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Abstract

Matching has become a popular method of causal inference but there is no
consensus as to how covariate balance obtained via matching ought to be
evaluated. We present a new diagnostic called the placebo test that involves
comparing two “placebo” sets of control units matched to the same set of
treated units. The placebo test is designed to aid estimation of the average
treatment effect for the treated units, providing information about the ex-
tent to which matching (1) reduces bias due to matching discrepancies on
observed characteristics and (2) reduces the variance of treatment effect es-
timates associated with this bias. The placebo test also checks robustness of
the matching procedure across multiple models and samples. Importantly,
the placebo test does not require outcomes data for the treated group and
thus is blind to the answer (the estimated treatment effect), consistent with
Rubin (2001)’s call for impartiality in causal inference research design. We
probe the plausibility of the placebo test using the National Supported Work
Demonstration (NSW) job training dataset of Dehejia and Wahba (1997).
We also use our test to validate the Diamond and Sekhon (2005) balance cri-
terion (based on paired t-test and Kolmogorov-Smirnov p-values) and show
that a criterion based on the more conventional unpaired t-test does not
appear to have desirable properties.



1 Introduction

Matching has become an increasingly popular method of causal inference in

many fields, but there is no consensus as to precisely how covariate balance

obtained via matching ought to be evaluated. We present a new diagnostic

called the placebo test that involves comparing two “placebo” sets of control

units matched to the same set of treated units. The placebo test is designed

to aid estimation of the average treatment effect for the treated units, provid-

ing information about the extent to which matching (1) reduces bias due to

matching discrepancies on observed characteristics and (2) reduces the vari-

ance of treatment effect estimates associated with this bias. This diagnostic

test also checks the robustness of the matching procedure across multiple

models and samples.

The idea behind the placebo test is highly intuitive. Diamond and Sekhon

(2005) show that in a classic observational setting with real-world data, ATT

estimates converge as balance improves, and ultimately, at the very highest

balance levels, collapse to a small neighborhood of the experimental bench-

mark treatment effect. This result is consistent with a wealth of theory

and empirical evidence showing that improving the balance of observed con-

founders across treatment and control groups can reduce the bias and vari-

ance of causal estimates.

One could, at least in theory, exploit this feature of matching-based analy-

sis to claim that adequate balance has been achieved when the best-balancing

1



estimates converge to a small neighborhood of results, but this stopping rule

involves looking at the answers which taints the impartiality of the research

design. Moreover, there is no empirical evidence showing that the same con-

vergence behavior would be observed were the study rerun with different

control units and different matching-models.1

Our proposed placebo test exploits the idea that improvements in balance

should be associated with a convergence around the true result, but allows

one to remain blind to the answer, consistent with Rubin (2001)’s call for

impartiality in causal inference research design. The basic idea is that the

convergence of ATT estimates described above is induced by the reduction

in matching discrepancies that comes with improvements in balance, and so

it should be possible to observe this convergence by examining the matched

control units (because the set of matched treated units remains the same).

We implement our diagnostic by randomly splitting the control group into

two “placebo” subgroups and then using each to run a matching procedure

that randomly searches for the subset of each placebo subgroup that best

matches the treated units. As the search proceeds and balance improves, we

find that the two matched control subsets become increasingly similar. At

the highest balance levels—as measured per Diamond and Sekhon (2005)—

the differences between average outcomes across matched control subgroups

converge to a small neighborhood around zero, identifying the point at which

1Throughout this paper, when we discuss different control units and multiple control
groups we assume that the definition of the control intervention is defined the same way
for all units.
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the answers are converging without actually revealing the answers themselves.

Others have proposed similar diagnostics involving multiple control groups

from entirely different data sources to test for hidden bias (Campbell 1969;

Rosenbaum 1984, 1987, 2001, 2002: sec.8, Lu and Rosenbaum 2004, Shadish

et al. 2002)2 but to our knowledge, our placebo diagnostic is the first to

show how—in a given dataset—improving balance also reduces the bias and

variance of causal estimates. Thereby our placebo test can help to establish

a balance threshold for a particular data-set. Because our diagnostic requires

running a random-search matching algorithm in both placebo subgroups, it

also checks robustness of estimates across datasets and differently-matched

control groups.

