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Abstract—
Many applications wish to predict what bandwidth TCP

can achieve on a path between Internet hosts without per-
forming extensive measurements. More precisely, they
would like to know what the bulk transfer capacity (BTC)
of a given path is. This paper investigates the differences
between available bandwidth (the unused capacity along a
path) and BTC over a wide range of network conditions.
We use Pathload [1] to obtain available bandwidth estimates
over all paths between machines in the RON [2] testbed.
The median BTC rate is under 40% of the available band-
width on these paths. The BTC rate was less than one fifth
the available bandwidth on a full third of paths. This pa-
per also introduces a method,squeezed pairs, to characterize
queuing delays along paths. We show that squeezed pairs
allows us to make BTC estimates from available bandwidth
estimates with accuracy comparable to BTC estimates from
short TCP connections.

I. I NTRODUCTION

Measurements of end-to-end bulk transfer capacity, or
BTC for short, between Internet hosts are useful for over-
lay networks, congestion control, streaming media, and
network monitoring applications. For example, resilient
overlay networks (RONs) can use BTC to select the Inter-
net path that will achieve the highest TCP throughput [2].
All existing methods used to measure BTC are intrusive,
sending large amounts of probe traffic which interferes
with other flows using the same path. Non-intrusive mea-
surement methods do exist for other end-to-end path char-
acteristics such as capacity and available bandwidth, but
not for BTC.

A. Definitions

We will use the terms: bulk transfer capacity, available
bandwidth, path capacity, link capacity, narrow link, and
tight link, throughout this paper. Not all related work as-
signs the same meaning to these terms, especially avail-
able bandwidth and bulk transfer capacity. To avoid con-
fusion, we define these terms here before continuing. The
definitions here are the same as in much of the related
work [3], [4], [5], [6], [1].

Consider the path between two hosts on the Internet,
from A to B. This path is made up ofn links, each
of which has a link capacity,c1 throughcn. Each link
capacity is the fastest rate at which packets can be for-
warded over that link. Thepath capacityfrom A to B
is mini=1...n(ci). We call the link with smallest capac-
ity ci the narrow link fromA to B. There may be more
than one narrow link along a path, in which case the ca-
pacity of each must be the same. We assume that link
capacities change rarely – They should only change with
either a route change, or a physical change to the underly-
ing links. In our tests, the narrow link is almost always no
more than a few hops away from the endpoint. As such,
we assume thatci is constant for the duration of one ex-
periment, which may be a few minutes long.

Each link also has a current utilizationui. Utilization
is the ratio of that links’ capacity which is used over some
time interval. 1 − ui is the idle fraction of that link for
the same interval. The unused capacity on each link is
ci(1− ui).

The available bandwidth from A to B is
mini=1...n ci(1− ui). The tight link is the link from
A to B with smallest unused capacity. As with narrow
links, there may be more than one tight link if queuing
due to competing traffic or dropped packets occurs at
more than one link.

Thebulk transfer capacity, as described by Mathis and
Allman [6], is the fastest a protocol that implements con-
gestion control can forward packets fromA to B. TCP
is one example of such a protocol, which we use to mea-
sure BTC. BTC depends only on network conditions. For
example, buffer space on routers betweenA andB, queu-
ing policies, and cross traffic on all hops will affect BTC.
Buffer space available onA or B does not. Like avail-
able bandwidth, BTC is time dependent. Unless stated
otherwise, we refer to averages over several seconds to a
minute for BTC and available bandwidth.

All of the quantities we have defined may be asymmet-
ric. The path capacity or BTC fromA toB may be differ-
ent fromB toA.
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B. Bulk Transfer Capacity Properties

In many applications, BTC is the most desired metric to
evaluate an Internet path. Capacity is certainly interesting
if ones goal is topology mapping. However, for any ap-
plication that is considering using the path and wishes an
estimate of what the network will support, or picking be-
tween paths, BTC is more useful than capacity estimates
or available bandwidth. However, we have effective non-
intrusive methods to measure capacity and available band-
width, and none for BTC.

Why is BTC hard to measure? Unlike capacity and
available bandwidth, we lack a simple way to express
BTC in terms of network observables. BTC is instead
described in terms of TCP’s congestion control algo-
rithms [7][8].

