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Abstract

Recently, there has been a surge in interest in
developing optimization algorithms for overpa-
rameterized models as achieving generalization
is believed to require algorithms with suitable
biases. This interest centers on minimizing sharp-
ness of the original loss function; the Sharpness-
Aware Minimization (SAM) algorithm has proven
effective. However, most literature only consid-
ers a few sharpness measures, such as the maxi-
mum eigenvalue or trace of the training loss Hes-
sian, which may not yield meaningful insights for
non-convex optimization scenarios like neural net-
works. Additionally, many sharpness measures
are sensitive to parameter invariances in neural
networks, magnifying significantly under rescal-
ing parameters. Motivated by these challenges,
we introduce a new class of sharpness measures in
this paper, leading to new sharpness-aware objec-
tive functions. We prove that these measures are
universally expressive, allowing any function of
the training loss Hessian matrix to be represented
by appropriate hyperparameters. Furthermore,
we show that the proposed objective functions
explicitly bias towards minimizing their corre-
sponding sharpness measures, and how they allow
meaningful applications to models with parameter
invariances (such as scale-invariances). Finally,
as instances of our proposed general framework,
we present Frob-SAM and Det-SAM, which are
specifically designed to minimize the Frobenius
norm and the determinant of the Hessian of the
training loss, respectively. We also demonstrate
the advantages of our general framework through
extensive experiments.
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1. Introduction
Understanding the generalization capabilities of overparam-
eterized networks is a fundamental, yet unsolved challenge
in deep learning. It is postulated that achieving near-zero
training loss alone may be insufficient as there exist many
instances where global minima fail to exhibit satisfactory
generalization performance. To this end, a dominant obser-
vation asserts that the characteristics of the loss landscape
play a pivotal role in determining which parameters have
low training loss while also exhibiting generalization capa-
bilities.

A recently proposed approach to consider the geometric as-
pects of the loss landscape, with the aim of achieving gener-
alization, entails the avoidance of sharp minima. For exam-
ple, the celebrated Sharpness-Aware Minimization (SAM)
algorithm has shown enhancements in generalization across
many practical tasks (Foret et al., 2021). While the concept
of sharpness lacks a precise definition in a general sense,
people often introduce various measures to quantify it in
practice (Dinh et al., 2017). Many sharpness measures in the
literature rely on the second-order derivative characteristics
of the training loss function, such as the trace or the operator
norm of the Hessian matrix (Chaudhari et al., 2019; Keskar
et al., 2017).

Nevertheless, traditional methodologies for quantifying
sharpness may not suffice to ensure generalization, given
the intricate geometry of the loss landscape, which may
necessitate different regularization techniques. Moreover,
many existing sharpness measures fail to encapsulate the
genuine essence of sharpness in deep neural networks be-
cause the Hessian matrix no longer maintains positive semi-
definiteness. Furthermore, neural networks exhibit param-
eter invariances, wherein different parameterizations can
yield identical functions — such as scaling invariances in
ReLU networks. Consequently, an effective measure of
sharpness should remain invariant in the face of such pa-
rameter variations. Unfortunately, conventional approaches
for quantifying sharpness frequently fall short in addressing
this phenomenon.

Therefore, a fundamental question arises: how can one
succinctly represent all measures of sharpness within a com-
pact parameterized framework that also enables meaningful
applications to models with parameter invariances? This
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question holds significance in applications as it allows learn-
ing/designing the regularization in cases where information
about the geometry of the loss landscape or parameter invari-
ances is provided, either empirically or through assumption.
To the best of our knowledge, this question has remained
fairly unexplored in the deep learning literature.

In this paper, we characterize all sharpness measures (i.e.,
functions of the Hessian of the training loss) through an
average-based parameterized representation. We prove that
by changing the (hyper)parameters, the provided represen-
tation spans all the sharpness measures as a function of the
Hessian matrix. In other words, it is provably a universal
representation. We also provide quantitative theoretical re-
sults on the complexity of the sharpness representation as a
function of the data dimension.

Moreover, attached to any representation of sharpness, we
provide a new loss function, and we prove that the new
loss function is biased toward minimizing its corresponding
sharpness measure. Since the parameterized representation
reduces to SAM (i.e., worst-direction) and average-direction
sharpness measures (Wen et al., 2023a) in special cases, it
can be considered as a generalized (hyper)parameterized
sharpness-aware minimization algorithm. This generalizes
the recent study of the explicit bias of a few sharpness-aware
minimization algorithms (Wen et al., 2023a) to a comprehen-
sive class of objectives. Furthermore, this allows us to read-
ily design algorithms with any bias of interest, while to the
best of our knowledge, only algorithms with biases towards
minimizing the trace, operator norm of the Hessian matrix,
and a few other sharpness measures are known in the liter-
ature. As instances of our proposed general algorithm, we
present Frob-SAM and Det-SAM, two new sharpness-aware
minimization algorithms that are specifically designed to
minimize the Frobenius norm and the determinant of the
Hessian of the training loss function, respectively.

An interesting feature of the given representation is that it
provides a systematic way to construct sharpness measures
respecting parameter invariances, e.g., scale-invariance in
neural networks. As a specific example, we provide a class
of loss functions and algorithms that are invariant under pa-
rameter scaling. Note that the classical sharpness measures,
such as trace or the operator norm of the Hessian matrix,
are not invariant to rescaling or group actions.

In the experiments, we explore extensively two specific
choices of these algorithms: (1) Frob-SAM: an algorithm bi-
ased toward minimizing the Frobenius norm of the Hessian,
a meaningful sharpness notion for non-convex optimization
problems and (2) Det-SAM: an algorithm biased toward
minimizing the determinant of the Hessian, a scale-invariant
sharpness measure. We demonstrate the advantages of these
two cases through an extensive series of experiments.

In short, in this paper we make the following contributions:

• We propose a new class of sharpness measures, as
function of the training loss Hessian. We prove
that the new representation is universally expressive,
meaning that it covers all sharpness measures of the
Hessian as its (hyper)parameters change.

• Along with each sharpness measure we provide an
optimization objective and prove that the new ob-
jective is explicitly biased toward minimizing the
corresponding sharpness measure.

• The structure of the proposed method allows mean-
ingful applications to models with parameter invari-
ances, as it provides a class of objective functions
for any desired type of parameter invariance.

• We introduce two fundamental illustrative examples
of our proposed general representation and the corre-
sponding algorithms: Frob-SAM and Det-SAM. Frob-
SAM is geared towards minimizing the Frobenius
norm of the Hessian matrix, providing a meaning-
ful and natural solution to the definition problem
of sharpness for non-convex optimization problems.
Conversely, Det-SAM is focused on minimizing the
determinant1 of Hessian, addressing scale-invariant
issues related to parameterization.

2. Related Work
Foret et al. (2021) recently proposed the Sharpness-Aware
Minimization (SAM) algorithm to avoid sharp minima. The
SAM objective has connections to a similar robust optimiza-
tion problem that was suggested for the study of adversarial
attacks in deep learning (Madry et al., 2018). Besides SAM,
Nitanda et al. (2023) show how parameter averaging for
SGD is biased toward flatter minima. Label noise SGD also
prefers flat minima (Damian et al., 2021). Woodworth et al.
(2020) studied the role of sharpness in overparameterization
from a kernel perspective. See (Wang et al., 2023) for the
applications of flat minima for domain generalization (see
also (Cha et al., 2021)). For applications of SAM in large
language models, see (Bahri et al., 2022) (also (Zhong et al.,
2022), and (Qu et al., 2022; Shi et al., 2023) for federated
learning). Besides those applications, Wen et al. (2023b)
prove that current sharpness minimization algorithms some-
times fail to generalize for non-generalizing flattest models.

The (implicit) bias of many optimization algorithms and
architectures has been studied, from the Gradient Descent
(GD) (Ji & Telgarsky, 2019b; Soudry et al., 2018) to mirror
descent (Gunasekar et al., 2018a; Azizan & Hassibi, 2019);
see also (Gunasekar et al., 2018b) for linear convolutional
networks, and (Lawrence et al., 2022) for equivariant net-

1To be more precise, the product of non-zero eigenvalues.
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works. Ji & Telgarsky (2019a) observed that linear neural
networks are biased toward weight alignment for different
layers (see (Le & Jegelka, 2022) for non-linear networks).
Andriushchenko & Flammarion (2022) study implicit bias
of SAM for diagonal linear networks, and Wen et al. (2023a)
find the explicit bias of the Gaussian averaging method and
other SAM variants.

The role of scale-invariance in generalization in deep learn-
ing is emphasized in (Neyshabur et al., 2017). Dinh et al.
(2017) point out that parameter invariances can lead to the
different parameterization of the same function, making the
definition of flatness challenging; see also (Andriushchenko
et al., 2023b) for a recent study. This motivates the study of
sharpness measures that are invariant to such reparametriza-
tions.

