdlogd). This is comparable with the information of Message; hence, the main information-theoretic argument
can be conserved. The formal proof involves anticoncentration bounds on the distance of a random unit vector to
a linear subspace of dimension k (Lemma 4) as well as a more involved discretization procedure than the one
presented above. In summary, by introducing adaptive functions through the optimization procedure, we show
that the same memory-sample trade-off holds for the orthogonal vector game with hints and the game without
hints introduced in Marsden et al. [22], up to logarithmic factors.

3. Memory-Constrained Convex Optimization

To prove our results, we need to use discretizations of the unit sphere $%~1. It will be convenient to ensure
that the partitions induced by these discretizations have equal area, which can be done with the following
lemma.

Lemma 1 (Feige and Schechtman [11, Lemma 21]). Forany 0 < & < 7t/2, the sphere S~ can be partitioned into N() =
(O)/ 6)”1 equal volume cells, each of diameter at most O.

We denote by Vs = {V;(6),i € [N(6)]} the corresponding partition and consider a set of representatives Ds =
{b;(6),i € [N(6)]} € §%~! such that for all i € [N()], bi(5) € V;(5). With these notations, we can define the discretiza-
tion function ¢, as follows:

Py(x) = bi(5), x€Vi(6).

3.1. Definition of the Difficult Class of Optimization Problems
In this section, we present the class of functions that we use to prove our lower bounds. Throughout the paper,
we pose 11 = [d/4]. We first define some useful functions. For any A € R"™“, we define g, as follows:

gax)=a;,, imn=min{i€[n],|a x| =||Ax].}-
With this function, we can define a subgradient function for x — ||Ax||,:

Za(x)=€eg,(x), €= sign(gA(x)Tx).

We are now ready to introduce the class of functions, which we use for our lower bounds. These are of the fol-
lowing form:

_ _ T T _
Fa,o(x) = maX{Ilelloo 10,109 %, 1 (prglgx max o, X = PV lyz) }
Here, A € {il}”x‘i is a matrix. Also, vg and the terms v, ; are vectors in RY. More precisely, these vectors will lie
in the discretization Ds for 6 =1/ 4. We postpone the definition of p,,,,, and lp for p < puax. Last, we use the fol-

lowing choice for the remaining parameters: n=2/d°, y, =12,/logd/d, and y, =y, /4d. For convenience, we also
define the functions

Fa(x) = max{||Ax|l., —n,nvg x}

F x) = max< ||Ax|l, — 1,170 x, max ol x—py, =1 ,
A,0,p,1(%) {II lleo = 1,112 ’7<<p/,r>g,ex<p,z>,rsz,,/ p X =P 7/2)}

with the convention Fy,4,1,0 = Fa. The functions Fu 5, will encapsulate the current state of the function to be
minimized; it will be updated adaptively on the queries of the algorithm. We also define a subgradient function
for Fy,o,p,1 by first favoring lines of A and then vectors from v in case of ties as follows:

8atx) if Fao,1,p(x) = ||Ax]l — 17,

v otherwise and if F x) =107 x,
aIZ‘A,'z;,]o,l(x): % A,v,l,p( ) =17 0

’

nv,  otherwise and if (p,[) = arg max v;,/ X=p'y =1Ly,
¥, Stex(p, 1)

In the last case, ties are broken by lexicographic order. We define dF 5, = dFa v, p, 1, Similarly.

lpmax
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We consider a so-called optimization procedure, which will construct the sequence of vectors v = (v,,;) adaptively
on the responses of the considered algorithm. Throughout this section, we use a parameter 1 < k < d/3 — 1—which
will be taken as k = @(M/d), where M is the memory of the algorithm—and let p,,,,, be the largest number that satis-
ties the following constraint:

P < min{(ca1d —1)/k, cq2(d/k)'> =1}, @
where ¢;,1 =1/(90° log’d) and ¢, = 1/(81 log*d).

Procedure 1 (The Optimization Procedure for Algorithm alg)
Input: d, k, pjax, algorithm alg
Part 1: Procedure to adaptively construct v
1 Sample A ~U({+1}"™?) and v, ~ U(Ds)
2 Initialize the memory of alg to 0,and letp=1,r=1=0
3 fort>1,do
4 ift>d? thenset (P,L) = (p,]), and break the for loop;
5  Runalg with current memory to obtain a query x;
6  if F4(x)>n, then /Noninformative query
7 return (||Ax;||., — 17,8 4(x:)) as response to alg
8 else /Informative query
9 ifr <k—1landFa,y,(x;) < —1y,/2and ”PSpﬂn(x,-p Lrsnt (e)|l/ el > %2, then

10 Set iy, +1 =t and increment 7 «— r + 1

11 if Faopi(x) < —n(py, +1ly, +,/2) and r <k, then

12 Compute Gram-Schmidt decomposition by, 1, ..., by, of x;, ., ..., x;,
13 Sample y, ,,; uniformly on ST n{zeR": b, ,z| <d 3,V <r}
14 Define v}, 141 = cpé(yp, 1+1) and increment [ « [ +1

15 elseif Fy o pi(x)) < —n(py, + 1y, +7,/2)and p+1 < pya, then

16 Setl,=land ip41,1 =t

17 Compute the Gram-Schmidt decomposition by.1,1 of x;,,, ,

18 Sample y,,, ; uniformly on ST n{zeR: by, 12| <d %

19 Define vp.1,1 = ¢5(y,,,; 1), increment p «— p+1,and reset [ =r =1
20 elseif Fy o i(x;) < —1(py, +1y, +7,/2), then //End of the construction
21 Set lpmx = l, ipma:("'lrl =t

22 Set (P,L) = (Pmax, 1), and break the for loop

23 return (F4 o, p,1(x;), 0F 4,5,,1(x¢)) as response to alg

24 end

Part 2: Procedure once v, P, L are constructed
25 fort’ >t,do return (Fa o p,.(X),0Fa, 0 p,1(xr)) as response to the query x;

The optimization procedure is described in Procedure 1. First, we sample independently A ~ U({il}"Xd) and
vo ~U(Ds). The matrix A and vector vy are then fixed for the rest of the learning procedure. Next, we describe
the adaptive procedure to return subgradients. It proceeds by periods until p,,, periods are completed unless
the total number of iterations reaches d°, in which case the construction procedure ends as well. First, we say that
a query is informative if F4(x) < 1. The procedure proceeds by periods p € [pmar] and in each period, constructs
the vectors v 1, ..., v,k iteratively. We are now ready to describe the procedure at time t when the new query x;
is queried. Let p > 1 be the index of the current period and v,1,...,v,,; be the vectors of this period constructed
so far; the first period is p = 1, and we allow [ = 0 here. As will be seen in the construction, we always have [ > 1
except at the very beginning, for which we use the notation F4, 41,0 = Fa. Together with these vectors, the oracle
keeps in memory indices iy 1, . .., i, with 7 < k of exploratory queries. The constructed vectors from previous peri-
ods are v, y for p’ < p and I <ly.

(Case 1) If x; is not informative (i.e., F4(x) > 1), then the procedure returns (||Ax||o, — 1, 4(x¢)).
(Case 2) Otherwise, we follow the next steps. If r < k—1,

WPspancx, ,,rr<n (o)l

14! pan,, , v <7) V2

FA, , ,l(xt) < - and ===,
o 2 [l 4

we set iy ,41 = t and increment 7. In this case, we say that x; is exploratory.
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(Case 2a) Recalling that Fj o, is constructed so far, if Fa q p,1(x:) 2 n(—=py, —1ly, —¥,/2), we do not do
anything.

(Case 2b) Otherwise and if r < k, let by, 1,...,by, be the result from the Gram-Schmidt decomposition
of Xiy1seosXi, - Then, let Yy, 11 be a sample of the distribution obtained by the uniform distribution

Yy ~U(ST N {z R [b) 2

vector, we increment [.

(Case 2c) Otherwise, if r = k, this ends period p. We write the total number of vectors defined during period
pasl,:=L1f p+1 < pya, period p + 1 starts from t =1i,,1,1. Similarly to above, let b,.1,1 be the result of
the Gram-Schmidt procedure on xp.1,1, and we sample y, ., according to a uniform distribution

<d3 vr< r}). We then pose v),111 = §,(Yy,,1,1)- Having defined this new

Ypii1 ~L{(Sd 'Nn{zeR: by, 2| < d’3}>. Then, we pose 11,1 = §;(Y,,; ;). We can then increment p and

reset/=r=1.

After these steps, with the current values of p and I, we return (Fa,,,1(xt), 9F 4 ,1,p(x;)).

If we finished the last period p = pyy or if we reached a total number of iterations d°, the construction phase of
the function ends. In both cases, let us denote by P, L the last defined period and vector vp ;. In particular, we
have p < pyuux. From now on, the final function to optimize is Fa,»,p,1, and the oracle is a standard first-order ora-
cle for this function using the subgradient function dFa,,p,1.

We will relate this procedure to the standard convex optimization problem and prove query lower bounds
under memory constraints for this procedure. Before doing so, we formally define what we mean by solving this
optimization procedure.

Definition 2. Let alg be an algorithm for convex optimization. We say that an algorithm alg is successful for the
optimization procedure with probability g € [0,1] and accuracy € > 0 if taking A ~ L{({+1}”X ), running alg with
the responses given by the procedure, and denoting by x*(alg) the final answer returned by alg, with probability
at least g over the randomness of A, vy and of the procedure, one has

Fa,op,(x*(alg)) < min Fa,pr(x)+e.
xeBy(0,1)

3.2. Properties and Validity of the Optimization Procedure
We begin this section with a simple lemma showing that during each period p, at most [, < k vectors
Up1,.-.,Up,, are constructed.