We probe the plausibility of the placebo test using the National Supported

Work Demonstration (NSW) job training dataset of Dehejia and Wahba

(1997) and show that, as balance improves, the mean squared error of our es-

timates declines along with the differences between average outcomes across

matched control subgroups. We also use our diagnostic procedure to validate

the Diamond and Sekhon (2005) balance criterion (based on paired t- and

Kolmogorov-Smirnov p-values) and show that a different criterion based on

the unpaired t-test does not appear to have desirable properties.

Section 1 provides a brief background on matching and explains the

random-search matching algorithm used for the placebo test. Section 2

2These tests can be interpreted as a methodological substitute to the formal sensitivity
tests for hidden bias reviewed in Rosenbaum (2002:sec. 4).
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describes the diagnostic test itself. Section 3 explains how we probed the

plausibility of the test by analyzing the NSW dataset. Section 4 concludes

with a discussion of the limitations of our diagnostic test and suggestions for

future research.

2 Matching

The Rubin Causal model, the predominant framework for causal inference

throughout the sciences, defines a causal effect in terms of the difference in

potential outcomes under treatment and control for the same set of units

(Rubin 1974, 1978; Holland 1986). The fundamental problem of causal in-

ference is that for each unit, only one potential outcome is observed. In

this paper, we focus on estimating ATT, the average treatment effect for the

treated units. For these units, only the potential outcomes under treatment

are observed. Treated units’ potential outcomes under control are missing.

Matching involves identifying the control units that are most like the treated,

and then using the observed outcomes of these matched control units to im-

pute the missing data.

2.1 Matching in the Rubin Causal Model

To formally characterize the Rubin model, we follow Imbens (2003) which

describes the simple case of two interventions (treatment and control), one of

which is assigned at a single point in time to N individuals randomly drawn

4



from a large population. Let Yi(1) denote the potential outcome for individ-

ual i following treatment, and Yi(0) denote the potential outcome for that

individual in the absence of treatment. Let W be a treatment indicator: 1

when i is in the treatment regime and 0 otherwise. We also assume SUTVA—

the stable unit treatment value assumption (Rubin 1980; Zhang and Rubin

2003), which requires the independence of potential outcomes and treatment

assignments for all units.

The observed outcome for observation i is Yi = Wi ·Yi(1)+(1−Wi) ·Yi(0),

and the effect of treatment for unit i may be defined as τi = Yi(1) − Yi(0).

ATT is defined as 1
NT

∑
i:W=1[Yi(1)− Yi(0)] and is often considered to be an

important estimand because analysts and policymakers tend to care about

the average effect of the treatment on those receiving the treatment. When

estimating ATT via matching, assignment to treatment is typically assumed

to be:

Assumption 1 (Unconfounded) Pr(W |X, Y ) = Pr(W |X) for all possi-

ble W , Y , and pretreatment confounders X.

Assumption 2 (Probability) 0 < Pr(Wi = 1|X) < 1 for all i, t, and all

possible X.

Together, unconfoundedness and probability constitute strongly ignor-

able assignment, and (with SUTVA) allow for the estimation of any causal

effect for which the data is available (Rubin 1974, 1976a,1976b, 1978; Rosen-

baum and Rubin 1983, 1985). The challenge of raw observational data is
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that the true model of assignment is unknown and strong ignorability rarely,

if ever, obtains for the entire sample. Note that strong ignorability of as-

signment requires conditioning on pretreatment covariates X, which implies

that the assumption only holds when covariate distributions are balanced

across treated and control groups. Thus, all matching-based methods share

the same basic goal—to identify the subgroup of control units most similar to

the treated—and the same burden of evidence: to demonstrate that adequate

balance has been achieved across all observed confounders.

2.2 Matching Discrepancies and Covariate Balance

Perfect covariate balance is only achieved in the case of exact matching when

the matched units have the exact same X. But unless exact matches are

available for all (treated) units matching will be inexact and discrepancies

in X across matched treated and control groups will generally induce biased

causal estimates (Abadie and Imbens 2006). To show this we follow the

exposition of Rubin and Imbens (2006: chap. 12) and define N∗ as the

number of matched pairs, equal to Nt if we match only the treated units.