TCP throughput is affected by many different factors,
which include path latency and capacity of every link,
nature of competing traffic at each link, router queuing
policy and buffer sizes, random losses, link-level perfor-
mance, reverse path conditions, data corruption, among
other factors. The Amherst model [9], expresses TCP
throughput in terms of observed loss rate along with mea-
surable parameters such as round trip time, and TCP im-
plementation. However, the loss rate cannot be extracted
from other information easily. Goyal et al. [10] tried to
refine this model to use loss rates obtained from routers
along the path in question. However, their estimates
hinged on correctly predicting loss rates based on router
drop rates.

C. Contributions

This paper uses a recent tool, Pathload, for measuring
available bandwidth to examine differences between bulk
transfer capacity and available bandwidth. We show that
BTC and available bandwidth often differ on the RON
testbed, which covers a wide range of conditions. We
know of no prior comparison between BTC and available
bandwidth under real network conditions.

This paper also introduces a method, squeezed pairs,
to characterize queuing delays on paths. We show that
squeezed pairs allows us to make BTC estimates from
available bandwidth estimates with accuracy comparable
to BTC estimates from short TCP connections.

Finally, much related work on capacity and load esti-
mates uses simulation and measurements over a few In-
ternet paths. Only a few such methods have been tested
over a wide variety of Internet paths. This paper offers
some practical experience of using a number of tools un-
der real network conditions.

D. Overview

The remainder of this paper is outlined as follows. In
section II we discuss related work. In section III, we de-
scribe the measurements that we examine, and introduce
squeezed pairs. Section IV discusses details of our mea-
surement experiment, and section V presents measure-
ment results. We conclude with a discussion of our re-
sults.

II. RELATED WORK

Much work has been done in the area of capacity esti-
mation. Most tools are variations on packet pairs. Net-
timer [11], Packet Bunch Modes [12], bprobe [13], and
Pathrate [3] all discuss methods for filtering packet pair
measurements to determine path capacity. Pathchar [14]
determines hop-by-hop capacity.

Tools to measure BTC include Treno [15] and cap [5].
Both tools aim to abstract away the details of TCP imple-
mentations, but they still require long intrusive measure-
ment periods in order to obtain accurate measurements.
Allman found that BTC values reported by cap gener-
ally agreed with the BSD TCP implementation to within
10% [5]. We use TCP directly in our measurements, and
assume that rates we observed are close to the BTC.

Pathload [1], [4], which we use in our measurements,
uses Self Loading Periodic Streams to measure avail-
able bandwidth. Self Loading Streams measure available
bandwidth by sending short packet bursts and observing
increasing queueing delays over the course of the burst.
Sending bursts at rates below the available bandwidth
does not cause increasing trend through the course of the
burst. By starting with an initial estimate of the Aymptotic
Dispersion Rate [3], an iterative search proceeds between
rates that show increasing trends and rates which do not.
Each rate tested requires a large amount of data, on the
order of a hundred kilobytes, in 12 bursts each one hun-
dred packets long. The authors argue that the short dura-
tion of each burst does not interfere with competing traf-
fic. Pathload’s authors verified correct operation through
simulation and averages reported from in-path routers us-
ing Multi Router Traffic Grapher (MRTG)[16]. They did
not address the issue of whether, or under what conditions,
pathload could be used to predict TCP throughput.

An earlier attempt to use Self Loading Streams was
done in [17]. Pathload is more advanced, and so we incor-
porated many details from Pathload’s early descriptions.
In a few cases, however, our implementation gives better
estimates than Pathload, and in those few cases we report
the numbers of our implementation as Pathload’s.

Zhang et al. [18] examined stationarity of TCP mea-
surements over many internet paths. They found that in
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many cases, TCP speeds varied by less than a factor of
three over the course of an hour or more.

III. A PPROACH

Based on our experiences with self loading streams
tests on the RON network, and attempts at other simple
attempts to measure BTC, we believe that no single BTC
measurement method exists that will work in all condi-
tions. Instead, we believe that a better approach is to find
simple methods that work in some conditions, along with
tests for the appropriate conditions.

In this paper, we evaluate whether Pathload can be used
as a simple method to meausure BTC in some conditions.
We also present a condition test we call squeezed pairs to
determine appropriate conditions for Pathload use.

A. Squeezed Pairs

Squeezed pairs represents an attempt to directly ex-
amine the state of queues on the routers between sender
and receiver. Squeezed pairs is an approach derived from
Bolot’s observations on packet delay [19].