Lemma 2. At any time of the construction procedure, | < r. In particular, because r < k, we have I, < k for all periods
p < Pmax-

Proof. Fix a period p. We prove this by induction. The claim is satisfied for any / = 1 when p > 2 because in this
case, at the first time t =i, ; of the period p, we also construct the first vector v, 1. For p = 1, note that the first
informative query t that falls in case (2b) or case (2c) is exploratory. Indeed, in these cases, we have
Fao1,0(x) < n(=y, —7,/2) £ —ny,/2, and the second criterion for an exploratory query is immediate
||P5p,m(xl o S0) (x1)]| = 0 because no indices 71, have been defined yet.

We now suppose that the claim holds for / —1 > 1. Let tp,1 be the time when v, ; is constructed and iy 1, ..., iy,
be the indices constructed until the beginning of iteration t,;. If a new index i, , was constructed in tlmes
(tp,1-1,tp,1), then the claim holds immediately. Suppose that this is not the case. Note that ¢, falls in case (2b),
which means in particular that

() 1%, —pyy — (= 1)y,) < Fappia(x,,) < n(=py; = (= 1)y, = ,/2).
As aresult,
yl x| 2 (o], | — 0> %7 5.

Next, when r > [ —1 is the number of indices constructed so far, we decompose Yy 1= arby 1+ - +a,by, + gp, 117

where yTP 1 € Span(x; ,, 1" < r)*. Now, by construction of Y,,1_1, one has |a, | < d~3 forall 7 < r. Thus,

B \r 1
1,121 = Yp1all < B < Vi

P’
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Therefore,

. JY 1 14
”PSptm(x,-Iﬂ/y,,r’Sr)L (xtp,1)|| > |y;],1xt},/1| = |y;—,l,1xtp,,| dZ\/— 2 dZ\/E —-6> 42

As aresult, t, | is exploratory; hence, iy, ;41 = t,, ;. This ends the proof of the recursion and the lemma. O

We recall that P and L denote the last defined period and vector vp ;. From Lemma 2, we have in particular
P < pyax and L < k. In the next result, we show that with high probability, the returned values and vectors
returned by the above procedure are consistent with a first-order oracle for minimizing the function F4 4, p, .

Proposition 1. Let A € {+1}"” and vy € Ds. On an event & of probability at least 1 — C /logd/d* on the randomness of
the procedure for some universal constant C > 0, all responses of the optimization procedure are consistent with a first-order
oracle for the function Fa,o p,; for any t > 1, if (f,,g,) is the response of the procedure at time t for query x;, then f, =
Fa,o,p,(xt) and g, = 0F a,v,p,(x1).

Proof. Consider a given iteration t. We aim to show that (f;,g,) = (Fa,o,p,.(xt),9Fa,+,p,.(x¢)). By construction, if
t > d?, the result is immediate. Now, suppose t < d?. We first consider the case when x; is noninformative (1). By
definition, Fa(x;) > 1. Because for any (p,!) <j, (P,L), one has |v; el < lop,llllxl] < 1, we have

Fao,p,L(xt) = max{FA(xt),r]((p’l)r?g}(p D Yy, b X =PV~ le) } =Fa(x:).

As a result, the response of the procedure for x; is consistent with F4 5 p,1, and the returned subgradient is
84(x1) = dF a5, p,L(x;). Therefore, it suffices to focus on informative queries (2). We will denote by £, ; the index of
the iteration when v,,; has been defined for (p,) <jx (P,L). Consider a specific couple (p,!) <jx(P,L), and let r
denote the number of constructed indices on or before t, ;. Let by,1, .. ., by, » be the corresponding vectors resulting
from the Gram-Schmidt procedure on Xiy 1o Xy, . Then, condltlonally on the hlstory until time ¢, ;, the vector
v,,1 was defined as v, ; = ¢6(yp 1), where Y, is sampled as ~U(S" ' N {z € RY |b ozl <d” 3, Vr' < r}). Asaresult,
from Lemma A.1, for any t < t, ;, we have

2logd 2 6/2logd
P<|vap,z|z3 dg +d—2> sTg.

We then define the following event:

2logd 2
E= m ﬂ {lx:vp,ll <3 ] +d—2},

(P/ I) SIL‘X(P/ L) t< tP/I

which by the union bound, has probability P(£) > 1 — 3,/2logd/d*>. We are now ready to show that the construc-
tion procedure is consistent with optimizing Fa ,, p,r. on the event £. As seen before, we can suppose that x; is infor-
mative (2). Using the same notations as before, because & is met, forany p < p’ < Pand [ < I, we have ford > 2,

, , 2lo d 1 Y y
v;’,l’xt_P 1Ly, <3y dg i PN < _Pyl—jl —py1—dy, _72/

where we used 3V2 + 1 < 6 and 2dy, < y,/2. As a result, we obtain that

)4

max o) % —p'yy =1y, < —pyy =l =2

(P’r I ) SIm(P L)/P’ >p

Next, we consider the case of vectors v, /, where 1<l <1, and t,r 2t (this also includes the case when we
defined v, ; at time t =, ;). We write I for the smallest such index l As a remark, [ € {I,]+1}. Note that if such
indices exist, this means that before starting iteration f, the procedure has not yet reached r = k. There are two
cases. If x; was exploratory, we have t = i, ,; hence, ||P5pm(b L.r<n @)l = 0. If x; is not exploratory, either

1Pt <0l < 221l < 22 5)
P 47

or we have Fy o, i(x;) > —177; /2. We start with the last scenario when Fy 5 ,, 1(x;) > =1y, /2. Then, on &, one has

. /210gd 1 Y
max xXe—p' v, =1y, < —y, +3 <41
¥, <t 1) <P, L) Ot =P =1y <o i d* 2
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As a result, this shows that F4,,p,.(xt) = Fa,5,p,1(x;). Hence, using a first-order oracle from Fy o1, at x; is already
consistent with Fy4 » p,1.. Thus, for whichever case (case (2a), case (2b), or case (2c)) is performed, because these
can only increase the knowledge on v, the response given by the construction procedure is consistent with mini-
mizing Fa .

It remains to treat the first two scenarios in which we always have Equation (5). In par’acular when writing x; =

arby, 1+ - + ;b + X where X; = PSptm(hp L <n®t (x¢), we have ||¥]| < y,/4. As aresult, for | < I'< l,, one has for

|v;,1’xt| < Iy;—,l’xtl +6 < |a1||yp r p1|+"'+|0‘r||yp,1’ p,rl + 1%+ 0
< ||a||1—+ﬁ+6
<2y ! o<

<z
=3 d2\d d3_2

where in the last inequality, we used d > 3. As a result, provided that  exists, this shows that

max o] x —py; — Ly, =03 —pyy — 1y, < Wl—lyﬁy— (6)

i<r <l

On the other hand, if t = ip+1,1, the same reasoning works for ¢ viewing it as in period p + 1, which shows for this
case that

Faax VX — P+ D)y =1y, =00 0 = (p+ 1)y =y, < —(p+1)y, - yz )

As a conclusion of these estimates, we showed that on £, we have
Fa,op,0(x) = maX{FA,v,p,l(xt)/ 77(77;,1' Xt — P')/l - l/]/z)} = FA,zz,t(xt)/

where (p’,') is the very next vector that is defined after starting iteration t (potentially, it has tyr =tif we
defined a vector at this time). It now suffices to check that the value and the vector returned by the procedure are
consistent with the right-hand side. By construction, if we constructed v, y atstep t (case (2b) or case (2¢)), then
the procedure directly uses a first-order oracle for F4 o, ;. Further, by construction of the subgradients because
they break ties lexicographically in (p, I), the returned subgradient is exactly dFa, p,1(x;). It remains to check that
this is the case when no vector v, ; is defined at step t: case (2a). This corresponds to the case when
Fa,0,p,1(xt) 2 n(—py; —ly, —7/2). Now, in this case, the upper-bound estimates from Equations (6) and (7) imply
that

Oy X =PV =1y < —pyi =y /2,

and as a result, Fa 4,p,1.(x¢) = Fy, o,p,1(x¢). Therefore, using a first-order oracle of F, , ,,; at x; is valid, and the break
of ties of the subgradient of F, o ; is the same as the break of ties of dF4 o p,1(x;). This ends the proof that on &,
the procedure gives responses consistent with an optimization oracle for Fa , p,; with subgradient function
OF4,0,p,1- Because P(€) > 1 — Cy/logd/d?* for some constant C > 0, this ends the proof of the proposition. [

Last, we provide an upper bound on the optimal value of F4,4,p,r.

Proposition 2. Let A ~U({+1}""?) and v ~ U(Ds). For any algorithm alg for convex optimization, let v be the resulting
set of vectors constructed by the randomized procedure. With probability at least 1 — Cy/logd/d over the randomness of
A, vy and v, we have

min Fu ,(x) < — 1
x€B,(0,1) 40/ (kpyax + 1)logd

for some universal constant C > 0.