There have been a few attempts to address reparametriza-
tion problems with sharpness measures recently. Kwon et al.
(2021) proposed to adaptively calculate the sharpness in a
normalized ball around the loss function to achieve scale
invariance. However, their method is limited to scaling prob-
lems. Kim et al. (2022) took a step further and introduced a
new SAM algorithm by capturing the neighborhood of the
parameters in an ellipsoid induced by the Fisher informa-
tion. This way, the neighborhood becomes invariant with
respect to the parameter invariances in the network. Jang
et al. (2022) defined an information geometric sharpness
measure by investigating the eigenspaces of Fisher Informa-
tion Matrix (FIM) of distribution parameterized by neural
networks. They proved scale-invariance properties for their
notion. Even though Kim et al. (2022) and Jang et al. (2022)
enjoy some parameter invariance properties, (1) in practice,
their methods are limited to classification tasks because of
FIM calculation, (2) the underlying explicit biasing of their
algorithms remains a mystery and is not guaranteed.2

3. Background
3.1. Setting

Consider a standard learning setup with a labeled dataset S ,
and a training loss function L : Rd → R≥0, where L(x) de-
notes the training loss over S computed for the parameters
x ∈ Rd. The main objective in Empirical Risk Minimiza-
tion (ERM) is to minimize the training loss L(x) over the
feasibility set X ⊆ Rd. However, achieving parameters
satisfying L(x) ≈ 0 in overparameterized models is often
straightforward. This is because in contrast to other models,
in overparameterized models, there are many global minima,
i.e., the set Γ := {x ∈ X : L(x) = 0} is a manifold – it
is called the zero-loss manifold in the literature. Moreover,
in practical scenarios, it is noteworthy that not all global

2Please refer to Appendix A for a more detailed overview of
related work.

minima exhibit favorable generalization capabilities (Foret
et al., 2021).

3.2. Background on SAM

It is hypothesized that the avoidance of sharp minima can
enhance generalization performance (Hochreiter & Schmid-
huber, 1997; Keskar et al., 2017; Izmailov et al., 2018).
However, it should be noted that the concept of sharpness
encompasses a multitude of distinct definitions in practical
contexts. The Sharpness-Aware Minimization (SAM) algo-
rithm (Foret et al., 2021) suggests minimizing the training
loss function over a small ball around the parameters:

min
x∈X

{
LSAM(x) := max

∥v∥2≤1
L(x+ ρv)

}
,

where ρ ∈ R≥0 is the perturbation parameter. Note that
LSAM can be decomposed into two terms:

LSAM(x) = L(x)︸︷︷︸
empirical loss

+ max
∥v∥2≤1

{
L(x+ ρv)− L(x)

}
︸ ︷︷ ︸

sharpness

.

Foret et al. (2021) also suggest alternative average-based
sharpness-aware objectives to use PAC bounds on the gener-
alization error of overparameterized models; we follow the
definition in (Wen et al., 2023b):

LAVG(x) := Ev∼N (0,I)

[
L(x+

ρv

∥v∥2
)
]

= L(x)︸︷︷︸
empirical loss

+Ev∼N (0,I)

[
L(x+

ρv

∥v∥2
)− L(x)

]
︸ ︷︷ ︸

sharpness

.

Wen et al. (2023b) recently proved that minimizing LSAM(x)
will lead to global minima (i.e., L(x) ≈ 0) with small
λmax(∇2L(x)). In other words, SAM is (explicitly)
biased towards minimizing λmax(∇2L(x)). Moreover,
they show that using LAVG(x) biases towards minimizing
1
d tr(∇

2L(x)). This means that SAM measures the sharp-
ness of a global minimum by λmax(∇2L(x)), while the
average-based objective uses 1

d tr(∇
2L(x)) to evaluate it.

In the next examples, we argue how both sharpness mea-
sures above fail to define a meaningful notion for overparam-
eterized models. In Example 2, a special case of problem
with parameter invariances, i.e., under parameter rescalings
is discussed.
Example 1. The sharpness measures
λmax(∇2L(x)), λmin(∇2L(x)) and tr(∇2L(x)) are
conceptually meaningful when the objective function L(x)
is convex, therefore λis are nonnegative. However, the Loss
landscape of neural networks is highly nonconvex, and as
a result, λi can be potentially negative. Consider the toy
non-convex example of L(x1, x2) = 1

2 (x
2
1 − x22),

∇2L =

[
1 0
0 −1

]
. (1)
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For all x1, x2 ∈ R, we know that tr(∇2L) = 1 + (−1) = 0,
which in the Trace measure of sharpness it suggests that all
the points x1, x2 ∈ R are equally flat. Are these sharpness
notions really capturing the intended concepts? For a better
illustration, consider the plot of this function provided in
Figure 1. This problem extends to other existing notions.

Figure 1. The loss landscape of the non-convex objective function
L(x1, x2) = 1

2
(x21 − x22). This examples shows how existing

sharpness measures fall short of capturing sharpness meaning in
non-convex settings. In particular, for all points (x1, x2) ∈ R2,
tr(∇2L(x1, x2)) = 1 + (−1) = 0.

Example 2. Consider the loss functionL(x1, x2) = x21x
2
2−

2x1x2 + 1 with two parameters x1, x2 ∈ R. It is scale-
invariant, i.e., L(kx1, x2

k ) = L(x1, x2) for all k ̸= 0. In-
deed, the zero-loss manifold Γ = {(x1, x2) : x1x2 = 1}
contains infinitely many global minima. Straightforward cal-
culation shows ∇2L(x1, x2) =

( 2x2
2 4x1x2−2

4x1x2−2 2x2
1

)
. Thus,

we have 1
2 tr(∇

2L(x1, x2)) = x21 + x22. After rescaling,

we get 1
2 tr(∇

2L(x1, x2))
∣∣∣
(kx1,k−1x2)

= k2x21 +
x2
2

k2 ̸=
1
2 tr(∇

2L(x1, x2)). Therefore, as a sharpness measure,
tr(∇2L(x1, x2)) is not scale-invariant. The problem mag-

nifies in the limit: limk→∞ tr(∇2L(x1, x2))
∣∣∣
(kx1,k−1x2)

=

∞. Similar problems exist for λmax(∇2L(x1, x2)).
However, det(∇2L(x1, x2)) is scale-invariant; we have

det(∇2L(x1, x2))
∣∣∣
(kx1,k−1x2)

= det(∇2L(x1, x2)) for all

k ̸= 0.

Note that neural networks are often scale-invariant, e.g., lin-
ear networks or ReLU networks after scaling up the param-
eters of one hidden layer and scaling down the parameters
of another hidden layer encode the same functions.

4. A New Class of Sharpness Measures
To define a new class of sharpness measures, we take a
closer look at the average-based sharpness-aware objective
LAVG(x); using its Taylor expansion (Wen et al., 2023b), we

have

LAVG(x) = Ev∼N (0,I)

[
L(x+

ρv

∥v∥2
)
]

≈ L(x) + ρEv∼N (0,I)

[
⟨∇L(x), v

∥v∥2
⟩
]

+ ρ2Ev∼N (0,I)

[vt∇2L(x)v

∥v∥22

]
= L(x) + ρ2

tr(∇2L(x))

d
.

This intuitively tells us that for a small perturbation pa-
rameter ρ, the leading term in the objective function is the
training loss L(x), and after we get close to the zero-loss
manifold Γ, the leading term becomes 1

d tr(∇
2L(x)), which

is exactly the explicit bias of the average-based sharpness-
aware minimization objective. This motivates us to define
the following parameterized sharpness measure.
Definition 1 ((ϕ, ψ, µ)-sharpness measure). For any con-
tinuous functions ϕ, ψ : R → R and any (Borel) measure
µ on Rd, the (ϕ, ψ, µ)-sharpness measure S(x;ϕ, ψ, µ) is
defined as

S(x;ϕ, ψ, µ) := ϕ
(∫

ψ
(1
2
vt∇2L(x)v

)
dµ(v)

)
. (2)

Similarly, one can consider continuous functions ψ : R →
Rm and ϕ : Rm → R, for some positive integer m ≥ 1,
and (Borel) measures µℓ, ℓ ∈ [m], and define

S(x;ϕ, ψ, µ) := ϕ
(∫

ψ1

(1
2
vt∇2L(x)v

)
dµ1(v), (3)∫

ψ2

(1
2
vt∇2L(x)v

)
dµ2(v), (4)

. . . , (5)∫
ψm

(1
2
vt∇2L(x)v

)
dµm(v)

)
, (6)

where we use µ := µ1 ⊗ µ2 ⊗ . . . ⊗ µm for the sake of
brevity in our notation, and ψ = (ψ1, ψ2, . . . , ψm)t.

We specify several examples of hyperparameters (ϕ, ψ, µ)
in Table 1, which shows how (ϕ, ψ, µ)-sharpness measures
can represent various notions of sharpness, as a function of
the training loss Hessian matrix.

5. Expressive Power and Universality
In this section, we prove that the proposed class of sharpness
measures is universal. In other words, for any continuous
function S : Rd → R, we specify continuous functions
ϕ, ψ and a (Borel) probability measure3 µ on Rd such that
S(λ1, λ2 . . . , λd) = S(x;ϕ, ψ, µ), where λi, i ∈ [d], are
the eigenvalues of the Hessian matrix ∇2L(x).

3We indeed prove that Borel probability measures (as a subset
of arbitrary Borel measures) are enough to achieve universality.
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Table 1. Various (ϕ, ψ, µ)-sharpness measures (Appendix B; λi, i ∈ [d], are eigenvalues of Hessian).