The squeezed pair test sends a squence of packet pairs
from sender to receiver, in a manner similar to packet pair.
Instead of sending the two probes back-to-back, they are
spaced by a small, but deliberate, spacing. We perform
the test for two spacings: one that is equal to half of the
transmission time of 500 bytes and one that is equal to half
of the transmission time of 1500 bytes, the two prevalent
packet sizes used most often in the current internet [20].
We compute the spacings based on the path capacity.

Each pair encounters one of three effects before arriv-
ing at during their travel. The pair may arrive with a spac-
ing unchanged from the spacing at the sender, the packets
may be squeezed together at the receiver, or they may be
spread further apart.

The amount by which the pairs are squeezed or spread
shows relations between the queues the first and second
packet experienced. If a packet from cross traffic queues
between the two probes, and the probes are undisturbed
on later portions of the path, the receiving gap must be at
least as large as the transmission time of the cross traf-
fic packet. Because the test spaces probe packets at an
interval smaller than the transmission times of 500 and
1500 bytes, it is likely that a cross-traffic packet cannot be
queued between one of the probe packets without disrupt-
ing the initial spacing.

IV. M ETHODOLOGY

We performed our measurements on the RON[2]
testbed. The RON testbed currently consists of hosts in-
stalled at business, residential, and educational installa-
tions. While running our tests, we used fifteen different

TABLE I
RON SITES AND LOCATIONS. BANDWIDTHS ARE IN MBPS

Name Description Connection type Speed
MS Residence, CA DSL 0.384
Mazu .COM in MA T1 1.544
M1MA Residence, MA Cable Modem 10
Aros ISP in UT Fractional T3 10
CCI .COM in UT Ethernet 100
PDI .COM in CA Ethernet 3..30
CMU Pittsburg, PA Ethernet 100
Cornell Ithaca, NY Ethernet 10
MIT Cambridge, MA Ethernet 100
NYU Manhattan, NY Ethernet 100
Utah U. of Utah, Ethernet 100
NL Vrije U,Holland Ethernet 100
Lulea Sweden Ethernet 10
Korea Korea Ethernet 100
Gr Greece Ethernet 100

sites. Three are in Europe, one in Korea, and the remain-
der are in the US. Table I lists properties of each host.

We wished to test possible methods in as wide a range
of conditions as possible. To achieve this goal, we chose
to run tests a few times over as many paths as possible,
rather than repeating the same tests on a smaller num-
ber of paths. This approach is a reasonable one, as we
want to consider as many unique network features as pos-
sible. Features present in the RON testbed include traf-
fic shapers, trancontinental links, a variable capacity path,
and machines at business, residential, and university loca-
tions.

We have combined the packet-sending and receiving
portions of our tests into a single sender program, and a
single receiver program. Each method we wish to test has
a corresponding phase in the sender and receiver, which
runs in turn. After all phases are complete, the sender
begins a pair of bulk TCP transfers to the receiver, to es-
tablish the bulk transfer capacity of that path to evaluate
the other methods. The TCP transfer is done last since it
is potentially intrusive to other flows sharing portions of
the path between the sender and receiver.

Each test from source to destination consists of the fol-
lowing phases, each separated by a pause of a few sec-
onds:

1) Tcpdump starts at both source and destination
2) Source opens a TCP control connection to the re-

ceiver
3) Source sends 30 1400 byte packets back to back,

pauses one round trip via a null command and re-
sponse over the control connection, and sends an-
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other set of 30 packets.
4) The destination calculates the average arrival rate of

the two bunches and informs the sender, which uses
the rate as an under-estimate of the path capacity.

5) Squeezed Pair Phase: Source sends up to 4000 pairs
of packets, with the spacing within each packet set
to alternate between half the width of a 500 byte and
half the width of a 1500 byte packet based on the
path capacity estimate. The pairs are sent with ex-
ponentially distributed spacings, with a mean space
of the larger of ten times the largest intra-pair gap,
or 2 milliseconds. Probe packets are 40 bytes long,
including IP and UDP headers.

6) Self Loading Periodic Streams Phase: The source
chooses 4 sending rates as fractions of the capacity
estimate. Packet streams are sent at these four send-
ing rates, with parameters the same as in Pathload.
However, the a stream of each rate is done in turn
rather than doing all at a single rate before chang-
ing.