We also define a matched pair as (lti, lci) where i indexes the match. Let

li ∈ 1, . . . , N denote the index of the unit that was originally matched, so

that li = lti when a treated unit is matched to a control or li = lci when

a control unit is matched to a treated unit. Let W ∗
li

indicate the treatment

status of the unit originally matched to produce the pair, and let X∗
li
, Y ∗

li
(0)

and Y ∗
li
(1) be the covariate vector and potential outcomes for this same unit.
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In this notation, the unit-level treatment effect is then equal to τi(X
∗
li
) =

Y ∗
li
(1) − Y ∗

li
(0), estimated using the observed outcomes for the two units of

the matched pair:

τi(X
∗
li
) = W ∗

li(1) · (Y ∗
li
(1)− Ylci

(0)) + (1−W ∗
li(1)) · (Ylti(1)− Y ∗

li
(0))

Here we only match the treated units where W ∗
li

= 1 so τ(X∗
li
) = Y ∗

li
(1) −

Ylci
(0). In the ideal case of exact matching both units of each pair would have

covariates equal to X∗
li
. With inexact matching, however, only covariates for

the treated unit Xlti equal X∗
li

and the difference in covariate values between

the two units in the pair is called the matching discrepancy, D∗
li

= Xlti−Xlci
.

In the case of exact matches when D∗
li

= 0 the expected difference in

observed outcomes within each pair is equal to the treatment effect condi-

tional on X∗
li
. So for treated units the expected value of the true unit level

treatment effect is:

τ(X∗
li
) = E[Yi(1)|Xi = Xlti ]− E[Yi(0)|Xi = Xlti ]

But with non-zero matching discrepancies, the expected value of our estima-

tor for the unit level treatment effect equals:

E[τ̂(X∗
i )|Xlti , Xlci

] = E[Ylti − Ylci
|Xlti , Xlci

]

= E[Yi(1)|Xi = Xlti ]− E[Yi(0)|Xi = Xlci
]

7



and so for treated units with W ∗
li

= 1:

E[τ̂(X∗
i )] = τ(X∗

li
) + E[Yi(0)|Xi = Xlti ]− E[Yi(0)|Xi = Xlci

]

The difference of the last two terms is the expression of the bias of the

matching estimator that arises due to the discrepancy between the X of the

treated and the X of its matched control unit. With better balance comes

smaller matching discrepancies and smaller bias—and as the bias shrinks,

the variance associated with the bias also shrinks.

2.3 Common Standards of Covariate Balance

Despite the popularity of matching-based methods, the literature lacks a

commonly agreed-upon metric for covariate balance. Consequently, there is

also no agreement about the degree of balance required for reliable infer-

ence.3 In practice, most researchers conduct univariate unpaired t-tests to

compare covariate means across treatment and control groups and are satis-

fied if less than 5% of their p-values are statistically significant at the 0.05

level. Another popular way to test balance is to examine standardized differ-

ences between groups (Rubin and Rosenbaum 1985), which is defined as the

difference in means across the matched samples, scaled by the square root of

the matched samples’ average variance. Diamond and Sekhon (2005) recom-

3As Smith and Todd (2005b:371) put it: “The most obvious limitation at present is that
multiple versions of the balancing test exist in the literature, with little known about the
statistical properties of each one or of how they compare to one another given particular
types of data.”
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mend both the paired t-test combined with the Kolmogorov-Smirnov (KS)

test be performed across all covariates, two-way interaction, and quadratic

terms, and suggest that very high p-values may be required for reliable causal

inference in nonexperimental settings. Finally, in a recent paper Ho et. al.

(2006) argue that hypothesis tests are inappropriate for assessing balance.

Instead, Ho et. al. (2006) suggest examining the full empirical densities for

each matching variable and propensity scores using quantile-quantile plots.

Apart from univariate tests the literature also suggests various multi-

variate balance tests, including the Hotelling T 2 test of the joint null of

equal means of all covariates, the multivariate (bootstrapped) Kolmogorov-

Smirnov (KS) test, the Chi-Square null deviance tests based on the estimated

assignment probabilities, and regression-based tests for joint insignificance.