Hyperparameters

ϕ(t) ψ(t) m µ S(x;ϕ, ψ, µ) (or bias) Reference

t t 1 Uniform(Sd−1) 1
2d tr(∇

2L(x)) = 1
2d

∑d
i=1 λi (Wen et al., 2023a)

2max({.}) (t, t, . . .) ∞ ⊗∥v∥2=1δv maxi∈[d] λi (Wen et al., 2023a)
2(t2 − t21) (t, t2) 2 N (0, Id)⊗N (0, Id)

∑d
i=1 λ

2
i = ∥∇2L(x)∥F This paper

(2π)d/t2 exp(−t) 1 Lebesgue measure on Rd det(∇2L(x)) =
∏d
i=1 λi This paper

t tn 1 Uniform(Sd−1) q(λ1, λ2, . . . , λd) This paper
1/t2 exp(σt) 1 N (0, Id)

∏d
i=1(1− σλi) This paper

*q(λ1, λ2 . . . , λd) is a specific homogeneous polynomial of degree n; see Equation (22).

Theorem 1 (Universality of the (ϕ, ψ, µ)-sharpness mea-
sures for functions of Hessian eigenvalues). Let A ⊆ Rd
be a compact set. For any continuous function S : A → R,
there exist a product (Borel) probability measure µ, a pos-
itive integer m ≤ d, and continuous functions ϕ : Rm →
R and ψ : R → Rm, such that S(λ1, λ2 . . . , λd) =
S(x;ϕ, ψ, µ) for any x ∈ A, where λi, i ∈ [d], are the
eigenvalues of the Hessian matrix ∇2L(x).

We present the proof of Theorem 1 in Appendix C.

Note that to achieve universality, we need the functions ϕ, ψ
to be of dimension m = d. However, as one can see in
Table 1, many celebrated sharpness measures can indeed be
represented using only small m. We believe that practically
small hyperparameter m is enough, as it is motivated from
the measures in Table 1.

While we proved the universality of the proposed class of
sharpness measures for continuous functions of the Hessian
eigenvalues, one may be interested in measuring sharpness
with more information about the loss Hessian (e.g., the
eigenvectors of the loss Hessian). The following theorem
proves the universality for this class of arbitrary functions.

Theorem 2 (Universality of the (ϕ, ψ, µ)-sharpness mea-
sures for arbitrary functions of Hessian). For any continu-
ous function S : Rd×d → R, there exist a positive integer
m ≤ d(d+ 1)/2, (Borel) probability measures µℓ, ℓ ∈ [m],
and continuous functions ϕ : Rm → R and ψ : R → Rm,
such that S(∇2L(x)) = S(x;ϕ, ψ, µ) for any x ∈ Rd,
where µ := µ1 ⊗ µ2 ⊗ . . . ⊗ µm is a product probability
measure.

We present the proof of Theorem 2 in Appendix D.

Note that arbitrary functions of the Hessian matrix can be
quite hard to compute, e.g., consider the permanent of the
Hessian matrix. Moreover, the dimension m must be quite
large to allow us to prove the universality in overparameter-
ized models (for d of considerable size), since the generality
bound scales as O(d2). Nevertheless, in practice, only small
m allows to cover many interesting cases.

6. Explicit Bias
Now that we defined a flexible set of sharpness measures
and we proved that it is universally expressive, the following
question arises: how can one achieve S(x;ϕ, ψ, µ) as the
explicit bias of an objective function that only relies on
the zeroth-order information about the training loss, similar
to LSAM(x) and LAVG(x)? To answer this question, we
introduce the (ϕ, ψ, µ)-sharpness-aware loss function as
follows.
Definition 2. The (ϕ, ψ, µ)-sharpness-aware loss function

L(ϕ,ψ,µ)(x) := L(x)︸︷︷︸
empirical loss

+ ρ2 ϕ
(∫

ψ
( 1

ρ2
(
L(x+ ρv)− L(x)

))
dµ(v)

)
︸ ︷︷ ︸

:=Rρ(x) sharpness

= L(x) + ρ2Rρ(x),

where ρ is the perturbation parameter and Rρ(x) denotes
the sharpness regularizer.

Extending this definition to the cases with m > 1 is straight-
forward.

In the above definition, the new regularizer Rρ(x) is an
approximation of the sharpness measure S(x;ϕ, ψ, µ) as
ρ → 0+. As a result, it is expected that minimizing
L(ϕ,ψ,µ)(x) lead to minimizing the training loss as well
as the sharpness measure S(x;ϕ, ψ, µ). The next theorem
formalizes this intuitive observation via characterizing the
explicit bias of minimizing the sharpness-aware loss func-
tion L(ϕ,ψ,µ)(x).
Theorem 3 (Explicit bias of the (ϕ, ψ, µ)-sharpness-aware
loss function). Given a triplet (ϕ, ψ, µ), m ≥ 1, and a
training loss function L : Rd → R≥0, assume that:

• L(x) is third-order continuously differentiable and sat-
isfies the following upper bound

max
i,j,k∈{1,2,3}

|∂i∂j∂kL(v)| = O(∥v∥−1), (7)
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for v ∈ Rd as ∥v∥2 → ∞.

• The two functions ϕ, ψ are continuously differentiable.

• For some C > maxx∈X maxi∈[d] |λi(∇2L(x))|, we
have

∫
∥v∥22ψ̃i(v)dµ(v) <∞, i ∈ [m], where

ψ̃i(v) := max
|t|≤∥v∥2

|ψ′
i(Ct

2)|. (8)

Then, there exists an open neighborhood U ⊋ Γ, where Γ is
the zero-loss manifold, for connected U and Γ, such that if
for some u ∈ U , one has

L(u) + ρ2Rρ(u)− inf
x∈U

(
L(x) + ρ2Rρ(x)

)
≤ ∆ρ2, (9)

with some optimally gap ∆ > 0, then

L(u) ≤ inf
x∈U

L(x)︸ ︷︷ ︸
=0

+(∆+ oρ(1))ρ
2, (10)

and also

S(u;ϕ, ψ, µ) ≤ inf
x∈Γ

S(x;ϕ, ψ, µ) + ∆ + oρ(1). (11)

We present the proof of Theorem 3 in Appendix E.

The above theorem shows how using the new objective
function L(ϕ,ψ,µ)(x) leads to explicitly biased optimiza-
tion algorithms towards minimizing the sharpness measure
S(x;ϕ, ψ, µ) over the zero-loss manifold Γ. Indeed, it
proves that if we are close to the zero-loss manifold (i.e.,
u ∈ U for some open neighborhood U ⊋ Γ), and also
L(ϕ,ψ,µ)(u) is close to its global minimum over U , then
(1) the training loss function L(u) is close to zero, and (2)
the corresponding sharpness measure S(u;ϕ, ψ, µ) is close
to its global minimum over the zero-loss manifold, with
respect to an optimality gap ∆.

7. Invariant Sharpness-Aware Minimization
For which hyperparameters (ϕ, ψ, µ) is the corresponding
sharpness measure scale-invariant? The following theorem
answers this question.

Theorem 4 (Scale-invariant (ϕ, ψ, µ)-sharpness measures).
Consider a scale-invariant loss function L(x) and let µ be
a Borel measure of the form

dµ(x) = f
( d∏
i=1

xi

) d∏
i=1

dxi, (12)

where f : R → R is a measurable function4. Then, for
any continuous functions ϕ, ψ, the corresponding sharpness

4In Lemma 1, we show that any scale-invariant measure is of
this form.

measure S(x;ϕ, ψ, µ) is scale-invariant; this means that
S(x;ϕ, ψ, µ) = S(Dx;ϕ, ψ, µ) for any diagonal matrix
D ∈ Rd×d with det(D) = 1.

We present the proof of Theorem 4 in Appendix F.

Example 3. Note that det(∇2L(x)) is a scale-invariant
sharpness measure; for any diagonal matrix D ∈ Rd×d
with det(D) = 1,

det(∇2L(x))
∣∣∣
Dx

= det(D−1∇2L(x)D−1)

= det(D−1)2 det(∇2L(x)) = det(∇2L(x)).

Note that Theorem 4 also supports the scale-invariance of
the determinant; the Lebesgue measure satisfies the condi-
tion in Theorem 4 with f ≡ 1, and we have the representa-
tion of the determinant in Table 1.

While in Theorem 4 we only considered scale-invariances,
one can generalize it to a general class of parameter invari-
ances in the following theorem.

Theorem 5 (General parameter-invariant
(ϕ, ψ, µ)-sharpness measures). Let G be a group
acting by matrices on Rd, and assume that L(x) is invariant
with respect to the action of G. Then, for any G-invariant
(Borel) measure µ, and any continuous functions ϕ, ψ,
the corresponding sharpness measure S(x;ϕ, ψ, µ) is G-
invariant; this means that S(x;ϕ, ψ, µ) = S(Agx;ϕ, ψ, µ)
for any matrix Ag ∈ Rd×d corresponding to the action of
an element g ∈ G.

The proof of this theorem is analogous to Theorem 4 and is
deferred to Appendix G. Thus, the strategy to create sharp-
ness measures invariant to any group action G is simply to
choose a group action invariant measure µ. Now, for any
family of choices of functions ϕ and ψ, we obtain a family
of G-invariant sharpness measures. Consequently, there
is a family of G-invariant Sharpness-Aware Minimization
algorithms, as explained in Section 8.

8. (ϕ, ψ, µ)-Sharpness-Aware Minimization
Algorithm

In this section, we present the pseudocode for the
(ϕ, ψ, µ)-Sharpness-Aware Minimization Algorithm (see
Algorithm 1). For simplicity, we present the algorithm for
the full-batch gradient descent, and assume that m = 1.
Extending it to the mini-batch case with m > 1 is straight-
forward (see Algorithm 3). The idea is to apply (stochastic)
gradient decent or other optimization algorithms on the
(ϕ, ψ, µ)-sharpness-aware loss function defined in Defini-
tion 2,

L(ϕ,ψ,µ) = L(x) + ρ2Rρ(x).