7) TCP test: The source begins a bulk TCP transfer
of 2 MBytes of data to the receiver. After the first
completes, a second transfer is run. Sender and re-
ceiver windows are set to 1 Mbyte to ensure that the
connection will not be bound by sender and receiver
window sizes. We had used 200Kbyte windows ini-
tially, and noticed no changes with the larger win-
dow sizes.

After the above tests end, we start a Pathload run from
sender to receiver, and then repeat the whole process with
the sender and receiver swapped. Each test takes at most a
few minutes on slower links, so we have data for forward
and reverse paths separated by a few minutes. We then
move on to the next pair of hosts, with the order selected
randomly.

We have separated the execution and analysis of each
method by collecting packet timings at both the sender
and receiver by running tcpdump. This separation gives us
several advantages over a combined approach, the great-
est of which is flexibility. Much of the sender and re-
ceiver code is time-critical, and kept as sparse as possi-
ble. The analysis, however, is not time critical, and may
change often. Since we are operating on packet traces, we
can change the analysis code without having to re-run the
overall test when the packets sent do not change.

The RON machines are primarily Pentium III Celerons
running at 700 Mhz. All run FreeBSD-4.5. Most of our
tests involve sending packets at specified time, or with
a small specified spacing between them, so we take an
optimistic approach to scheduling. By scheduling packet
send times in advance, and then waiting until the appro-
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Fig. 1. Ratio of throughput acheived by first tcp transfer to second
tcp transfer

priate time, the sending process will either be running, or
swapped out at the desired time. Then we either send our
packet on time, notice that we cannot, and thus either drop
or retry the current test, or fall in the rare case that we are
interrupted between checking the current time and calling
send(). In this way, no more than one packet out of a sin-
gle interval will be late. Using median-based filtering at
the receiver will disregard these errant packets.

Out of 210 total paths, 13 were discarded due to in-
complete tests. In these cases, either the tcp or pathload
tests aborted due to losses, or the end hosts could not be
reached from the experiment coordinating host. Approxi-
mately five of these 13 incomplete tests were due to oper-
ator error.

V. RESULTS

First we examine each individual method, and show
that none provides an adequate BTC estimate when used
in isloation. For each method, we evaluate it in two man-
ners. The first is to determine, for each path, the ra-
tio of that method’s measurements to the actual achieved
BTC, as measures by a bulk TCP transfer. This evaluation
method is appropriate for applications where the applica-
tion wishes to maintain a given level of service.

The second evaluation method is to pick pairs of paths,
and for each possible pair, compare the two paths to pre-
dict which is faster. If the prediction matches the actual
comparison, this test is counted as a correct prediction. If
they differ, then the test is counted as incorrect. We divide
the totals to get the frequency of correct decisions.

A. Individual Methods

1) TCP predicting TCP: Our test includes two ad-
jacent TCP measurements. Figure 1 shows the ratio of
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acheived throughput in the first test to the second test. All
of our graphs are CDFs in this form. They each plot the
ratio of one measured or estimated transfer rate to a mea-
sured baseline rate. If a prediction is a perfect match to
the actual rate, the plot would appear as a vertical line at
x = 1. When the predicted values are too low, the plotted
ratio will be to the left ofx = 1, and when the prediction
is too high, the plotted value will fall to the right.

Each TCP test consisted of a 2 MByte transfer. Tim-
ings were taken at the sender from the time the first SYN
packet was sent, to the time the last data packet was sent.
The two TCP tests were separated by a pause of 5 seconds.
There is no significant bias towards either the first or sec-
ond transfer rate. From figure 1, we can make a few state-
ments about the predictive quality of adjacent TCP con-
nections. First, the distribution shows a long tail. Given
one rate, there is a nonzero, though small, possibility that
the other rate will vary by as much as a factor of 10. Given
one rate and no other information, there is a 70 % chance
that the other rate will fall within 20% of the first rate.
Over 90% of rates fall within 50% of their adjacent rate.

We expect these results to be similar to cap and TReno,
as all of these tools implement a TCP-friendly congestion-
avoidance analysis.

These esimates provide a baseline for how to evaluate
other rate estimates. Ideally, the two should rates should
only differ if the network conditions change between the
two tests. However, if a single event such as a loss of
number of burst packets causes the sender to wait for a
long timeout, then the two rates may appear significantly
different without a clear cause.