Proof. For simplicity, let us enumerate all of the constructed vectors vy, ..., v, by order of construction. Hence,
Lax < Pmaxk. We use the same enumeration for y,, .. Y, - Now, let Cy = 1/40(Lyax + 1)logd, and consider the fol-
lowing vector:

mzu

X = ZPSpan(a, i<n)* (vl)
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In particular, note that we included vy in the sum. For convenience, we write Py instead of Py, i<yt~ Also,
for convenience, let us define z; =3, _;P4:(v;). Fix an index 1 <! <I,,. Then, by Lemma A.l, with

= /6 logd/d +2d7%, we have
P(|Pa: (011) 21| > tollzill) = P10 Pas (21)| > tol|zil])
< P(|9)1Pax(z1)| > tollPas (z0)]])
- 2,/6 10gd.
<=7z
Similarly, we have that
2,/6 logd
a2 ’
Now, consider the event & =<, {|v]z 1], |Par(v;) 21 1| < tollzil|}, which because I, < d, by the union
bound has probability at least 1 —4./6 logd/d. Then, on &, for any | < L,

P(lvf1zi] > tollzill) <

Izl <zl +11Pa@r)IP +21Pas (011) 21| < llzill® + 1+ 260l

We now prove by induction that lzi* < 40 logd - (I+1), which is clearly true for zy because ||zo|| = ||[P4+ (vo)l| <
llooll < 1. Suppose this is true for | < [,,,. Then, using the above equation and the fact that ¢ty < 34/logd/d for
d>4,

llzi1 | < 40 logd - (l+l)+1+6rlogd\/ld1 < 40logd-(1+2),

where we used I, +1 < d, which completes the induction. In particular, on £, we have that ||¥|| < 1. Now,
observe that by construction, ¥ € Span(a;,i < n)* so that ||A¥||., = 0. Next, for any 0 <[ < [y, we have

.
v, Z 1
o=t e P @) +o za+ Y. o Par(op)
Ca Ca 1<l <lr

We will give estimates on each term of the above equation. First, if the indices ip1, .-, Ipr Were defined before
defining v;, we denote i = P Span(x;, , v <r)* (y;), the component of y, that is perpendicular to the explored space at

that time. Then, we can write y, = a’lbp,1+ +0zl,bp,1 + ¥, and note that

- k 1
= v/l = (@ = = (@l 2 [T =21

IPa= (@Il Z IPax(y)ll = &
2 ”PSpan(u,-,iSn, hp,,/,rSr’)L(yl)” -0

Then, we have

= ”PSpan(a,-,isn, bp,,/,rsr’)L(gl)” -6

PSpan(a[,iSn, b, 1 <1)" <I|y ||> H d5

As a result, because 6 = d 3, this shows that

- 2
2 Y
”PAl (UI)H 2 PSpan(a,,iSn, b, 1" <t (m) H —26

Now, observe that dzm(Span(a, i<nby,r< r)") >d — n — k, whereas i 7,/117,]l is a uniformly random unit vector
in Span(b,, »,r < r')*. Therefore, using Proposmon A.1, we obtain for t <1,

d—n—k
1P><||13A¢(z;l)||2 +206-——< —t>

i d—n—k
<HPSptm(a, i<n, by, r<r)t (;_) H _T = _t>
e (d- k)tz.

I/\

I/\
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As a result, because d —n — k > d /2, we obtain

, 1 logd 1
P(HPAi(vz)n < -2/ g5) <o

max

Now, define F = Nj<; {IPa:(@)|F =1/2 -2,/ logd/d — 26}, which because I,y +1 < d and by the union bound

has probability at least P(F) > 1 —1/d. Next, we turn to the last term. For any 0 < I < [,,,x, we now focus on the
sequence (fo 219 Pam(yy)1<y<y,, 1 and first note that this is a martingale. These increments are symmetric

(because y, is symmetric) even conditionally on A and v, y,,...,y, ;. Next, let t; =2,/3 logd/d +2d~?. Note that
for d > 4, we have t; < 4./logd/d. Further, by Lemma A.1,
4,/3 logd
P(1o] Par(y)| > 1) = P(Par (o) Ty | > 1) < =285,
where we used the fact that P4 is a projection. Let G =Ny o, {|v/Par(vy)| < t1}, which by the union bound
has probability P(G)) > 1 —4,/3 logd/d>. Next, we define I, = (v P5v(y,,,) A t1) vV (—t1), the increments capped

at absolute value ;. Because v P57 (y,,,) is symmetric, so is I} ,. As a result, these are bounded increments of a
martingale, to which we can apply the Azuma-Hoeffding inequality:

2
< 2097/ (Lyax — l)logd) >1 e

We denote by H; this event. Now, observe that on G, the increments I;, and v/ P,7(y,,,) coincide for all
1 < u < Ly — 1. As aresult, on G; N 'H;, we obtain

lnmx —l

(5

u=1

Il,u

IA

Z v Ppe (o) Z 0 Ppe(yy )| + (lax — 1)0

1<l" <y 1<l" <lpax

Lyax—1

Il,u

u=1

< 2t/ lnaxlogd + (d — 2)6.

Then, on the event ENF NNy, G NHy, forany 1 < [ < [, One has

1 10 d 1
O] 2 25— 2/ 25 ol — 2411 lunlogd —

IA

+(d—2)o

1 logd lmux +1 lmax 1
25—2\/7—310gd\/40 7 —8logdy/ 7z
1 Ly +1
1
Z_/
6

where in the last inequalities, we used the fact that lyx < kpyax < ¢41d —1, where ¢z =1/ (907 logzd) as per Equa-

tion (4). As a result, we obtain that on £ N F N N, <, .G N H;, which has probability at most 1 — C+/logd/d for some
constant C > 0,

1

1
- < _ .
6Cs ~ 40\/(kpyax + Dlogd

Because ||AX||,, = 0 and 1 > 1/(40/ (kpyax + 1)logd), this shows that
n

40/ (kpuax + 1)logd'

max o, X <
P <Pumac, 1<k P

PA,v(:’_C) < -

This ends the proof of the proposition. O
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3.3. Reduction from Convex Optimization to the Optimization Procedure

According to Proposition 1, with probability at least 1 — C,/logd/d?, the procedure returns responses that are
consistent with a first-order oracle of the function Fj ., p,1, where vp 1 is the last vector to have been defined.
Now, observe that for any constructed vectors v, the function Fa o, p,1. is \/H-Lipschitz. As a result, if there exists
an algorithm for convex optimization that guarantees € accuracy for 1-Lipschitz functions, by rescaling, there
exists an algorithm alg that is successful for the optimization procedure with probability 1 — C/logd/d? and eVd
accuracy. In the next proposition, we show that to be successful, such an algorithm needs to properly define the
complete function Fj4 » (i.e., to complete all periods until p,;ay).

Proposition 3. Let alg be a successful algorithm for the optimization procedure with probability q € [0,1] and precision
n/(2Vd). Suppose that alg performs at most d* queries during the optimization procedure. Then, when running alg with the
responses of the optimization procedure, alg succeeds and ends the period p,,.. with probability at least q — C+/logd/d for
some universal constant C > 0.

Proof. Let x*(alg) = xr denote the final answer of alg when run with the optimization procedure. By hypothesis,
we have T < d%. As before, let P < Pmax and L < k be the indices such that the last vector constructed by the opti-
mization procedure is vp ;. Let £ be the event when alg run on the optimization procedure does not end period
Pmax- We focus on € and consider two cases.

First, suppose that T > tp | (i.e., the last vector was not constructed at time T). As a result, either this means
that x7 corresponds to a noninformative query—case (1)—in which case Fa o, p,.(x1) = Fa(x1) > 7, or this means
that Fa o, p,(x:) > n(—Py; — Ly, — y/2)—case (2a).

Second, we now suppose that T = tp ;. (i.e., the last vector was constructed at time T). Then, by construction of
vp,; and Yp, We have indices ip,,...,ip, < T such that with the Gram—-Schmidt decomposition bp 1, ...,bp,, of
Xipy s+, Xip,, We have |bp ,,yPL| <d = for all ¥ < r. In particular, writing xr = a1bp,1+ -+ +a,bp » + X7, where
X € Span(xl,,,r, ¥ < r)*, either we have ip, =T, in which case ¥ = 0, or xr was not exploratory, in which case we
directly have Fa o p,1(xT) > Fa,0,p,1-1(x1) > —1),/2, or we have ||| < [lxrlly,/4 < y,/4. For all remaining cases
to consider, we obtain

1
|| ||1+“ T||+6 + yZ yZ

s dz\/‘ 1=
In the last inequality, we used d > 4. This shows that Fa,, p,.(x7) > n(—Py; — Ly, —7,/2). As a result, in all cases,
this shows that Fu , p,1.(x*(alg)) > n(—=Py; — Ly, — ¥5/2) = —1)(Pyax + 1)y;. Now, define the event

lop xr| < lyp x7]+06 <

fz{ min Fu ,(x) < —

Ui
x€By(0,1) 40/ (kpax + 1)logd}'
By Proposition 2, we have P(F) > 1 — C/logd/d. Now, from Equation (4),

1
+1)re—
(e +1) ~ 60y, /klogd
Thus,

1 1
max + 1 S S .
v ” 60+\/k(pmax + Dlogd — 60+/(kppax + 1)logd

Then, because Fa o p,1. < Fa,», this shows thaton €N F,

1
Fas, 18) 2 =N(Pmax + 1)y, 2 o
A0 L @) 2 =pnas + 1)y 2 g, Fao ()4 o e =oea

i
> min Fp,p0(x)+——,
romun, L4, p,L(x) i
where in the last inequality, we used kp,x < ¢41d — 1. As a result, let G be the event when alg succeeds for preci-
sion € =1/(2Vd). By hypothesis, P(G) > 4. Now, from the above equations, one has €N F NG = 0. Therefore,
PGNE)=PG) —P(GNENF)—P(F) = q—Cy/logd/d. This ends the proof of the proposition. O
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3.4. Reduction from an Orthogonal Vector Game with Hints to the Optimization Procedure

We are now ready to introduce an orthogonal vector game, where the main difference with the game introduced

in Marsden et al. [22] is that the player can provide additional hints. The game is formally described in Game 1.
Let us first describe the game from Marsden et al. [22]. At the start of the game, an oracle samples a random

matrix A ~ U({+1}"7), where the number of rows 1 is fixed (say, 1 = |d/4]). The final goal of the player is to out-

put k vectors y,,...,y,, where k is a parameter of the game, that are approximately orthogonal to A and also

robustly linearly independent. Precisely, for some parameters «a, § of the game, these should satisfy

”AyiHoo <a and ”PSpan(y]P“,ylil)‘(yi)HZ 2 ﬁ' i€ [k]

To find these vectors, the player can only use an M-bit message Message that was previously constructed with
the knowledge of A and query m rows of A. Marsden et al. [22] showed that to solve this game, a player either
needs a large memory for Message or needs to query most of the rows of A.