6
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Algorithm 1 (ϕ, ψ, µ)-Sharpness-Aware Minimization Algorithm (with m = 1)
Input: The triplet (ϕ, ψ, µ), Training loss L(x), Step size η, Perturbation parameter ρ, Number of samples n,
Output: Model parameters xt trained with (ϕ, ψ, µ)-Sharpness-Aware Minimization Algorithm
Initialization: x← x0 and t← 0
while 1 do

Sample v1, v2, . . . , vn
i.i.d.∼ µ

Compute the following:
gt = ∇L(xt) + ϕ′

( n∑
i=1

1

n
ψ
( 1

ρ2
(
L(xt + ρvi)− L(xt)

)))
×

n∑
i=1

1

n

{
ψ′

( 1

ρ2
(
L(xt + ρvi)− L(xt)

))
×

(
∇L(xt + ρvi)−∇L(xt)

)}
.

Update the parameters: xt+1 = xt − ηgt
t← t+ 1

end while

However, calculating the sharpness term Rρ(x) directly
is analytically hard to do because of the integration with
respect to the probability measure µ. Hence, we propose
to estimate the inner integration at each iteration with i.i.d.
random variables ν1, ν2, . . . , νn ∼ µ as perturbations, i.e.,

R̃ρ(x) := ϕ
( 1

n

n∑
i=1

ψ
( 1

ρ2
(
L(x+ ρvi)− L(x)

)))
.

When ϕ satisfies continuity conditions, for large enough
n, the estimator R̃ρ(x) will converge to Rρ(x). Now, we
calculate the gradients of L(x) + ρ2R̃ρ(x). By chain rule,

ρ2∇R̃ρ(x) = ϕ′
( n∑
i=1

1

n
ψ
( 1

ρ2
(
L(xt + ρvi)− L(xt)

)))
×

n∑
i=1

1

n

{
ψ′
( 1

ρ2
(
L(xt + ρvi)− L(xt)

))
×
(
∇L(xt + ρvi)−∇L(xt)

)}
,

which leads to Algorithm 1.

Our algorithm needs n + 1 gradient evaluations per itera-
tion, which for n = 1 matches the SAM algorithm (Foret
et al., 2021). In practice, small values for n demonstrate the
expected results, therefore, the computational overhead of
our algorithm is not a barrier.

Note that to recover the original SAM algorithm, one can
set the function ϕ, ψ to identity, m = 1, and choose µ to
be the single-point measure on ∇L(xt)/∥∇L(xt)∥2 with
n = 1 sample for each t.

Moreover, even though to prove universality, we only used
probability measures, we proposed a compact representation
of determinant with Lebesgue measure with m = 1 in
Table 1 and Theorem 4. However, integrals with respect to
Lebesgue measure cannot be estimated via sampling and
we need to truncate the integral to integration over a large
hypercube; this allows us to use Algorithm 1 for the scale-
invariant sharpness measures. Also, this approximation

achieves non-zero sharpness in cases that the Hessian matrix
is not full-rank (which happens in overparametrized models),
as it gets the product of non-zero eigenvalues. We use this
approximation in the next section to implement the method.

9. Frobenius SAM and Determinant SAM
To be more concrete, we specify Algorithm 3 (for arbitrary
m) to the case with the Frobenius norm regularizes (with
m = 2), which we call the Frob-SAM algorithm. Note that
to achieve this, one needs to specify ϕ(t1, t2) = 2(t2 − t21)
and ψ(t) = (t, t2). Furthermore, since we only need to
collect samples from the Gaussian distribution to get the
Frobenius norm bias (see Table 1), we can use the same
samples to estimate both integrals for the functions ψ1(t) =
t and ψ2(t) = t2. Replacing these assumptions into the
formula given in Algorithm 3, we get the following update
rule:

gt =∇L(xt)

+ 4

n∑
i=1

1

nρ2

{(
L(xt + ρvi)− L(xt)

)
×

(
∇L(xt + ρvi)−∇L(xt)

)}
− 4

{ n∑
i=1

1

nρ

(
L(xt + ρvi)− L(xt)

)}
×

{ n∑
j=1

1

nρ

(
∇L(xt + ρvj)−∇L(xt)

)}
.

If we take a closer look at this, we observe that

gt = ∇L(xt) +
4

ρ2
ĉov

((
L(xt + ρv)− L(xt)

)
,(

∇L(xt + ρv)−∇L(xt)
))
,

where ĉov denotes the (biased) empirical cross-covariance
between the scalar random variable L(xt+ρv)−L(xt) and

7
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Figure 2. Sharpness measure while training on MNIST for differ-
ent amounts of regularization λ. When training with Frob-SAM
(ρ = 0.01, n = 2), the Frobenius norm of the Hessian decreases
throughout training and larger λ results in lower values of the norm.
One standard error bar is shaded. All λ’s achieve over 94% final
test accuracy.

the vector-values random variable ∇L(xt + ρv)−∇L(xt),
for v ∼ N (0, Id). Since the covariance is not sensitive
to the means of random variables/vectors, we can further
simply the update rule to

gt = ∇L(xt) +
4

ρ2
ĉov

(
L(xt + ρv),∇L(xt + ρv)

)
.

We can further replace the unbiased estimator of the cross-
covariance instead of ĉov which leads to Algorithm 2.

Moreover, achieving Det-SAM is also similar to Frob-SAM,
but the only difficulty is that it involves computing an in-
tegral with respect to the Lebesgue measure which can be
challenging (Table 1). To address this issue, we instead sam-
ple a point from the hypercube [−t, t]d for a hyperparameter
t ∈ R to approximate the Lebesgue measure.

10. Experiments
The goal of our experiments is twofold. Firstly, we validate
Theorem 3 by showing that minimization of the sharpness-
aware loss defined in Definition 2 and codified in Algo-
rithm 1 has the explicit bias of minimizing the sharpness
measure. Secondly, we show our method is useful in
practice by evaluating it on benchmark vision tasks. Our
code is available at https://github.com/dbahri/
universal_sam.

10.1. Setup

We evaluate on three vision datasets: CIFAR10, CIFAR100,
and SVHN. Futhermore, we study how our explicit bias may
be helpful in settings that generally benefit from regulariza-
tion – specifically, when training data is limited and when
training labels are noisy. For the former, we artificially sub-
sample each original dataset, keeping only the first 10% of
training samples, and we denote these sub-sampled datasets
with “-S” (i.e. CIFAR10-S). For the latter, we choose a
random 20% of training samples to corrupt, and we corrupt
these samples by flipping their labels to a different label
chosen uniformly at random over the remaining classes. We
denote these datasets by “–C” (i.e. CIFAR10-C).

Full experimental details are deferred to Appendix I; we
summarize them here. We train ResNet18 (He et al., 2016)
on the datasets using momentum-SGD and a multi-step
learning rate schedule. We run each experiment under four
different random seeds. We evaluate three sharpness mea-
sures and the following other baselines:

Frob-SAM / Trace-SAM / Det-SAM. These correspond
to instances of our algorithm where the measure is, respec-
tively, the Frobenius norm, trace, and determinant of the
Hessian. For Det-SAM, we set t, half the edge width of the
approximating hypercube, to 0.01 with little tuning.

SAM. We set ρ to 0.05 / 0.1 / 0.05 for CIFAR10 / CIFAR100
/ SVHN, following Foret et al. (2021).

Adaptive SAM (ASAM). Kwon et al. (2021) proposes a
modification of SAM that is scale-invariant. We set ρ to 0.5
/ 1 / 0.5 and η to 0.01 / 0.1 / 0.01 for CIFAR10 / CIFAR100
/ SVHN.

Sparse SAM (SSAM). Mi et al. (2022) speeds up and im-
proves the performance of SAM by only perturbing impor-
tant parameters, as determined via Fisher information and
sparse dynamic training. We use SSAM-F with ρ set to 0.1
/ 0.2 / 0.1 for CIFAR10 / CIFAR100 / SVHN. 50% sparsity
is used with 16 samples.

Furthermore, to demonstrate that minimization of our loss
has the explicit bias we expect, we train a simple 6-layer
ReLU network with 128 hidden units on MNIST using
momentum-SGD (with momentum 0.9 and learning rate
0.001) for 20 epochs. We estimate the Frobenius norm of
the Hessian (see Appendix I for details) throughout training
for Frob-SAM, under a range of regularization strengths λ.

10.2. Results

MNIST results are shown in Figure 2. We see that for
Frob-SAM, minimization of the loss leads to reduction in
the corresponding sharpness measure and the reduction ex-
pectantly scales proportionally with regularization strength
λ.

8
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Algorithm 2 Frob-SAM
Input:Training loss L(x), Step size η, Perturbation parameter ρ, Number of samples n,
Output: Model parameters xt trained with Frobenius SAM
Initialization: x← x0 and t← 0
while 1 do

Sample vi
i.i.d.∼ N (0, Id) for any i ∈ [n]

Compute the following:
gt = ∇L(xt) + 4

n∑
i=1

1

(n− 1)ρ2
L(xt + ρvi)∇L(xt + ρvi)

− 4

n∑
i=1

1

(n− 1)ρ
L(xt + ρvi)×

n∑
i=1

1

nρ
∇L(xt + ρvi).