This effect should be less of a concern on slower paths,
as a single timeout would have a smaller effect on overall
average throughput. An analog to figure 1, but instead
limited to slow paths, did not change the shape noticeably.
Using the first TCP rate to pick which will show the faster
rate on the second transfer was correct in 93% of path
pairs.

2) Self Loading Periodic Streams:Our tests included
two implementations of Self Loading Periodic Streams:
Pathload, and one we implemented ourself. Both tools
output a range of values, between which the “true” avail-
able bandwidth fell. We found that in all but a handful of
cases, the range estimated by our tool and Pathload were
consistent. Pathload yielded tighter ranges except when
the available bandwidth was measured below 1.2 Mbps.
In that case, Pathload would report a lower range estimate
of 0.0 Mbps, wheras our tool could sometimes report a
lower range estimate greater than zero.

On many of the slowest paths, Pathload’s upper range
estimate was only slightly below the capacity of that path.
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Fig. 2. Available Bandwidth as measured by Pathload, vs. BTC as
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As we wished to evaluate how much Pathload estimates
differ from TCP rates, on these paths Pathload would ap-
pear to always be correct, though not tell us anything use-
ful about the path conditions. To correct for this problem,
we substituted results from our tool for pathload numbers
on paths where Pathload reported a lower range of zero,
and our tool reported a tighter range. On all other paths,
we used Pathload results exclusively.

We ran Pathload with a resolution parameter of 2 Mbps.
As a result, the difference between high and low range es-
imates would typically be no smaller than 2 Mbps. For
slower paths where we did not use Pathload’s estimates,
the upper range and lower range were two to three hun-
dred Kbps apart.

Figure 2 compares the available bandwidth as com-
puted by Pathload to the BTC as determined by TCP rates.
We have found that BTC is often significantly less than
available bandwidth. Without any further corrections,
Pathload estimates were within 20% of the TCP rate in
only 20% of paths. As the remainder of the TCP rates
were far less than the Pathload estimates, the results sup-
port the assumption that TCP does not use all available
bandwidth.

3) Small TCP transfers:Can a short TCP transfer pro-
vide a good estimate of the average of a longer connec-
tion? Our experiment included two TCP bulk transfers.
Figure 3 shows results of using prefixes of the first con-
nection to predict the rate of the complete second trans-
fer. When either 1MByte or the full 2 MBytes of the first
transfer are used to predict the second, the rates differ lit-
tle. When only the first 128 or 256K of data is considered,
estimates are much poorer. This result is to be expected,
as TCP’s slow start algorithm can overshoot the true BTC
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by as much as a factor of two. Also, any packet losses in
the first few round trips will likely cause require a retrans-
mission timeout and throw off an estimate greatly.

4) Path Capacity: Any of the recent packet pair tools
can determine the path capacity between end hosts fairly
well. We found that PathRate works quite well under most
conditions. With the exception of paths involving M1MA,
the capacity estimates matched information we had about
the host’s internet connection. In the case of M1MA,
PathRate failed to provide an estimate until we relaxed its
constraints regarding the allowed number of lost probes.

The path capacity between hosts will normally change
only in the case of routing changes. Our tests do in-
clude one host, PDI, which has an internet connection that
changes anywhere between 3 and 30 MBps on the scale of
a few hours. Paxson [18] found that many routes are sta-
ble over a scale of hours. We expect that path capacity
will change even more infrequently than routes, as the ca-
pacity limiting link is often a last-mile link. These access

paths tend not to change on time scales smaller than weeks
or months.

Capacity measurements can be conducted fairly, and
are valid for long periods. How much does BTC differ
from path capacity? We have found that the difference
is largely dependent on the speed of the link in question.
Figure 4 shows BTC as a fraction of the path capacity,
broken up along three different capacity ranges. The high-
est range,≥ 12 Mbps, primarily includes hosts on the In-
ternet2, or well connected businesses. These paths often
serve a great number of users, and may operate near ca-
pacity at all times. Even when the paths are largely idle,
TCP has trouble utilizing all possible bandwidth with-
out careful attention to implementation parameters. The
middle range, 3 to 12 Mbps, includes cablemodem down-
links, and 10Mbps ethernet hosts, and inlcludes most of
the transcontinental paths. The slowerest range primar-
ily includes cablemodem uplinks and both directions of
dsl links. The slower links are often otherwise unused,
and so the BTC is nearly all of the path capacity. We be-
lieve that the pattern of rates we have found is largely a re-
flection of access methods that are popular now, and will
likely change over time. However, similar observations
will likely still hold.