In Game 1, the player has further access to hints, which are vectors v, ...,v; that have also been constructed
previously using the knowledge of A. In this game, when making queries in line 9-12, the player first submits a
vector z € RY and then receives a response g(z), where g is a function that takes as values either the rows of A or
the hints vy, ...,v4 and that was also previously specified by the player. For technical reasons, we also allow the
response g to return an additional number in [d?] (see line 8 of Game 1; in any case, this number will carry little
information about A). The game, therefore, has two phases. First, knowing A, the player chooses Message, the
hints vy, ...,v,4, and a response function g (lines 2-8 of Game 1). Second, the player aims to output solution vec-
tors y,,...,y, using only Message and m queries to g.

Note that if the hints vy, ...,v; could be specified by the player without constraints, the player could directly
choose as hints some solution vectors vy, ..., v, that are orthogonal to A and robustly independent. Then, the
player would easily win in the second phase with at most m = k queries to g. Instead, the hints vy, ...,v, are con-
structed in a very specific way that exactly mimics the construction of the vectors v, ; in Procedure 1. To con-
struct each vector v; in the first phase, the player submits at most k vectors x; 1,...,%;,, (these mimic exploratory
queries). The vector v; is then obtained after discretizing a random vector approximately orthogonal to
Xi1,---,%1,,, as in lines 12 and 13 of Procedure 1. The goal in the next sections will be to show that even with the
additional information from the hints, the game is still hard to win for the player.

Game 1 (Orthogonal Vector Game with Hints)
Input:d, k, m, M, a, p
Oracle: Set n «— |d /4], sample A ~ U({+1}"?)
Player: Observe A
forl € [d],do
Player: Based on A and any previous queries and responses, submit at most k vectors x; 1, ..., x; ,,
Oracle: Perform the Gram-Schmidt decomposition by q,...,b;,, of x;1,...,%,,,. Then, sample a vector y, €
§%=1 according to a uniform distribution /(S*~! N {z € R? :¥r < 1, |b;,z| < d~3}). As response to the query,
return v; = ¢;(y,) to the player.
end
7 Player: Based on A, all previous queries and responses, store an M-bit message Message
8 Player: Based on A, all previous queries and responses, submit a function g: B;(0,1) — ({a;,j < n} U {v;,] <
d}) X [d?] to the oracle
9 forie[m], do
10 Player: Based on Message and any previous queries xi,...,x;_; and responses g,...,8; ; from this loop
phase, submit a query z; € R?
11 Oracle: As the response to query z;, return g, = g(z;)
12 end
13 Player: Based on all queries and responses from this phase {z;,g;,i € [m]} and on Message, return some vec-
tors y,,...,y, to the oracle
14 The player wins if the returned vectors have unit norm and satisfy for all i € [k]
1 Ay lle < a
2 ”PSp/m(yl,“.,yl.fl)L(yi)HZ 2 ﬁ

We first prove that solving the optimization procedure implies solving the orthogonal vector game with hints.

QL W IN -

(o)
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Proposition 4. Let m < d. Suppose that there is an M-bit algorithm that is successful for the optimization procedure with
probability q for accuracy € = n/(2Vd) and uses at most mp,., queries. Then, there is an algorithm for Game 1 for para-
meters (d,k,m,M,a =2n/y,,B =7,/4), for which the player wins with probability at least g — C+/logd/d for some uni-
versal constant C > 0.

Proof. Let alg be an M-bit algorithm solving the feasibility problem with mp,,,, queries with probability at least 4.
We now describe the strategy for Game 1.

In the first part of the strategy, the player observes A. First, submit an empty query to the oracle to obtain a
vector vg, which as a result, is uniformly distributed among Ds. We then proceed to simulate the optimization
procedure for alg using parameters A and vy (lines 3-6 of Game 1). Precisely, whenever a new vector v,,; needs
to be defined according to the optimization procedure, the player submits the corresponding vectors x;, ,,...,x;,,
to the oracle and receives in return a vector that defines v, ;. In this manner, the player simulates exactly the opti-
mization procedure. In all cases, the number of queries in this first phase is at most 1 + kp,,y < d. For the remain-
ing queries to perform, the player can query whichever vectors; these will not be used in the rest of the strategy.
If the simulation did not end period p,., the complete procedure fails. We now describe the rest of the proce-
dure when period p,,., was ended. During the simulation, the algorithm records the time i, when period p
started for all p < pua + 1. Recall that for py,. +1, we only define iy, +1,1; this is the time that ends period ;..
Now, by hypothesis, i,,,.+1,1 < Mpyusx. As a result, there must be a period p < py.. that uses at most m queries:
ip+1,1 — ip,1 < m. We define the memory Message to be the memory of alg just before starting iteration i, 1 at the
beginning of period p (line 7 of Game 1). Next, because the period p,.. was ended, the vectors v, for p <
Pmax,1 < I, were all defined. The player can, therefore, submit the function g Ao tO the oracle (line 8 of Game 1) as
follows:

(84(), 1) if Fa,o(x) = [|[Ax]|lc — 1,
(v0,2) otherwise and if Fa,,(x) = v x,
8a,0 X9 (v,,2+ (p — Dk +1) otherwise and if 8)

(p,])=  arg max TJ;,,I/X —py, —ly,.
(p//l/)Slex(pmaxrlpmax)

Intuitively, the first component of g, ,, gives the subgradient dF4, to the following two exceptions; we always
return 4; instead of *a;, and we return vy (v, ;, respectively) instead of 1oy (v}, respectively). The second term
of g, , has values in [2 + pmaxk]. Hence, because 2 + pyuck < d?, the function g A, takes values in ({a;,j < n} U{v,
I < d}) x [d*].

The strategy then proceeds to play the orthogonal vector game in a second part (lines 9-12 of Game 1) and
uses the responses of the oracle to simulate the run of alg for the optimization procedure in period p. To do so,
we set the memory state of the algorithm alg to be Message. Then, for the next m iterations, we proceed as fol-
lows. At iteration i of the process, we run alg with its current state to obtain a new query z;, which is then sub-
mitted to the oracle of the orthogonal vector game to get a response (g;,s;). We then use this response to
simulate the response that was given by the optimization procedure in the first phase, computing (v;,g,) as
follows:

(I8 zil —n,sign(g/z)g,) si=1,
(©,8,) =4 (g zi, 1) 51=2, )
(n(g;rzi —PV1— l?/z)/ng,) si=2+ (P - 1)k+ Z/P < anx,l <Il<k

We can easily check that in all cases, v; = F4 o(2;) and that §; = dF4,,(z;). We then pass (v;,§,) as a response to alg
for the query z;, so it can update its state. Further, having defined i; = 1, the player can keep track of exploratory
queries by checking whether

v; < _M and ”Pspﬂn(zi,.nr’Sr)J'(zi)” _&’
2 [ 4

where ij,...,i, are the indices defined so far. We perform m such iterations unless alg stops and use the last
remaining queries arbitrarily. Next, we check if the last index i, was defined. If not, we pose iy =m +1 and let
Zm+1 be the next query of alg. The final returned vectors are z;, /||z; ||, . . ., zi /||zi||l. This ends the description of the
player’s strategy.
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Algorithm 1 (Strategy of the Player for the Orthogonal Vector Game with Hints)

Input: d, k, pjax, m, algorithm alg

Part 1: Strategy to store Message knowing A

1 Initialize the memory of alg to be 0

2 Submit @ to the oracle, and use the response as vy

3 Run alg with the optimization procedure knowing A and v, until first exploratory query x;, ,

4 forp € [pmal, do

5 Let Memory,, be the current memory state of alg and i,,1 be the current iteration step

6 Runalg with the feasibility procedure until period p ends at iteration step i,1,1. If alg stopped before, return
the strategy fails. When needed to sample a unit vector Uy 1y submit vectors Xiy s Xiy , 1O the oracle,
where iy 1,...,1y,  are the exploratory queries defined at that stage. We use the corresponding response of
the oracle as v,

7 ifiy11,1 —ip,1 < m, then

8 Set Message = Memory,

9 end

10 for Remaining queries to perform to the oracle, do Submit arbitrary query (e.g., 0);

11 if Message has not been defined yet, then return The strategy fails;

12 Submit g A O the oracle as defined in Equation (8)

Part 2: Strategy to make queries

13 Set the memory state of alg to be Message, and definei; =1,7=1

14 forie[m], do

15 Run alg with current memory to obtain a query z;

16 Submit z; to the oracle from Game 1 to get response (g;,s:)

17 Compute (v;,§,) using z;, g, and s; as defined in Equation (9), and pass (v;,§,) as response to alg

18 if0; <~y /20nd Py oot I/l 2 /4, then

19 Seti,;1 =i, and increment r « r+1

20 end

Part 3: Strategy to return vectors

21 if index iy has not been defined yet, then

22 With the current memory of alg, find a new query z,,41, and set i = m +1

23 return {z; /||z; |, .- .,z /||zi ||} to the oracle

We now show that the player wins with good probability. First, because alg makes at most mp,.x < d* queries,
by Proposition 3, on an event £ of probability at least g — C/logd/d, alg succeeds and ends the period p,r. On &,
by construction, the first phase of the strategy does not fail. Now, we show that in the second phase (lines 9-12
of Game 1), the queried vectors coincide exactly with the queried vectors from the corresponding period p in the
first phase (lines 3—6 of Game 1). To do so, we only need to check that the responses provided to alg coincide
with the response given by the optimization procedure. First, recall that on &, all periods are completed; hence,
Fa,0,p,1 = Fa,». Next, by Proposition 1, the responses of the procedure are consistent with optimizing Fa o, p,1 and
subgradients dF4,, p,r on an event F of probability at least 1 —C’y/logd/ d?. Therefore, on £ N F, it suffices to
check that the responses provided to alg are consistent with F4 ,, which we already noted; at every step i,
(vi,8,) = (Fa,0(2i),0Fa,,(z)). This proves that the responses and queries coincide exactly with those given by the
optimization procedure on £ N F.