Update the parameters: xt+1 = xt − ηgt
t← t+ 1

end while

CIFAR10 CIFAR100 SVHN CIFAR10-S CIFAR100-S SVHN-S
Frob 94.96±0.05 77.16±0.16 96.26±0.05 74.49±1.15 38.30±0.89 89.23±0.32

Trace 95.04±0.07 77.61±0.08 96.37±0.04 74.46±0.39 37.50±0.78 89.90±0.32

Det 95.10±0.03 77.64±0.12 96.32±0.05 74.22±0.80 37.48±0.42 89.85±0.13

SSAM 95.78±0.05 78.42±0.19 96.49±0.04 73.39±0.48 35.33±0.55 89.87±0.27

ASAM 95.49±0.09 78.91±0.06 96.18±0.05 74.80±0.64 37.40±0.66 89.21±0.11

SAM 95.54±0.06 78.62±0.02 96.45±0.03 72.96±0.77 36.87±0.47 89.80±0.19

SGD 94.81±0.07 77.00±0.11 96.06±0.08 74.98±0.92 37.64±0.88 89.89±0.27

Table 2. Final test accuracy and standard errors for the full and 10% sub-sampled datasets. Entries within two standard errors of the best
are bolded. Our biases particularly help when data is limited. For example, Frob-SAM achieves over 1.5% higher test accuracy than SAM
on CIFAR10-S.

CIFAR10-C CIFAR100-C SVHN-C
Frob 87.57±0.10 65.73±0.22 90.11±0.20

Trace 87.20±0.12 65.29±0.12 91.01±0.44

Det 83.61±0.06 64.73±0.29 90.56±0.09

SSAM 86.24±0.08 67.06±0.14 90.92±0.12

ASAM 85.88±0.12 67.78±0.04 89.54±0.12

SAM 85.42±0.08 66.12±0.13 90.66±0.16

SGD 82.78±0.20 64.16±0.22 87.78±0.16

Table 3. Final test accuracy and standard errors when the labels of
20% of the training examples are corrupted. Entries within two
standard errors of the best are bolded. We see that our bias can
provide a boost in this scenario. For example, Frob-SAM achieves
over 2% higher accuracy than SAM on CIFAR10-C.

Results for the main datasets are shown in Table 2 and Ta-
ble 3. We find that our method nearly always outperforms
SGD and is at or sometimes above par with SAM and al-
ternatives, especially in the noisy label and limited data
settings. For example, for noisy label CIFAR10 (CIFAR10-
C), Frob-SAM achieves nearly 5% and 2% higher final test
accuracy than SGD and SAM respectively. Our findings
suggest that the explicit biases we propose can be practi-
cally useful, especially in the noisy label and limited data
scenarios, though it is often unclear what the best bias for a
particular task is, a priori.

11. Conclusion
In this paper, we introduce a new family of sharpness mea-
sures and demonstrate how this parameterized representa-
tion can generate many meaningful sharpness notions (Table
1). These measures are indeed universally expressive. Fur-
thermore, in Theorem 3, we illustrate how the corresponding
zeroth-order objective function for each sharpness measure
is explicitly biased towards minimizing the sharpness of the
training loss. Moreover, in Theorem 4, we prove how spe-
cific (Borel) measures can lead to scale-invariant sharpness
measures, such as the determinant of the Hessian matrix.
We conclude the paper with a series of numerical experi-
ments showcasing the efficacy of the proposed loss function
on various practical datasets. Given the broad class of sharp-
ness measures we proposed, an interesting future direction
is to evaluate in practice which sharpness measure/algorithm
performs the best for different dataset. Another interesting
attitude is, given the universally expressivity of our algo-
rithm, to meta-learn the sharpness measures on the top of
the model. This could potentially yield the identification
of optimal, intricate sharpness measures tailored to specific
datasets, thereby contributing to unraveling hidden secrets
of overparameterized models.
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A. Additional Related Work
SAM can provide a strong regularization of the eigenvalues throughout the learning trajectory (Agarwala & Dauphin, 2023).
Bartlett et al. (2022) show that the dynamics of SAM similar to GD on the spectral norm of Hessian. Compagnoni et al.
(2023) propose an SDE for modeling SAM, while Behdin & Mazumder (2023) study the statistical benefits of SAM (see
also (Li et al., 2022a) for a general framework for the dynamics of SGD around the zero-loss manifold). It is shown that
SAM can reduce the feature rank (i.e., allowing learning low-rank features) (Andriushchenko et al., 2023a). Blanc et al.
(2020) proved that SGD is implicitly biased toward minimizing the trace of Hessian.

Kim et al. (2023) proposes a multi-step ascent approach to improve SAM, while Mi et al. (2022) suggested sparsification of
SAM. Zhuang et al. (2022) improve SAM by changing the directions in the ascent step; their method is called Surrogate Gap
Guided Sharpness-Aware Minimization (GSAM) (see also (Behdin et al., 2022)). Random smoothing-based SAM (R-SAM)
is another SAM variant that is proposed to reduce its computational complexity (Liu et al., 2022b) (see also (Du et al., 2022;
Liu et al., 2022a; Zhao et al., 2022; Sun et al., 2023) for more). Adaptive SAM (ASAM) is proposed for applying SAM
on scale-invariant neural networks and has shown generalization benefits (Kwon et al., 2021). Li et al. (2022b) also prove
that scale-invariant loss functions allow faster mixing in function spaces for neural networks. Lyu et al. (2022) show how
normalization can make GD reduce the sharpness via a continuous sharpness-reduction flow. Liang et al. (2019) propose
a capacity measure based on information geometry for parameter invariances in overparameterized models (for more on
information geometry, see (Kim et al., 2022; Jang et al., 2022)). Jiang et al. (2020) empirically compare different complexity
measures for overparameterized models. Keskar et al. (2017) show how a large batch yields sharp minima but a small batch
achieves flat minima.

Stochastic Weight Averaging (SWA) is another way to improve generalization and it relies on finding wider minima by
averaging multiple points along the trajectory of SGD (Izmailov et al., 2018). (see e.g., (Lu et al., 2022) which uses this
method for language models). See (Kaddour et al., 2022) for the empirical comparison between two popular flat-minima
optimization approaches: SWA and SAM.

Learning with group invariant architectures has recently gained a lot of interest due to its applications in physics and biology;
see e.g., deep sets (Zaheer et al., 2017), Graph Neural Networks (GNNs) (Xu et al., 2019), and also sign-flips for spectral
data (Lim et al., 2023). These architectures are all owing their practical success to their specific parameter invariance.

It is also worth mentioning that neural networks trained with large learning rates often generalize better (the edge-of-
stability regime); see (Arora et al., 2022; Zhu et al., 2023; Long & Bartlett, 2023) for the theoretical understanding of this
phenomenon.

B. Examples of (ϕ, ψ, µ)-Sharpness Measures
In this section, we prove various notions of sharpness can be achieved using the proposed approach in this paper (Table 1).
For the last row of Table 1, we refer the reader to the proof of Theorem 1.

• Trace. Let ϕ(t) = ψ(t) = t, and note that

S(x;ϕ, ψ, µ) =

∫
1

2
vt∇2L(x)vdµ(v) (13)

=
1

2
Ev∼µ[vt∇2L(x)v], (14)

where µ is the uniform distribution over the (d − 1)-sphere S(d−1) := {x ∈ Rd : ∥x∥2 = 1}. Denote the entries of
∇2L(x) as (∇2L(x))i,j . Then, by the linearity of expectation

Ev∼µ[vt∇2L(x)] =

d∑
i,j=1

(∇2L(x))i,jE[vivj ] =
d∑
i=1

1

d
(∇2L(x))i,i =

1

d
tr(∇2L(x)), (15)

since E[vivj ] = 1
dδi,j , where δi,j denotes the Knocker delta function.

• Determinant. To achieve the determinant, we choose ϕ(t) = (2π)d/t2 and ψ(t) = exp(−t). Then,

S(x;ϕ, ψ, µ) =(2π)d
(∫

exp(−1

2
vt∇2L(x)v)dv

)−2

, (16)
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where dv denotes the Lebesgue measure. However, using the multivariate Gaussian integral, we have∫
exp

(
− 1

2
vt∇2L(x)v

)
dv = (2π)d/2 det(∇2L(x))−1/2. (17)

Replacing this intro the definition of S(x;ϕ, ψ, µ) gives the desired result.

• Polynomials of eigenvalues. First assume that ψ(t) = tn for some n ≥ 0. Then, for any function ϕ(t),

S(x;ϕ, ψ, µ) = ϕ
(∫ (1

2
vt∇2L(x)v

)n
dµ(v)

)
(18)

= ϕ
(
Ev∼µ

[(1
2
vt∇2L(x)v

)n])
, (19)

where µ is the uniform distribution over the (d−1)-sphere S(d−1). Since ∇2L(x) is a symmetric matrix, we can find an
orthogonal matrix Q such that ∇2L(x) = QtDQ, where D is a diagonal matrix with diagonal entries λ1, λ2, . . . , λd.
Now we write

(
vt∇2L(x)v

)n
=

(
vtQtDQv

)n
. But Qv is distributed uniformly over the (d − 1)-sphere S(d−1),

similar to v. Thus, we conclude

S(x;ϕ, ψ, µ) = ϕ
(
Ev∼µ

[(1
2
vt∇2L(x)v

)n])
(20)

= ϕ
(
Ev∼µ

[(1
2

d∑
i=1

λiv
2
i

)n])
. (21)

Define

q(λ1, λ2, . . . , λd) := Ev∼µ
[( d∑

i=1

1

2
λiv

2
i

)n]
, (22)

which is clearly a polynomial function (by the linearity of expectation).