We examined the predictive ability of capacity to pick
the path with higher BTC for all pairs of paths. We found
that capacity picked correctly in 73% of all possible path
pairings. If the possible choices include a common hosts,
the path capacities are likely to be identical, which makes
such a comparison impossible.

5) cprobe: One phase of our measurements is quite
similar to cprobe [13]. We send a number of large back-
to-back packets from sender to receiver, and compute the
average arrival rate based on packet interarrival times. We
found that this method is not very useful as a BTC mea-
surement per se, as it nearly always overestimates the
BTC, but it is quite useful to get a quick estimate of a
rate somewhere between the BTC and path capacity.

6) Squeezed Pairs:Figure 5 shows two common his-
togram shapes we found when run between differen RON
hosts. Each plot shows results for a single path. The solid
line shows pairs that were sent spaced by half the trans-
mission time for a 1500 byte packet. The long solid arrow
marked ’sending gap’ shows the gap between pairs at the
sender for these packets. The dashed arrow marked ’send-
ing gap’ shows the sending gap for pairs sent at the half
width of a 500 byte packet, which are plotted with dashed
lines. Pairs plotted in solid lines that are to the left of the
solid arrow arrived squeezed at the receiver. There are
three other arrows on each graph. The leftmost is marked
as ’b2b.’ This arrow marks the expected arrival gap at the
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Fig. 5. Typical Squeezed Pair Histograms

receiver if packets exit the narrow link back-to-back and
maintain this spacing at the receiver. Pairs may arrive with
a spacing smaller than this arrow if the pair were squeezed
together after the tight link. The arrow marked as ’500B’
shows the expected arrival gap if the probe packets are
spaced by a 500 byte packet on the tight link. The ’1500B’
arrow shows the same value for 1500 byte cross traffic.

In Figure 5(a) only a very few packets arrive at the re-
ceiver with the same spacing at which they were sent. The
other peaks are around 10µs, 40µs, 120µs, and 160µs.
All of the links between ccicom and NYU are at least 100
Mbps or faster. At 100 Mbps, a 1500 byte packet takes
120µs, and a 500 byte packet takes 40µs. We therefore
assume that packets which arrived at the sender spaced by
40 µs were queued with a 500 byte packet between the
two probes. Those that arrived spaced by 120µs either

had one 1500 byte packet or three 500 byte packets be-
tween them. The lack of any prominent peak around 80µs
suggests the latter. There is very little difference between
the histograms of packets sent with a 20µs spacing and
those sent with a 60µs spacing. The large mode around
zero indicates that in many cases, the probe packets were
squeezed together, and essentially arrived back-to-back at
the receiver.

In contrast, Figure 5(b) shows almost no overlap be-
tween the histograms for the two different sending gaps.
In this case, the received gaps are spread symmetrically
around the sending gap, with submodes at even intervals.
These patterns result when queuing occurs on a faster link
along the path than the end-to-end capacity limiting hop.
The modes to the right of the sending gap result when
the first packet of the pair is queued less than the second.
The space between sub-modes can be expressed simply
in terms of the size of cross traffic packets. Since there
are no packets that arrive with gaps appropriate for cross
traffic on the 10 Mbps link, we conclude that all queueing
delay occurs on links with speeds higher than 10 Mbps.
This data does not imply that the 10 Mbit hops are idle,
merely that they are idle enough that our probe packets
are never queued there as a result of cross traffic.

Most plots of Squeezed Pair histograms show features
in one or both of the plots shown. Some do not show
distinct sub-modes around the sending gap, but instead
show a gradual smear up to a peak at the sending rate.
This effect can occur when the the link where queues
form is much faster than the capacity limiting link. In
this case, the histogram bins are not fine enough to see a
single packet gap. Paths where cross-traffic packet sizes
are uniformly distributed rather than only a few discrete
sizes would cause the same plots.