Next, by construction, the chosen phase p had at most m iterations. Thus, on £ N F, among z, ..., Zy+1, We
have the vectors x;, ,, .. Xy Further, if i, was not defined during part 2 of the strategy, this means that iy =m +1
as defined in the player’s strategy (lines 21 and 22 of Algorithm 1). As a result, for all u < k, we have z;, =x; .
We now show that the returned vectors x;, ,/llx;,,||,...,x;, /llx;, [l are successful for Game 1. First, because

ip,1,---,ip,x are exploratory queries, we have directly for u < k,

”PSpan(xfp,l,,v<u)L (xi,,,u)H S Vs
I, .| 4

Next, if I is the index of the last constructed vector v, before i,, in the optimization procedure, one has
FA/v/p/l(ij,”) < —ny,/2. Therefore, ||Axip,u||m < FA,v,p,l(x,»p/”)+17 < 1. Further, nvgx,-m < FA,v,pll(x,-p,u) < -y, /2.
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This proves that ||x;, || > 7, /2. Putting the previous two inequalities together yields
A%l _ 29
||xip,u|| B yl
As a result, this shows that the returned vectors are successful for Game 1 for the desired parameters a = 21/,

and B =y,/4. Thus, the player wins on £ N F, which has probability at least g — (C + C’),/logd/d* by the union
bound. This ends the proof of the proposition. [

3.5. Query Lower Bound for the Orthogonal Vector Game with Hints

Before proving a lower bound on the necessary number of queries for Game 1, we need to introduce two results.
The first one is a known concentration result for vectors in the hypercube. It shows that for a uniform vector in
the hypercube, being approximately orthogonal to k orthonormal vectors has exponentially small probability in k.

Lemma 3 (Marsden et al. [22]). Let h ~ Z/{({il}d). Then, for any t € (0,1/2] and any matrix Z = [z1,...,z] € RP with
orthonormal columns,

P(|Z7 || < t) < 27E,
We will also need an anticoncentration bound for random vectors, which intuitively provides a lower bound

for the previous concentration result. The following lemma shows that for a uniformly random unit vector, being
orthogonal to k orthonormal vectors is still achievable with exponentially small probability in k.

Lemma 4. Let k < d and x1, . ..,x; be k orthonormal vectors. Then,
1 . 1
]P’yNM(sdl)<|xiTy| < ﬁl Vi < k) ZW

Proof. Let y~u(5d*1) be a uniformly random unit vector. Then, for i < k and any yi,...,y;—1 such that
lyil, . lyial < 1/d3, we have

1
N

§ J(’)l/d‘ (1 . yz)(d'fifl)/2dy

- j(-)l(l _ yz)(d—l—l)/zdy
(1—d-6)"? ¢d”

Z d3 Z d3 7

where in the last equation, we used d > 2. Therefore, we can show by induction that P(|y;| < 1/d°, Vi < k) >
e /3% Thus, by isometry, this shows that

1
P(ly,l < $|y1/-~-,yi1> ZPM%{(SM‘) [up] <

1 . 1
P(|xfy| <=, Vi< k> ZW.

This ends the proof of the lemma. O

We are now ready to prove a query lower bound for Game 1. Precisely, we show that for appropriate choices
of parameters, one needs m = Q(d) queries. The proof is closely inspired from the arguments given in Marsden
et al. [22]. The main added difficulty arises from bounding the information leakage of the provided hints. As
such, our goal is to show that these do not provide more information than the message itself.

Proposition 5. Let k >20(M + 3dlog(2d) +1)/(cyn), and let 0 < a, < 1 such that oz(\/ﬁ/ﬁ)S/4 < 1/2. If the player
wins the orthogonal vector game with hints (Game 1) with probability at least 1/2, then m > cyd/(8(30 logd + c)).

Proof. We first define some notations. Let Y = [y,,...,y,] be the matrix storing the final outputs from the algo-
rithm. Next, for the responses of the oracle (g,,s1),...,(g,,,5n), we first store all of the scalar responses in a vector
c=[s1,...,5u]. We now focus on the responses g,,...,g,. Next, let G denote the matrix containing these
responses of the oracle, which are lines of A. Let G be the matrix containing unique columns from G augmented
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with rows of A so that it has exactly m columns, which are all different rows of A. Last, let A" be the matrix A
once the rows from G are removed. Next, let V be a matrix containing the responses of the oracle that are vectors
v}, ordered by increasing index I. As before, let V be the matrix V where we only conserve unique columns and
append it with additional vectors v; so that V has exactly m columns. We denote by w;, ..., w,, these vectors and
recall that they are vectors v; ordered by increasing order of index I. Last, we define a vector j of indices such
that j(i) contains the information of which column of the matrices G or V corresponds g;. Precisely, if g; is a line a
from A, we set j(i) = j, where j is the index of the column from G corresponding to a. Otherwise, if j is the index
of the column from V corresponding to g,, we set j(i) = m +j.

Next, we argue that Y is a deterministic function of Message, the matrices G, V, and the vector of indices j and
c. First, ¢ provides the scalar responses directly. For the d-dimensional component of the responses, first note that
from G, V, and j, one can easily recover the vectors g, ...,g,,- Next, using the algorithm for the second section of
the orthogonal vector game with hints set with initial memory Message and the vectors g,,...,g,, as responses
of the oracle, one can inductively compute the queries x1, ..., x;,. Last, Y is a deterministic function of x;,g,,i € [m]
and Message. This ends the claim that there is a function ¢ such that Y = ¢(Message, G, V,j,c). Now, by the data
processing inequality,

I(A’;Y|G,V,j,c) < I(A’;Message|G,V,j,c) < HMessage|G,V,j,c) < M. (10)
In the last inequality, we used the fact that Message uses at most M bits. Now, we have that
I(A";Y|G,V,j,c) =H(A'|G,V,j,c) —H(A'|Y,G,V,jc). (11)

In the next steps, we bound the two terms. We start with the second term on the right-hand side of Equation (11)
using similar arguments to the proof given in Marsden et al. [22]. Let £ be the event when the player succeeds at
Game 1. Now, consider the case when Y is a winning matrix. Then, we have ||Ay,||,, < a for all i < k. As a result,
any line a of A’ satisfies ||[Y al|,, < a. Further, we have that ||Pspm(y i<Wl < B for all i < k. By Lemma B.1,

there exist [k/5] orthonormal vectors Z = [zy, ..., zj/51] such that for any x € R?, one has ||Z7x||, < (Vd /ﬁ)s/ Y ..
In particular, all lines a of A” satisfy
5/4
d
12" all., < (\/—>

p

where we used the hypothesis in the parameters « and 5. Now, by Lemma 3, one has

1 1 _
Ha e{=1}":)|Z7all, < E} < ZdIPhNM({ﬂ}d) <||zTh||m < 5) < d=culk/51,

I/\

1
2’

Therefore, we proved that if Y’ is a winning vector, H(A'|Y =Y’) < (n —m)(d — cuk/5). Otherwise, if Y’ loses, we
can directly use H(A’|Y =Y’) < (n — m)d. Combining these equations gives
H(A'Y,G,V,j,c) < HA'|Y)
< P(E)n —m)d +P(E)(n —m)(d — cyk/5)
< (n —m)(d —P(E)cyk/5).
Next, we turn to the first term of the right-hand side of Equation (11):
H(A’|G,V,j,c) =H(A|G,V,j,c) = H(A|V) - I(A;G,j,c|V)
> H(A|V) — H(G,j,¢)
> H(A|V) — md — mlog(2m) —m log(dz)
=H(A) - I(A; V) — md — 3mlog(2d)
= (n —m)d — 3mlog(2d) — I(A; V).

In the second inequality, we use the fact that G uses md bits and j can be stored with mlog(2m) bits. Now, by the
chain rule,

1(A;V) =Y I(A;wilwy, ..., w; ).

i<m
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Now, if w; = v, recalling that the vectors w; = vy are ordered by increasing index of I', we have
I(A; wi|wy, ..., wi_1) = Hw;|w, ..., wi_1) — Hw;|A w,..., w)
< H(w;) — H(w;|A, w1, ..., wi,xi1,...,X,r,)
= H(w;) — H(w;|x;,1,...,%,,,)
< log|Ds| — H(wil|xy1, ..., %1,5,).
In the last equality, we used the fact that if b; 4, ..., b; ,, are the resulting vectors from the Gram-Schmidt decom-

position of x,1,...,x,,,,, y, is generated uniformly in $9~1 N {y :Vr < 1, |b/,y| < d~3} independently from the past
history, and v; = ¢,(y,). Now, by Lemma 4, we know that

_ 1
]PZNM(Sd—l)(VT’ <rn, |b;,rrZ| <d 3) > W
As aresult, for any b;(0) € Ds, one has
P, si-1y(z € V;(5)) e q3k
P(w; = bj(0)x1,1,...,%1,,) < U ! <

Pz~u(an)(vr <, IblTrz| < d_3) - |'D5| !

where we used the fact that each cell has the same area. In particular, this shows that

H(wilxy1,- - %1,) = By x4, 3, [7108Pwi 11,3, (D)] = log (%) :
Hence,
I(A; wi|wn, ..., wi—1) < 3klogd + d* loge.
Putting everything together gives
I(A’;Y|G,V,j) = (n — m)d — 3mlog(2d) — 3kmlogd — 2md~* — (n — m)(d — P(E)cpk/5)

> i—gk(n —m) — 3kmlogd — 1 — 3dlog(2d),

where in the last equation, we used d > 2. Together with Equation (10), this implies
cukn/10 — M — 1 — 3dlog(2d)

k(3logd + crr/10)
As a result, because k > ZO%‘T’;MH and n > d/4, we obtain
cyn CH

mz > d.
60 logd +2cy — 8(30 logd + cx)
This ends the proof of the proposition. O
We are now ready to prove the main result.