Note that the above computation is still valid if we replace the uniform distribution on hypersphere with the Gaussian
multivariate distribution with identity covariance N (0, Id). Indeed, let us compute this polynomial for n = 2 with
Gaussian distribution. Note that

q(λ1, λ2, . . . , λd) = Ev∼µ
[( d∑

i=1

1

2
λiv

2
i

)2]
=

1

4

d∑
i=1

λ2iE[Z4] +
∑
i̸=j

1

4
λiλj(E[Z2])2 (23)

=
3

4

d∑
i=1

λ2i +
1

4

∑
i ̸=j

λiλj , (24)

where Z is a zero-mean Gaussian random variable with unit variance, and note that E[Z2] = 1 and E[Z4] = 3.

Now if we take m = 2, and ψ(t) = (t, t2), with µ = N (0, Id)⊗N (0, Id), we have that

∫
ψ
(1
2
vt∇2L(x)v

)
dµ(v) =

(1
2

d∑
i=1

λi,
3

4

d∑
i=1

λ2i +
1

4

∑
i ̸=j

λiλj

)
. (25)

Finally, by taking ϕ(t1, t2) = 2(t2 − t21), we obtain

ϕ
(∫

ψ
(1
2
vt∇2L(x)v

)
dµ(v)

)
=

d∑
i=1

λ2i . (26)
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C. Proof of Theorem 1
Theorem 1 (Universality of the (ϕ, ψ, µ)-sharpness measures for functions of Hessian eigenvalues). Let A ⊆ Rd be a
compact set. For any continuous function S : A → R, there exist a product (Borel) probability measure µ, a positive integer
m ≤ d, and continuous functions ϕ : Rm → R and ψ : R → Rm, such that S(λ1, λ2 . . . , λd) = S(x;ϕ, ψ, µ) for any
x ∈ A, where λi, i ∈ [d], are the eigenvalues of the Hessian matrix ∇2L(x).

Proof. We explicitly construct the (Borel) probability measure µ and the function ψ : Rm → R. Let us take m = d to prove
the universality theorem, while we believe lower m should be enough for specific practical sharpness measures.

Indeed, let us consider µ to be the multivariate Gaussian probability measure with identity covariance matrix. Also, define a
(parameterized) function ψσ(t) = exp(σt), for some σ to be set later. We are interested to compute the following quantity:∫

ψσ
(1
2
vt∇2L(x)v

)
dµ(v). (27)

Note that µ is the standard Gaussian probability measure on Rd, and specifically, it’s invariant under the action of the
orthogonal matrices. Indeed, there exists an orthogonal matrix Q such that ∇2L(x) = QtΛQ, where Λ is a diagonal
matrix with diagonal entries λ1, λ2, . . . , λd. Observe that u := Qv is also distributed according to the Gaussian probability
distribution with the identity covariance matrix on Rd, similar to v. Now we write∫

ψσ
(1
2
vt∇2L(x)v

)
dµ(v) =

∫
ψσ

(1
2
vtQtΛQv

)
dµ(v) (28)

=

∫
ψσ

(1
2
utΛu

)
dµ(u) (29)

=

∫
ψσ

(1
2

d∑
i=1

λiu
2
i

)
dµ(u) (30)

=

∫
(2π)−d/2ψσ

(1
2

d∑
i=1

λiu
2
i

)
exp

(
− 1

2

d∑
i=1

u2i

)
du (31)

=

∫
(2π)−d/2 exp

(1
2

d∑
i=1

σλiu
2
i

)
exp

(
− 1

2

d∑
i=1

u2i

)
du (32)

=

∫
(2π)−d/2 exp

( d∑
i=1

1

2
(σλi − 1)u2i

)
du, (33)

where du denotes the Lebesgue measure on Rd. Now to compute the integral, note that du = du1 × du2 × . . .× dud is a
product measure and the integrand also takes on a product form; thus,∫

ψσ
(1
2
vt∇2L(x)v

)
dµ(v) =

∫
(2π)−d/2 exp

( d∑
i=1

1

2
(σλi − 1)u2i

)
du (34)

=

d∏
i=1

∫
(2π)−1/2 exp

(1
2
(σλi − 1)u2i

)
dui (35)

(a)
=

d∏
i=1

1√
1− σλi

∫ √
1− σλi

2π
exp

(1
2
(σλi − 1)u2i

)
dui︸ ︷︷ ︸

=1

(36)

=

d∏
i=1

1√
1− σλi

, (37)

where (a) holds by the Gaussian integral identities.

Note that to calculate the integral above, we assumed that 1− σλi > 0 for any i ∈ [d]. This is equivalent to having

max
λi<0

λ−1
i < σ < min

λi>0
λ−1
i . (38)
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Now, due to the assumption in the theorem, we study the target sharpness measure S(λ1, λ2, . . . , λd) only on a compact
domain A ⊆ Rd, and this means that there exists an open interval I = (−ϵ, ϵ) with

ϵ := min(
λ1,λ2,...,λd

)t
∈A

min
i

|λi|−1, (39)

such that the above integral is well-defined and finite for all σ ∈ I .

Let us define the function ϕ̃ : Rd → Rd as follows:

ϕ̃(t1, t2, . . . , td) := (t−2
1 , t−2

2 , . . . , t−2
d ). (40)

Finally, consider the following polynomial in one variable with degree d:

p(x) := (1− λ1x)× (1− λ2x)× · · · × (1− λdx). (41)

Claim 1. For any σi ∈ I , i ∈ [d], we have

ϕ̃
(∫

ψσ1

(1
2
vt∇2L(x)v

)
dµ(v),

∫
ψσ2

(1
2
vt∇2L(x)v

)
dµ(v), . . . ,

∫
ψσd

(1
2
vt∇2L(x)v

)
dµ(v)

)
(42)

=
(
p(σ1), p(σ2), . . . , p(σd)

)
. (43)

The above claim simply follows from the integral we calculated before.

Now we are ready to complete the proof. Choose arbitrary non-zero distinct σi ∈ I, i ∈ [d], and note that having access to(
p(σ1), p(σ2), . . . , p(σd)

)
is enough to recover all the eigenvalues. Indeed, assume that p(x) = p0+p1x+p2x

2+. . .+pdx
d

and note that p(0) = 1 by definition. Let also V (0, σ1, σ2, . . . , σd) ∈ Rd×d denote a Vandermonde matrix of order d+ 1,
which is provably invertible by definition, and note that(

p(σ1), p(σ2), . . . , p(σd)
)t

= V (0, σ1, σ2, . . . , σd)×
(
p0, p1, . . . , pd+1

)t
(44)

=⇒
(
p0, p1, . . . , pd+1

)t
= V (0, σ1, σ2, . . . , σd)

−1 ×
(
p(σ1), p(σ2), . . . , p(σd)

)t
. (45)

Indeed, this shows that having access to the vector
(
p(σ1), p(σ2), . . . , p(σd)

)t
is enough to reconstruct the polynomial

p(x) = p0 + p1x+ . . .+ pdx
d. Having access to this polynomial is equivalent to having access to its roots, so one can find

a continuous function ϕ1 : Rd → Rd such that(
λ1, λ2, . . . , λd

)t
(46)

= ϕ1 ◦ ϕ̃
(∫

ψσ1

(1
2
vt∇2L(x)v

)
dµ(v),

∫
ψσ2

(1
2
vt∇2L(x)v

)
dµ(v), . . . ,

∫
ψσd

(1
2
vt∇2L(x)v

)
dµ(v)

)
. (47)

Since the sharpness measure S(λ1, λ2, . . . , λd) is a continuous function of its coordinates, we conclude that

S(λ1,λ2, . . . , λd
)

(48)

= S ◦ ϕ1 ◦ ϕ̃
(∫

ψσ1

(1
2
vt∇2L(x)v

)
dµ(v),

∫
ψσ2

(1
2
vt∇2L(x)v

)
dµ(v), . . . ,

∫
ψσd

(1
2
vt∇2L(x)v

)
dµ(v)

)
.

(49)

Now to complete the proof, we define a continuous function ψ : R → Rd as ψ =
(
ψσ1

, ψσ2
, . . . , ψσd

)t
, and a continuous

function ϕ : Rd → R as ϕ = S ◦ ϕ1 ◦ ϕ̃, and observe that S(λ1, λ2 . . . , λd) = S(x;ϕ, ψ, µ) for any x ∈ A. This completes
the proof.