We have developed a simple scoring program to de-
scribe whether or not the histogram modes are symmetric
around the sending gaps. Instead of searching for a peak
around the sending rate, check each histogram bin to see
whether there is a mode in one or both of the sending rate
plots. If a mode appears in both plots, we increment a
counter. If a mode appears in only one plot, we decrement
the same counter. At the end if the counter is positive, we
group that path in those like in figure 5(a), and call these
paths tight-like-narrow paths. If the counter is negative,
we label the path as tight-unlike-narrow at the time the
test was run.

B. Combined Methods

When different methods are combined
1) Pathload with Squeezed Pairs:This test combines

the path characterization done with squeezed pairs with
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(a) Paths with tight-like-narrow Squeezed Pair results
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Fig. 6. Pathload ranges split based on Squeezed Pair histograms

the comparison of Pathload rates to TCP rates. Figure
6(a) shows Pathload results for paths marked as tight-like-
narrow. 61% of paths are included in this plot. Figure 6(b)
shows Pathload results for paths marked as tight-unlike-
narrow. 39% of paths are included in this plot. This cumu-
lative distribution is much tighter: in 80% of these paths,
TCP achieves at least one third of the Pathload reported
speed. For tight-like-narrow paths, the 80th percentile is
near a tenth of the Pathload estimate.

If we scale the pathload ranges before compairing them
to actual tcp rates, by 0.2 for tight-like-narrow paths (fig-
ure 7(a)), and by 0.6 for tight-unlike-narrow paths (figure
7(b)), then we achieve a better predictor for BTC. When
scaled, the tcp rates in 53% of tight-like-narrow paths fall
between 50% below the pathload estimate and 50% above.
For tight-unlike-narrow paths, 77% occur in the± 50%
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(a) Pathload ranges for tight-like-narrow paths, scaled by 0.2
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(b) Pathload ranges for tight-unlike-narrow paths, scaled by 0.6

Fig. 7. Pathload ranges scaled and split by Squeezed Pair histograms

range.
Next we scale and then combine the pathload estimates,

and arrive at the distribution shown in figure 8. With
pathload estimates combined in this manner, 50% of TCP
rates will fall within 20% of the pathload estimate range.
However, for 80% certainty, TCP rates vary from one
quarter the scaled pathload estimates to double the esti-
mate.

Using squeezed pairs to refine pathload estimates and
then picking the better path based on the scaled rates does
not improve estimates enough to be useful. If choices are
based on Pathload’s average rates, the choice is correct in
79.1% of paths. Scaling the Pathload estimates as we have
done improves this only to 80.4%. This change is so small
because there are relatively few paths where the order of
the rate estimates changes as a result of the squeezed pair
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scaling.
2) Pathload with Loss Rate and Round Trip Time:

We have examined using loss rates and round trip time to
refine estimates from Pathload. None of these showed a
significant improvement. On paths with a long round trip
time, greater than 150 milliseconds, pathload estimates
could be improved slightly by scaling estimates down.
These cases are all examples of transcontinental paths.
As the RON testbed only included 4 hosts not in the US,
drawing conclusions based on only these few is question-
able.

VI. A NALYSIS

Our measurement results show that Pathload predic-
tions are often significanly higher than average rates TCP
connections on the same path achieve, indicating that
BTC and available bandwidth often differ greatly.

We have found that Squeezed Pairs provide useful in-
formation about path conditions, and can successfully use
this information to pick paths were Pathload results are
closer to BTC measurements than other paths. Squeezed
Pair tests group paths depending on where flows experi-
ence congestion. When congestion occurrs near the net-
work endpoints, TCP is much slower than Pathload esti-
mates. When congestion occurs away from narrow links,
TCP rates are much closer to Pathload estimates.

We believe that there are two main causes behind these
observations. One factor is the degree of sharing between
flows. When limiting links are on slower paths near net-
work edges, there are likely to be only a few competing
flows, and thus a new TCP connection can capture a rel-
atively larger fraction of the unused capacity. The other
factor is the speed of the links in question. Paths with
faster access types are more likely to have congestion oc-
cur on links with speed similar to the capacity limiting

hop. TCP connections are not as efficient at utilizing spare
capacity on faster paths.

Pathload estimates combined with squeezed pairs are
similar to short TCP timing estimates in both quality
and network resources consumed. We believe that there
is considerable redundancy present in both Pathload and
Squeezed Pair measurements. These properties encourage
further refinement of both tools for estimation purposes.
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