Proof of Theorem 1. We set n = [d/4] and k = [20(M + 3dlog(2d) + 1) /(cyn)]. By Proposition 1, with probability at
least 1—Cy/logd/d?, the procedure is consistent with a first-order oracle for convex optimization. Hence,
because the functions F4 . p,; are \/a—LipschitZ, any M-bit algorithm guaranteed to solve convex optimization
within accuracy € = n/(2d) = 1/d* for 1-Lipschitz functions yields an algorithm that is successful for the optimiza-
tion procedure with probability at least 1 — Cy/logd/d?> and precision eVd =n/(2Vd). Suppose that it uses at
most Q queries. Then, by Proposition 4, there is a strategy for Game 1 for parameters (d,k,[Q/pmax]1+1,M, o =
2n/v4,B =7,/4), in which the player wins with probability at least 1 — C’y/logd/d. Now, for d large enough, this
probability is at least 1/2. Further,

2 (a\"_@prt 1

i\ 72 e M2

Hence, by Proposition 5, one has

CH

[Q/Pmal 412 gy e ™
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Because px = O((d /k)l/ 310g72/ 3d), this implies

PNV SR AN 473
Q=0 ——55-]=Q 13, 53]
log™°d (M +logd) /“log™"d

In particular, if M = d'*® for 6 € [0,1], the number of queries is Q = Q(d'+*1-9/3). O

4. Memory-Constrained Feasibility Problem
4.1. Defining the Feasibility Procedure
Similarly to Section 3, we pose n = [d/4]. Also, for any matrix A € {£1}"™", we use the same functions g, and g ,.
We use similar techniques as those we introduced for the optimization problem. However, because in this case,
the separation oracle only returns a separating hyperplane without any value considerations of an underlying
function, Procedure 1 can be drastically simplified, which leads to improved lower bounds.

Let n,=1/(24d%), n, =1/(2Vd), 5=1/d° and k < d/3 —n be a parameter. Last, let pya = [(cs,1d — 1)/(k— 1)),

where ¢4 1 is the same quantity as in Equation (4). The feasibility procedure is defined in Procedure 2. The oracle
nxd

nxd

first randomly samples A ~U({*=1}""") and vy ~U(Ds). This matrix and vector are then fixed in the rest of the
procedure. Whenever the player queries a point x such that ||Ax||,, >, (v]x > —n,, respectively), the oracle
returns §,(x) (vo, respectively). All other queries are called informative queries. With this definition, it now
remains to define the separation oracle on informative queries. The oracle proceeds by periods in which the
behavior is different. In each period p, the oracle constructs vectors vy, 1, ..., v}, -1 inductively and keeps in mem-
ory some queries i, 1,...,i,  that will be called exploratory. The first informative query t will be the first explor-
atory query and starts period 1.
Given a new query x;:

(Case ()1) If ||Ax||, > 1, the oracle returns g , (x;).

(Case (f)2) If vj x; > —1,, the oracle returns v.

(Case (f)3) If x; was queried in the past sequence, the oracle returns the same vector that was returned
previously.

(Case (f)4) Otherwise, let p be the index of the current period, and let v, 1, .. .,Up,1 be the vectors from the current
period constructed so far together with their corresponding exploratory queries i, 1...,i,; < t. Potentially, if p = 1,
one may not have defined any such vectors at the beginning of time ¢. In this case, let / = 0.

(Case (f)4a) If max; .y < lv; pXxe > —1); (with the convention maxg = —c0), the oracle returns v

I = arg max; _ rv;, X Ties are broken alphabetically.

(Case (f)4b) Otherwise, if | < k—1, we first define i, ;;; = t. Then, let by,1,...,b; 111 be the result from the
Gram-Schmidt decomposition of x;, ,, ..., x;, ,,, and lety, , , be a sample of the distribution obtained by the uni-
form distribution y, |, ~ USTTN{zeR: Ib;yz| < d73, Vr < 1+1}). We then pose v}, 1.1 = ®5(Y,,1,1)- Having
defined this new vector, the oracle returns v, ;;1. We then increment /.

(Case (f)4c) Otherwise, if r = k, we define i, = ip11,1 =t. If p+1 < pyu, this starts the next period p + 1. As
above, let by.1,1 be the result of the Gram-Schmidt decomposition of x;,,, , and sample y, ; ; according to a uni-

»,v» Where

formy,,, ; ~ UST I N{zeR": |b;+1/1z| < d=3}). We then pose vp41,1 = ¢5(Y,1,1), and the oracle returns v,.1,1.
We can then increment p and reset [ = 1.
The above construction ends when the period p,,, is finished. At this point, the oracle has defined the vectors

vy, forall p < pyac and I < k. We then define the successful set as

Qa0 = 4x€By(0,1): |lAxll < npvgx < —1;,  max v x < -1y
P<Pmax, 1<k=1 17

From now on, the procedure uses any separation oracle for Q4 , as responses to the algorithm while making
sure to be consistent with previous oracle responses if a query is exactly duplicated. We now define what we
mean by solving the above feasibility procedure.
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Procedure 2 (The Feasibility Procedure for Algorithm alg)
Input: d, k, pjax, algorithm alg
1 Sample A ~U({+1}"™) and v, ~ U(Ds)
2 Initialize the memory of alg to 0,and letp=1,1=0
3 fort>1,do
4 Runalg with current memory to obtain a query x;
5  if ||Ax|| > n,, then return g , (x;) as response to alg;
6 elseif vjx; > —1,, then return v, as response to alg;
7 elseif Query x; was made in the past, then return same vector that was returned for x;;
8
9

else

if max; .y S,v; Xt > —1,, then
10 return Uy where ! = arg max; Srv; Xt
11 elseif! < k—1, then
12 Let iy ;11 =t, and compute Gram-Schmidt decomposition by, 1, ..., by, 141 of x;, . .. Xy 1
13 Sample y, ., uniformly on SUn{zeR?: b, z| <d3, VI <1+1},and define

p,1+1 pl

14 Op 141 = O5(Yp, 111)
15 return v, ;.1 as response to alg and increment [ « [ +1
16 elseif p+1 < pyy, then
17 Set iy, x = ip+1,1 = t, and compute the Gram-Schmidt decomposition by1,1 of x;,,, ,
18 Sample y,,; ; uniformly on ST n{zeR": |b;+1’1z| < d73}, and define vp41,1 = PsYpia,1)
19 return v,,1,1 as response to alg, increment p <~ p+1,and reset [ = 1
20 else Set i, « = t, and break the for loop;
21 end

22 fort’' >t, do Use any separation oracle for Q4 , consistent with previous responses

Definition 3. Let alg be an algorithm for the feasibility problem. When running alg with the responses of the feasi-
bility procedure, we denote by v the set of constructed vectors and x*(alg) the final answer returned by alg. We
say that an algorithm alg is successful for the feasibility procedure with probability g€ [0,1] if taking A ~
U{ =1} with probability at least g over the randomness of A and of the procedure, x*(alg) € Q4+

In the rest of this section, we first relate this feasibility procedure to the standard feasibility problem, and then,
we prove query lower bounds to solve the feasibility procedure.

4.2. Reduction from the Feasibility Procedure to the Feasibility Problem
In the next proposition, we check that the above procedure indeed corresponds to a valid feasibility problem.

Proposition 6. On an event of probability at least 1 — C+/logd/d, the procedure described above is a valid feasibility prob-
lem. More precisely, the following hold.
e There exists X € B4(0,1) such that ||AX||, =0, vjx < —4n,,and

T =
max v, ;X < —47,.
pgpmnx/lgk71 P,l nl

o Lete =min{n,/Vd,n,}/2. Then, B4(% — e(%/||x])), e) C B4(0,1) N By(¥,2€) C Qn o
o Throughout the run of the feasibility problem, the separation oracle always returned a valid cut: that is, for any iteration t,
if x; denotes the query and g, is the returned vector from the oracle, one has

Vx€Qao (Xt —x)>0.

Further, responses are consistent; if x; = xy, the responses of the procedure at times t and t' coincide.
We use a similar proof to that of Proposition 2.
Proof. For convenience, we rename v,,; = v(,_1)j—1)+1- Als0, let Lyax = prar(k — 1) < ¢41d — 1. Next, let Cy = /4014, logd.