D. Proof of Theorem 2
Theorem 2 (Universality of the (ϕ, ψ, µ)-sharpness measures for arbitrary functions of Hessian). For any continuous
function S : Rd×d → R, there exist a positive integer m ≤ d(d + 1)/2, (Borel) probability measures µℓ, ℓ ∈ [m], and
continuous functions ϕ : Rm → R and ψ : R → Rm, such that S(∇2L(x)) = S(x;ϕ, ψ, µ) for any x ∈ Rd, where
µ := µ1 ⊗ µ2 ⊗ . . .⊗ µm is a product probability measure.
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Proof. We explicitly construct a set of functions/probability measures to achieve the desired representation. Indeed, let’s
take m = d(d+1)/2 and consider the following Dirac measures: µi = δei , i ∈ [d], and also µij = δei+ej , for any i, j ∈ [d]
such that i < j. Here, ei denotes the unit vector in the ith coordinate in Rd. Now, note that we have

(∇2L(x))i,i =

∫
vt∇2L(x)vdµi(v) (50)

for any i ∈ [d], and

2(∇2L(x))i,j + (∇2L(x))i,i + (∇2L(x))j,j =

∫
vt∇2L(x)vdµi,j(v), (51)

for any i, j ∈ [d] such that i < j. The above system of linear equations has clearly a unique solution, as the Hessian matrix
is symmetric. This means that, similar to the proof of Theorem 1, one can find continuous functions ψ : R → Rm and
ϕ : Rm → R, along with m constructed probability measures such that S(∇2L(x)) = S(x;ϕ, ψ, µ) for any x ∈ Rd, where
µ = µ1 ⊗ µ2 ⊗ . . .⊗ µm is a product probability measure.

E. Proof of Theorem 3
Theorem 3 (Explicit bias of the (ϕ, ψ, µ)-sharpness-aware loss function). Given a triplet (ϕ, ψ, µ), m ≥ 1, and a training
loss function L : Rd → R≥0, assume that:

• L(x) is third-order continuously differentiable and satisfies the following upper bound

max
i,j,k∈{1,2,3}

|∂i∂j∂kL(v)| = O(∥v∥−1), (7)

for v ∈ Rd as ∥v∥2 → ∞.

• The two functions ϕ, ψ are continuously differentiable.

• For some C > maxx∈X maxi∈[d] |λi(∇2L(x))|, we have
∫
∥v∥22ψ̃i(v)dµ(v) <∞, i ∈ [m], where

ψ̃i(v) := max
|t|≤∥v∥2

|ψ′
i(Ct

2)|. (8)

Then, there exists an open neighborhood U ⊋ Γ, where Γ is the zero-loss manifold, for connected U and Γ, such that if for
some u ∈ U , one has

L(u) + ρ2Rρ(u)− inf
x∈U

(
L(x) + ρ2Rρ(x)

)
≤ ∆ρ2, (9)

with some optimally gap ∆ > 0, then

L(u) ≤ inf
x∈U

L(x)︸ ︷︷ ︸
=0

+(∆+ oρ(1))ρ
2, (10)

and also

S(u;ϕ, ψ, µ) ≤ inf
x∈Γ

S(x;ϕ, ψ, µ) + ∆ + oρ(1). (11)

Proof. For simplicity, we assume that m = 1. The general proof for m > 1 follows with a similar argument to this special
case. Define an open set U ⊆ Rd as follows:

U :=
{
x ∈ Rd : ∥∇L(x)∥2 < ρ2

}
. (52)

Note that this set contain the zero-loss manifold, i.e., Γ ⊆ U . We study the behavior of the loss function on this open set.
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Let us denote the sharpness term in the loss function L(ϕ,ψ,µ)(x) by Rρ(x):

L(ϕ,ψ,µ)(x) = L(x) + ρ2Rρ(x) (53)

= L(x) + ρ2ϕ
(∫

ψ
( 1

ρ2
(
L(x+ ρv)− L(x)

))
dµ(v)

)
. (54)

We first study the convergence of Rρ(x) to the corresponding sharpness measure S(x;ϕ, ψ, µ). Fix any point x ∈ U and
note that using Taylor’s theorem for the function L : Rd → R and for any v ∈ Rd, one has

1

ρ2
(
L(x+ ρv)− L(x)

)
=

1

ρ2

(
ρ⟨∇L(x), v⟩+ 1

2
ρ2vt∇2L(x)v +Ox(ρ

3∥v∥32 × ∥v∥−1
2 )

)
(55)

= ρ−1⟨∇L(x), v⟩+ 1

2
vt∇2L(x)v +Ox(ρ∥v∥22 × ∥v∥−1

2 ), (56)

where in above we used the fact that L(x) is third-order continuously differentiable and its third-order derivative satisfies the
estimate

max
i,j,k∈{1,2,3}

|∂i∂j∂kL(v)| = O(∥v∥−1), (57)

for v ∈ Rd as ∥v∥2 → ∞.

Note that using the assumption x ∈ U , we have that

|ρ−1⟨∇L(x), v⟩| ≤ ρ−1∥∇L(x)∥2∥v∥2 < ρ∥v∥2. (58)

Thus, we have

1

ρ2
(
L(x+ ρv)− L(x)

)
=

1

2
vt∇2L(x)v +Ox(ρ(∥v∥22 + ∥v∥2)). (59)

Note that we study the above approximation only for x ∈ U , and for small enough ρ, we know that U is a precompact set.
Therefore, we drop the dependence on x in the error term above.

Now using the above approximation, we have∫
ψ
( 1

ρ2
(
L(x+ ρv)− L(x)

))
dµ(v) =

∫
ψ
(1
2
vt∇2L(x)v +O(ρ(∥v∥22 + ∥v∥2))

)
dµ(v). (60)

Let us use Taylor’s theorem for the function ψ and write

ψ
(1
2
vt∇2L(x)v +O(ρ(∥v∥22 + ∥v∥2))

)
= ψ

(1
2
vt∇2L(x)v

)
+ ρ×O(ψ̃(v)(∥v∥22 + ∥v∥2)), (61)

where

ψ̃(v) := max
|t|≤∥v∥2

|ψ′(Ct2)|, (62)

and C is a constant, and it’s big enough to absorb the quadratic growth of ∇2L(x); i.e.,

C > max
x∈X

max
i∈[d]

|λi(∇2L(x))|. (63)

Therefore, we conclude that∫
ψ
( 1

ρ2
(
L(x+ ρv)− L(x)

))
dµ(v) =

∫
ψ
(1
2
vt∇2L(x)v

)
dµ(v) + ρ×O

(∫
ψ̃(v)(∥v∥22 + ∥v∥2)dµ(v)

)
(64)

=

∫
ψ
(1
2
vt∇2L(x)v

)
dµ(v) +O(ρ), (65)
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by the assumption. This allows us to conclude that

Rρ(x) = ϕ
(∫

ψ
( 1

ρ2
(
L(x+ ρv)− L(x)

))
dµ(v)

)
(66)

= ϕ
(∫

ψ
(1
2
vt∇2L(x)v

)
dµ(v)

)
+O(ρ) (67)

= S(x;ϕ, ψ, µ) +O(ρ), (68)

again, by assuming that

max
x∈X

ϕ′
(∫

ψ
(1
2
vt∇2L(x)v

)
dµ(v)

)
<∞, (69)

which holds by the compactness of X , and also using U ⊆ X .

Now according to the assumption, for some u ∈ U , we have

L(u) + ρ2Rρ(u)− inf
x∈U

(
L(x) + ρ2Rρ(x)

)
≤ ∆ρ2, (70)

for some optimally gap ∆. Using the following proven approximation

Rρ(x) = S(x;ϕ, ψ, µ) +O(ρ), (71)

we conclude that

L(u) + ρ2S(u;ϕ, ψ, µ)− inf
x∈U

(
L(x) + ρ2S(x;ϕ, ψ, µ)

)
≤ (∆ +O(ρ))ρ2. (72)

Now by proof by contradiction, assume that

L(u) ≥ inf
x∈U

L(x) + (∆ + δ)ρ2, (73)

for some strictly positive δ, as ρ→ 0+. Note that infx∈U L(x) = 0 as Γ ⊆ U . Thus, we can conclude that

ρ2S(u;ϕ, ψ, µ) + (∆ + δ)ρ2 ≤ L(u) + ρ2S(u;ϕ, ψ, µ) (74)

≤ inf
x∈U

(
L(x) + ρ2S(x;ϕ, ψ, µ)

)
+ (∆+O(ρ))ρ2 (75)

≤ ρ2 inf
x∈Γ

S(x;ϕ, ψ, µ) + (∆ +O(ρ))ρ2, (76)

since Γ ⊆ U . This shows that

S(u;ϕ, ψ, µ) ≤ inf
x∈Γ

S(x;ϕ, ψ, µ)− δ +O(ρ). (77)

This must hold for as ρ→ 0+. However, as ρ→ 0+, we have that Uρ → Γ. This means that

S(u;ϕ, ψ, µ) ≤ inf
x∈Γ

S(x;ϕ, ψ, µ)− δ, (78)

for some u ∈ Γ, which is a contradiction. This shows that

L(u) ≤ inf
x∈U

L(x) + (∆ + o(1))ρ2. (79)

Also, to prove the next part of the theorem, for any u ∈ U satisfying the assumptions, similarly we can show

ρ2S(u;ϕ, ψ, µ) ≤ L(u) + ρ2S(u;ϕ, ψ, µ) (80)

= inf
x∈U

(
L(x) + ρ2S(x;ϕ, ψ, µ)

)
+ (∆+O(ρ))ρ2 (81)

≤ ρ2 inf
x∈Γ

S(x;ϕ, ψ, µ) + (∆ +O(ρ))ρ2, (82)

which implies that

S(u;ϕ, ψ, µ) ≤ inf
x∈Γ

S(x;ϕ, ψ, µ) + (∆ +O(ρ)). (83)

The proof is thus complete.
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F. Proof of Theorem 4
Theorem 4 (Scale-invariant (ϕ, ψ, µ)-sharpness measures). Consider a scale-invariant loss function L(x) and let µ be a
Borel measure of the form

dµ(x) = f
( d∏
i=1

xi

) d∏
i=1

dxi, (12)

where f : R → R is a measurable function5. Then, for any continuous functions ϕ, ψ, the corresponding sharpness measure
S(x;ϕ, ψ, µ) is scale-invariant; this means that S(x;ϕ, ψ, µ) = S(Dx;ϕ, ψ, µ) for any diagonal matrix D ∈ Rd×d with
det(D) = 1.