We define the vector

1 lrmz.r
X = _C— Pslamz(a,-,ismL (vl)'
4°=0
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Because lyay < pmax(k —1) < ¢41d — 1, the same arguments as in the proof of Proposition 2 show that on an event
€ of probability at least 1 — C/logd/d, we have ||x|| < 1 and

1 2
max v/x < — S — 5=,
0<I< 40/ (ILjnax + 1)logd Vd
where in the second inequality, we used I, < ¢41d — 1. Now, by construction, one has ||A¥||, = 0. This ends the
proof of the first claim of the proposition. We now turn to the second claim, which is immediate from the fact

that x+— ||Ax||,, is Vd-Lipschitz and both x+— vjx and x|—>maxp5pmﬂ,§kv; x are 1-Lipschitz. Therefore,

Biy(x —ex/||x||,e) € B4(0,1) N By(%,2¢) C Qa,». It now remains to check that the third claim is satisfied. It suffices to
check that this is the case during the construction phase of the feasibility procedure: by construction of
Qa,o C {x: Al < 7o}

Hence, it suffices to check that for informative queries x;, the returned vectors g, are valid separating hyper-
planes. By construction, these can only be either vy or v, ; for p < pyua, | < k—1. We denote by w this vector. Let
t’ be the first time x; was queried. There are two cases. Either w was not constructed at time #’, in which case, by
construction this means that we are in case ((f)2) or case ((f)4a). Both cases imply w"x; > —,. Hence, w, which is
returned by the procedure, is a valid separating hyperplane. Now, suppose that w = v}, ; was constructed at time
t'—case ((f)4b) or case ((f)4c). By construction, one has |b; ryp/l| < d3 for all r < I. Decomposing x; = Xj,, =
aby,1+ -+ +ayby, 1, we obtain

oo e 1
|xt yp,ll = d3 = dzﬁ
As a result, y;/ x> =1/ (d*Vd). Now, because e @6(%7, 1), we have |[v, | — Y, |l < 6. Hence, for any d > 2,

w'x > —1/(d*Vd)— 6> —1;.

Hence, w was a valid separating hyperplane. The last claim that the responses of the procedure are consistent
over time is a direct consequence from its construction. This ends the proof of the proposition. O

As a simple consequence of this result, solving the feasibility problem is harder than solving the feasibility pro-
cedure with high probability.

Proposition 7. Let alg be an algorithm that solves the feasibility problem with accuracy € = 1/(484>Vd). Then, it solves the
feasibility procedure with probability at least 1 — C+/logd/d.

Proof. Let £ be the event of probability at least 1 — Cy/logd/d defined in Proposition 6. We show that on &, alg
solves the feasibility procedure. On &, the feasibility procedure emulates a valid feasibility oracle. Further, on &,
the successful set contains a closed ball of radius €. As a result, on &, alg finds a solution to the feasibility problem
emulated by the procedure. O

Next, we show that it is necessary to finish the p,,,, periods to solve the feasibility procedure.

Proposition 8. Fix an algorithm alg. Then, if £ denotes the event when alg succeeds and I3 denotes the event when the pro-
cedure ends period p,.. with alg, then £ C B.

Proof. Consider the case when the period p,,,» was not ended. Let x* denote the last query performed by alg. We
consider the scenario in which x* fell. Let t be the first time when alg submitted query x*. For any of case ((f)1),
case ((f)2), or case ((f)4a), by construction of Qg4 », we already have x; ¢ Q4,,. It remains to check case ((f)4b) and
case ((f)4c), for which the procedure constructs a new vector v, ;, where p is the index of the period of t and
ip1,-..,ip1 =t are the previous exploratory queries in period p. We decompose x = x;,, = a1by1 + ayb, ;. Now, by
construction,

T _ T ”alll 1
|x; yp,ll = |xz'p,1yp,l| < B < 2Na

Asaresult, x[ vy, > —|x]y, | = 0> —d*° —d > > —n, forany d > 2. Thus, x; = x* & Qa,,. This shows that in order
to succeed at the feasibility procedure, an algorithm needs to end all p,,., periods. O

4.3. Reduction from the Orthogonal Vector Game with Hints
The remaining piece of our argument is to show that solving the feasibility procedure is harder than solving the
orthogonal vector game with hints: Game 1.



Downloaded from informs.org by [173.76.99.10] on 20 November 2025, at 06:20 . For personal use only, all rights reserved.

Blanchard, Zhang, and Jaillet: Quadratic Memory for Optimal Query Complexity
2966 Mathematics of Operations Research, 2025, vol. 50, no. 4, pp. 2941-2971, © 2024 INFORMS

Proposition 9. Let A ~U({=1}"). If there exists an M-bit algorithm that solves the feasibility problem described above
USing Mpyay queries with probability at least q over the randomness of the algorithm, choice of A, and the randomness of the
separation oracle, then there is an algorithm for Game 1 for parameters (d,k,m,M,a =ny/n,,p =1,/2), for which the
player wins with probability at least q over the randomness of the player’s strategy and A.

Proof. Let alg be an M-bit algorithm solving the feasibility problem with mp,,,x queries with probability at least 4.
In Algorithm 2, we describe the strategy of the player in Game 1.

Algorithm 2 (Strategy of the Player for the Orthogonal Vector Game with Hints)
Input: d, k, pjax, m, algorithm alg
Part 1: Strategy to store Message knowing A
Initialize the memory of alg to be 0
Submit @ to the oracle, and use the response as v
Run alg with the optimization procedure knowing A and v, until the first exploratory query x;, ,
forp € [puax], do
Let Memory, be the current memory state of alg and i, 1 be the current iteration step
Run alg with the feasibility procedure until period p ends at iteration step #,,1,1. If alg stopped before, return
the strategy fails. When needed to sample a unit vector v}, ;, submit vectors x;, , .. %, , to the oracle. We
use the corresponding response of the oracle as v
7 if l'p+1,1 — ip,1 < m, then
8 Set Message = Memory,,
9 end
10 for Remaining queries to perform to the oracle, do Submit arbitrary query (e.g., 0).
11 if Message has not been defined yet, then return The strategy fails;
12 Submit g, , to the oracle as defined in Equation (12)
Part 2: Strategy to make queries
13 Set the memory state of alg to be Message
14 forie[m], do
15  Runalg with current memory to obtain a query z;
16  Submit z; to the oracle from Game 1 to get response (g;,s;)
17 Compute g, using z;, g;, and s; as defined in Equation (13), and pass g, as response to alg
18 end
Part 3: Strategy to return vectors
19 for! € [k], do Set j; to be the index i of the first query z; for which s; = [ if it exists;
20 if index iy has not been defined yet, then
21 With the current memory of alg, find a new query z,,+1, and set iy =m +1
22 return {z; /||zi,l, .- -,z /llzi ||} to the oracle

N Ul W=

Pl
pr

In the first part of the strategy, the player observes A. Then, they proceed to simulate the feasibility problem
with alg using parameters A. When needed to sample a vector v, ; (vo, respectively), the player submits the corre-
sponding queries x;, ,,...,x;,, (0, respectively) useful to define v, ;. The player then takes the response given by
the oracle as that vector v, ; (vo, respectively), which simulates exactly a run of the feasibility procedure. Further,
because 1 + pyux(k — 1) < d, the player does not run out of queries. Importantly, during the run, the player keeps
track of the length i, x —i,1 of period p. The first time we encounter a period p with length at most m, we set
Message = Memory,, the memory state of alg at the beginning of period p. If there is no such period, the strategy
fails. Also, if alg stopped before ending period p,..», the strategy fails. Next, the algorithm submits the following
function g, ,, to the oracle. Because the responses of the feasibility procedure are consistent over time, we adopt
the following notation. For a previously queried vector x of alg, we denote g(x) the vector, which was returned to
alg during the first part (lines 3-9 of Algorithm 2):

(0,1) if x was never queried in the first part,

~ (a;, 1) otherwise and if g(x) € {*a;},i < n,

840X (v0,2) otherwise and if g(x) = vy, (12
(vp,,,/,Z + l’]lp/:p + k]lp,:pﬂllr:l) otherwise and if g(x) = vp,,,r,p’ < Pmax, ] < k—1.

Intuitively, the first component of § gives the returned vector in the first period at the exception that we always
return a; instead of {+a;}. The second term has values in [2 + k < d?]. Hence, the submitted function is valid.
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Next, in the second part of the algorithm, the player proceeds to simulate a run of the feasibility procedure
with alg on period p. To do so, we first set the memory state of alg to Message. Each new query z; is submitted to
the oracle of Game 1 to get a response (g,,5;). Then, we compute g, as follows:

~ g if 5, >2,
8i= {mgn(gTz )g; ifsi=1. (13)

One can easily check that §; corresponds exactly to the response that was passed to alg in the first part of the
strategy. The player then passes g, to alg so that it can update its state. We repeat this process for m steps. Fur-
ther, the player can also keep track of the exploratory queries; the index #; of the first response satisfying s; =2 +1
for I < k—1(s; =2+k, respectively) is the exploratory query, which led to the construction of v, ; (v,+1,1, respec-
tively) in the first part. Last, we check if the last index i, was defined. If not, we pose iy = m +1 and let z,,41 be the
next query of alg with the current memory. The player then returns the vectors z; /||z; ||, ...,z /|lz;|l. This ends
the description of the player’s strategy.

By Proposition 8, on an event £ of probability at least g, the algorithm alg succeeds and ends period p;,.». As a
result, similarly as in the proof of Proposition 4, because alg makes at most 1p,,,, queries and there are p,,,, periods,
there must be a period of length at most m. Hence, the strategy never fails at this phase of the player’s strategy on
the event £. Further, we already checked that in the second phase, the vectors g, passed to alg coincide exactly with
the responses passed to alg in the first part. Thus, this shows that during the second part, the player simulates
exactly the run of the feasibility problem on period p. More precisely, the queries coincide with the queries in the
feasibility problem at times iy, 1,...,min{i,,i,1+m —1}. Now, because the first part succeeded on &, we have
ip,k < ip,0 +m. Therefore, if ix has not yet been defined, this means that we had i, x = i, 1 + m. Hence, the next query
with the current memory z,.1 is exactly the query x; , for the feasibility problem. This shows that the vectors
Ziy, - - -, Zi, coincide exactly with the vectors x;, ,, ..., x;,, when running alg on the feasibility problem in the first part.

We now show that the returned vectors are successful for Game 1. By construction, Xi, .-, X, are all informa-
tive. In particular, ||Ax;, [l <1, for all 1 <! < k. Further, these queries did not fall in case ((f)2); hence,
vy X;,, < —1,, which implies ||x; || >n, forall] < k. As a result,

141, e _
”xi,,/,” M
Next, fix I < k — 1. By construction of Y1
k 1
2 2
||P5pan(x, ,/[/S[)(yp,l)” = Z |b}’-7r/l/yp,l| < % < $
" <l
Hence, 1
291 = Pt z""ﬁl)l(ypfi)“ < “PSptm(xip I,,l’gz)(yp,z)H 0 < &40,
ﬂ, ’

As aresult, because x, ;10,1 < —1);, we have

771
”PSpan(x, ,,l <l)i(xp l+1)” = pr l+1PSpan(x, ,,l <n* (yp I)| > — -0z

This shows that the returned vectors x;,, /|lx;, |- .., x;,, /%, || are successful for Game 1 with parameters a =
1no/M, and B =1, /2. This ends the proof that strategy succeeds on £ for these parameters, which ends the proof of
the proposition. O

We are now ready to prove the main result.
Proof of Theorem 2. Suppose that there is an algorithm alg for solving the feasibility problem to optimality € =
1/(4842Vd) with memory M and at most Q queries. Let k = [20(M + 3dlog(2d) + 1) /(cyn)]. By Proposition 7, it solves

the feasibility procedure with parameter k with probability at least 1 — C/logd/d. By Proposition 9, there is an algorithm
for Game 1 that wins with probability 1/3 with 7 = [Q/pjux | and parameters a = 11, /17, and = 1, /2. Now, we check that

5/4
Vd 1
o <‘B < 12d2770 = E
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Hence, by Proposition 5, we have

CH
> 4
"= 8(30 logd + cH)d

Q> Q( L) -0 d_z -Q L
U logd Klog>d (M + logd)log’d )

This implies that for a memory M = d?~® with 0 < 6 < 1, the number of queries is Q = Q(d'*°). O

This shows that

5. Conclusion and Future Directions

In this work, we established lower bounds for the query complexity of memory-constrained algorithms for con-
vex optimization and its related feasibility problem. Our findings highlight that quadratic memory is necessary
for achieving the optimal oracle complexity in first-order convex optimization. By establishing these lower-
bound trade-offs, our research contributes to a deeper understanding of the computational aspects of convex
optimization.

It is worth noting that our lower bounds only apply to deterministic algorithms. Although many standard
optimization methods are deterministic, generalizing our results to randomized algorithms is also desirable. We
note that subsequent to our work, Chen and Peng [10] gave slightly weaker lower bounds, which hold for ran-
domized algorithms and up to near-quadratic memory as well.

Last, providing memory-constrained algorithms for convex optimization beyond the standard cutting-plane
methods and gradient descent approaches is an important question. As depicted in Figure 1 (see Marsden et al.
[22] and Woodworth and Srebro [42]), to the best of our knowledge, no algorithms from the literature provided
such oracle complexity /memory trade-offs in any regime € < 1/Vd. The authors are investigating this question,
and in a recent follow-up (Blanchard et al. [6]), we proposed a family of memory-constrained algorithms parame-
trized by p € [d], which provides an oracle complexity/memory trade-off for subpolynomial regimes: Inl > Ind.
Importantly, in the exponential regime € < d~, our algorithm with p = d improves the oracle complexity of
gradient descent while preserving the same memory usage.

Acknowledgments
A previous version of this work appeared at the 36th Annual Conference on Learning Theory.

Appendix A. Concentration Bounds
The following result gives concentration bounds for the norm of the projection of a random unit vector onto linear
subspaces.

Proposition A.1. Let P be a projection in RY of rank r, and let x € RY be a random vector sampled uniformly on the unit sphere
x ~U(S* ). Then, for every t > 0,

max{]P’(HP(x)HZ - g > t),[P(HP(x)HZ - g < —t) } <o

P <||P(x)|| >\ /di1> <2Vte 12

Proof. First, by isometry, we can assume that P is the projection onto the coordinate vectors ey, ...e,. Then, let y ~N(0,1)
be a normal vector. Note that x = y/||ly|| ~ U(S?~!). Further,

W 2ot =5 () 3

Now, note that Z; ="'_;y? and Z, = Z?:r +1y? are two independent random chi-squared variables of parameters r and d
— 1, respectively. Recall that the moment-generating function of Z ~ x2(k) is E[¢*?] = (1 — 25)7}(/ 2 for s < 1/2. Therefore, for
any

Further, if r =1 and d > 2,

1 1
T20drn 20 —rd—t)

(A1)
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one has

Now, let

1/ 1—r/d  r/d
2\l —r/d—t rjd+t)’
which satisfies Equation (A.1). The previous equation readily yields

P(IPGIR - > 1) Sexp( T (3 aﬂ)) o

In the last inequality, we used Pinsker’s inequality dg; (r/d;r/d+1t) >20(B(r/d), B(d/r+t))2 =212, where B(q) is the Ber-
noulli distribution of parameter g. Replacing P with Id — P and r with d — r gives the other inequality:

2 r_ —di?
P(IPGIP < —t) <.

This gives the first claim. For the second claim, supposing that r =1 < d, from the above equation, we have

d, (1t 1-1\ 2
(IIP(x)II )<exp(——dKL < yt d)) \/Z<1 f) < \2tetd-1/2d)
—d

(e ;) = 2 e

Thus,

which ends the proof of the proposition. O

Next, we need the following lemma, which gives a concentration inequality for discretized samples in D; and is
approximately perpendicular to k <d/3 —1 vectors.

Lemma A.Ad. Let 0<k<d/3—1 and x1,...,x, € B4(0,1) be k orthonormal vectors in the unit ball, and x € B4(0,1). Denote by u
the distribution on the unit sphere corresponding to the uniform distribution y ~U(S* ' N{w eR?: |x]Jw| <d~3, Vi<k}). Let

~ . Then, for t >2,
t 1
P(IxTyl > \/;+ﬁ> <2Vte 3,
Further, let 6 <1 and z = ¢4(y). Then, for t > 4,

t 1 _
]P’<|xTz| > \/z;+z?+6> <2Vt 5.

Proof. We use the same notations as above and denote by & = {|x]y| <d~3, Vi <k} the event considered and y ~ p. We
decompose y = a1x; + - +ayx; +y’, where y’ € Span(x;,i < k)* := E. Now, note that y’/|ly’|| is a uniformly random unit vec-
tor in E. As a result, using Proposition A.1, we obtain for any ¢ > 2,

T,/ t T t
P(Ix U Y ] 1) (IPE(x) Y= d—k—l)
<2t 2.

Also, because by definition of yu, we have |a;| <d=3 for all i<k, we obtain |xTy| <k/d®+ |xTy'| <1/d*+ |xTy'|. As a
result, using the fact that d —k — 1> 2d/3, the previous equation shows that

3t 1 t
. / / —t/2
]P’(lx y| > 2d+d2> <|x | > —d_k_l>s2\ﬁe .

Next, we use the fact that ||z — y|| = l¢s(y) — yll < 6 to obtain

P<|xTZ| 2 \/;"';24_6) SP(ley| 2 \/2 ;z) <2Vte 3,

This ends the proof of the lemma. 0O
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Appendix B. An Improved Result on Robustly Independent Vectors

The following lemma serves the same purpose as Marsden et al. [22, lemma 34]. Namely, from successful vectors of
Game 1, it allows us to recover an orthonormal basis that is still approximately in the null space of A. The following ver-
sion gives a stronger version that improves the dependence in d of our chosen parameters.

Lemma B.1. Let 6 € (0,1], and suppose that we have r < d unit norm vectors y,,...,y, € RY. Suppose that for any i <k,
”PSpun(yf/j<i)L (%)” > 0.

Let Y =[y,,...,y,] and s > 2. There exists [r/s] orthonormal vectors Z = [z,...,z,/s)] such that for any a € RY,

/(s=1)
\/3 s
2" all, < <7 Y7 all.

Proof. Let B =(by,...,b,) be the orthonormal basis given by the Gram-Schmidt decomposition of y,,...,y,. By definition
of the Gram-Schmidt decomposition, we can write Y = BC, where C is an upper-triangular matrix. Further, its diagonal
is exactly diag(”PSpan(ylz 1< @Il 1< 7). Hence,

det(Y) = det(C) = H“Pspan(y,,,z’ @l =0"

I<r

We now introduce the singular value decomposition Y = Udiag(oy,...,0,)V", where U € R and V € R have orthonor-
mal columns and o7 >--- > g,. Next, for any vector z € R?, because the columns of Y have unit norm,

¥zl < 3~ Lzl < N1zl < Vallzll.

I<r

In the last inequality, we used Cauchy-Schwartz. Therefore, all singular values of Y are upper bounded by o; < Vd.
Thus, with ' =[r/s],

.
& < det(Y) = [J oy <d" D20l <d/ ol
=1

so that g, > 6%/¢ _1)/ dY/@) We are ready to define the new vectors. We pose for all i </, z; = u; the ith column of U. These
correspond to the 1’ largest singular values of ¥ and are orthonormal by construction. Then, for any i <r’, we also have
z; = u; = Yv;/0;, where v; is the ith column of V. Hence, for any a € Rd,
1 ;i d1/2+1/(25)
57 al =~ o7 val <My < T v
0; Oj 5/

This ends the proof of the lemma. 0O

Endnote
' Q) and O hide polylog(d) factors.
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