Proof. Let D ∈ Rd×d be an arbitrary diagonal matrix. Then,

S(Dx;ϕ, ψ, µ) = ϕ
(∫

ψ
(1
2
vt∇2L(x)

∣∣∣
Dx
v
)
dµ(v)

)
. (84)

But note that by the assumption

L(x) = L(Dx) =⇒ ∇2L(x) = Dt∇2L(x)
∣∣∣
Dx
D. (85)

Therefore,

S(Dx;ϕ, ψ, µ) = ϕ
(∫

ψ
(1
2
vtD−1∇2L(x)D−1v

)
dµ(v)

)
. (86)

Now define a new variable u := D−1v. Then,

dµ(v) = f(

d∏
i=1

vi)

d∏
i=1

dvi = f(

d∏
i=1

Di,i

d∏
i=1

ui)

d∏
i=1

Di,i

d∏
i=1

dui (87)

= f(det(D)

d∏
i=1

ui) det(D)

d∏
i=1

dui (88)

= f(

d∏
i=1

ui)

d∏
i=1

dui. (89)

Therefore, we conclude that

S(Dx;ϕ, ψ, µ) = ϕ
(∫

ψ
(1
2
ut∇2L(x)u

)
dµ(u)

)
= S(x;ϕ, ψ, µ), (90)

and this completes the proof.

Lemma 1. For any scale-invariant measure µ that is absolutely continuous with respect to the Lebesgue measure on Rd,
one has

dµ(x) = f
( d∏
i=1

xi
) d∏
i=1

dxi.

Proof. Any measure µ that is absolutely continuous with respect to the Lebesgue measure on Rd can be written as

dµ(x1, x2, . . . , xd) = f̃(x1, x2, . . . , xd)

d∏
i=1

dxi.

5In Lemma 1, we show that any scale-invariant measure is of this form.
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For any non-zero choice of x1, x2, . . . , xd, by scale invariance property of dµ,

dµ(x1, x2, . . . , xd) = dµ(1, 1, . . . , 1,

d∏
i=1

xi)

⇒f̃(x1, x2, . . . , xd)

d∏
i=1

dxi = f̃(1, 1, . . . , 1,

d∏
i=1

xi)

d∏
i=1

dxi

⇒f̃(x1, x2, . . . , xd) = f̃(1, 1, . . . , 1,

d∏
i=1

xi).

Now, it suffices to choose f(
∏d
i=1 xi) := f̃(1, 1, . . . , 1,

∏d
i=1 xi) almost surely and the proof is concluded.

G. Proof of Theorem 5
Theorem 5 (General parameter-invariant (ϕ, ψ, µ)-sharpness measures). Let G be a group acting by matrices on Rd,
and assume that L(x) is invariant with respect to the action of G. Then, for any G-invariant (Borel) measure µ,
and any continuous functions ϕ, ψ, the corresponding sharpness measure S(x;ϕ, ψ, µ) is G-invariant; this means that
S(x;ϕ, ψ, µ) = S(Agx;ϕ, ψ, µ) for any matrix Ag ∈ Rd×d corresponding to the action of an element g ∈ G.

Proof. We start by evaluating S(Agx;ϕ, ψ, µ).

S(Dx;ϕ, ψ, µ) = ϕ
(∫

ψ
(1
2
vt∇2L(x)

∣∣∣
Agx

v
)
dµ(v)

)
. (91)

But again here, note that by the assumption

L(x) = L(Agx) =⇒ ∇2L(x) = Atg∇2L(x)
∣∣∣
Agx

Ag. (92)

Therefore,

S(Agx;ϕ, ψ, µ) = ϕ
(∫

ψ
(1
2
vtA−1

g ∇2L(x)A−1
g v

)
dµ(v)

)
. (93)

Now define a new variable u := A−1
g v. Therefore, we conclude that

S(Agx;ϕ, ψ, µ) = ϕ
(∫

ψ
(1
2
ut∇2L(x)u

)
dµ(u)

)
= S(x;ϕ, ψ, µ), (94)

and this completes the proof.

H. (ϕ, ψ, µ)-Sharpness-Aware Minimization Algorithm
To propose an algorithm for the general case (i.e., arbitrary m), we compute the gradient of

R̃ρ(x) := ϕ
( 1

n

n∑
i=1

ψ1

( 1

ρ2
(
L(x+ ρvi,1)− L(x)

))
, (95)

1

n

n∑
i=1

ψ2

( 1

ρ2
(
L(x+ ρvi,2)− L(x)

))
, (96)

. . . (97)

1

n

n∑
i=1

ψm

( 1

ρ2
(
L(x+ ρvi,m)− L(x)

)))
, (98)
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Algorithm 3 (ϕ, ψ, µ)-Sharpness-Aware Minimization Algorithm (with arbitrary m)
Input: The triplet (ϕ, ψ, µ), Training loss L(x), Step size η, Perturbation parameter ρ, Number of samples n,
Output: Model parameters xt trained with (ϕ, ψ, µ)-Sharpness-Aware Minimization Algorithm
Initialization: x← x0 and t← 0
while 1 do

Sample vi,ℓ
i.i.d.∼ µℓ, for any i ∈ [n] and ℓ ∈ [m]

Compute the following:
gt = ∇L(xt) +

m∑
ℓ=1

∂ℓϕ
( n∑

i=1

1

n
ψℓ

( 1

ρ2
(
L(xt + ρvi,ℓ)− L(xt)

)))
×

n∑
i=1

1

n

{
ψ′

ℓ

( 1

ρ2
(
L(xt + ρvi,ℓ)− L(xt)

))
×

(
∇L(xt + ρvi,ℓ)−∇L(xt)

)}
.

Update the parameters: xt+1 = xt − ηgt
t← t+ 1

end while

CIFAR10 CIFAR100 SVHN CIFAR10-S CIFAR100-S SVHN-S CIFAR10-C CIFAR100-C SVHN-C
Frob-SAM 5e-3 1e-4 5e-3 1e-4 1e-4 1e-3 0.01 0.01 1e-3

Trace-SAM 1 0.1 0.1 0.01 0.01 1 1 0.1 0.01
Det-SAM 1 0.1 0.1 0.01 1 1 0.01 0.1 0.1

Table 4. Choice of regularizer weight λ for different datasets.

CIFAR10 CIFAR100 SVHN CIFAR10-S CIFAR100-S SVHN-S CIFAR10-C CIFAR100-C SVHN-C
Frob-SAM 5e-3 5e-3 5e-3 1e-2 5e-3 5e-3 1e-2 5e-3 1e-2

Table 5. Choice of ρ for Frob-SAM for different datasets.

where vi,ℓ
i.i.d.∼ µℓ for each ℓ ∈ [m]. Note that ψ = (ψ1, ψ2, . . . , ψm)t for some scalar functions ψℓ, ℓ ∈ [m]. Let ∂ℓϕ denote

partial derivatives of the function ϕ : Rm → R, for any ℓ ∈ [m]. Then,

ρ2∇R̃ρ(x) =
m∑
ℓ=1

∂ℓϕ
( n∑
i=1

1

n
ψℓ

( 1

ρ2
(
L(xt + ρvi,ℓ)− L(xt)

)))
(99)

×
n∑
i=1

1

n

{
ψ′
ℓ

( 1

ρ2
(
L(xt + ρvi,ℓ)− L(xt)

))
×

(
∇L(xt + ρvi,ℓ)−∇L(xt)

)}
, (100)

and this leads to Algorithm 3.

I. Experiments
I.1. Experimental Details

We now describe experimental details that were omitted from the main text.

For CIFAR10 and CIFAR100, we apply random crops and random horizontal flips. We use a momentum term of 0.9 for all
datasets and a weight decay of 5e-4 for CIFAR10 and SVHN and 1e-3 for CIFAR100. We use batch size 128 and train for
200 epochs. We use a multi-step schedule where the learning rate is initially 0.1 and decays by a multiplicative factor of 0.1
every 50 epochs. We run each experiment with four different random seeds to access statistical significance. We use 1280
training examples and 100 noise samples to estimate the Frobenius norm and trace via Hessian-vector products. We set ρ to
1.0 for Det-SAM, 0.01 for Trace-SAM, and sweep it in {0.005, 0.01} for Frob-SAM. For Det-SAM and Trace-SAM we
sweep λ in {0.01, 0.1, 1.0} and set n = 1. For Frob-SAM, we sweep λ in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1} and set
n = 2. The hyper-parameters selected for each setting is given in Table 4 and Table 5.

We use the PyHessian library (Yao et al., 2020) to estimate the trace of the Hessian. Adapting this library, we estimate the
Frobenius norm (squared) as 1

k

∑k
i=1 ∥Hzi∥22, where H is the Hessian matrix and zi ∼ N (0, Id).
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Figure 3. Training plots for all settings. One standard error is shaded.

I.2. Additional Plots

All training plots are shown in Figure 3.
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