Little is known about which of these tests is preferable under what condi-

tions, how the multivariate tests relate to their univariate counterparts, and

the degree of balance required for reliable inference.

2.4 Iterative Random Search Matching Algorithm

The matching method employed in this paper is a special case of genetic

matching (Diamond and Sekhon 2005), an affinely invariant matching al-

gorithm designed to maximize the lowest univariate KS and paired t-test

p-values. Genetic matching uses the following generalized distance measure
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when matching each treated unit to the nearest control unit,

d(Xi, Xj) =
{

(Xi −Xj)
′ (S−1/2

)′
CS−1/2(Xi −Xj)

} 1
2

where S1/2 is the Cholesky decomposition of S (the variance-covariance ma-

trix of X) and C is a k × k positive-definite diagonal weight matrix, with k

main diagonal elements of C that must be chosen. Following Diamond and

Sekhon (2005,) we match on the linear predictor of the estimated propen-

sity score, Pr(Wi = 1), as well as the covariates X once they have been

adjusted so as to be uncorrelated with the linear predictor.4 Diamond and

Sekhon (2005) utilize an evolutionary algorithm called GENOUD (Mebane

and Sekhon 1998; Sekhon and Mebane 1998) that selects the k − 1 free el-

ements of C to minimize a measure of the maximum observed discrepancy

between matched treated and control covariates at every iteration of opti-

mization. Loss is defined as the minimum p-value observed across a series of

balance tests performed on distributions of matched baseline covariates.5

Instead of this particular genetic matching algorithm, we employed a sim-

ple random search over the space of C’s diagonal elements.6 Each random

sample (drawn from a standard uniform distribution) populates the diagonal

4Adjustment is accomplished by regressing each covariate on the estimated linear pre-
dictor, Xk = α̂ + µ̂ + ε̂k, where k indexes the covariate number.

5In fact, loss is actually defined lexicographically; so two different sets of matching
results produced the same lowest p-values, the algorithm would then compare the next
lowest p-values.

6This random search is a special case of GENOUD whereby optimization occurs within
a single generation and the only permutation operator enabled is the one that allows
random search. See Sekhon and Mebane (1998) for more details.
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of the W matrix, which identifies the distance measure and allows match-

ing to proceed. This process is repeated thousands of times for different

randomly generated weights, and each time we record the identities of the

matched control units and the balance test output (expressed as KS, paired-

t, and unpaired-t test p-values.) We opted for a random search algorithm,

as opposed to an “intelligent” evolutionary algorithm because we wanted to

evaluate the results of a broad range of weight matrices producing a wide

spectrum of balance results, and the standard genetic matching algorithm

favors weight matrices that minimize the Diamond and Sekhon (2005) loss

function. In our case, random search was sufficient to identify weight matri-

ces producing an extremely high degree of balance.7

3 The Placebo Diagnostic Test for ATT

The more similar the matched treated and control groups, the better the

matched controls represent the treated in the absence of treatment, and

the smaller the bias (and variance) induced by matching discrepancies. In

theory, at some high level of balance, matching a given set of treated units

should produce similar results regardless of the chosen control group. Any

such similarity would be driven entirely by the similarity—across control

groups—of mean matched-control outcomes.

The placebo test exploits this idea by randomly dividing the controls into

7Subsequently we implemented the standard GENOUD optimization and obtained even
better-balancing results that were substantively consistent with our existing findings.
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two placebo samples A and B, thereby producing two completely different

control groups with very similar features. A and B are composed of different

units, but (by construction) there should be no systematic differences be-

tween their distributions of observed and unobserved confounders. We then

implement the iterative random search matching algorithm described in the

prior section two times—once for each treatment and placebo-group pairing.

For each pairing, the algorithm repeatedly populates the weight matrix T

times (with different random samples from a multivariate standard uniform

distribution), performs the matching exercise, and records the identities of

matched controls, their mean outcomes (post-treatment earnings), and the

balance output. Iterations proceed until the random search is judged to have

sufficiently explored the search space and produced results across a broad

range of balance levels.8

For each of the two placebo groups, this produces a vector that records

the mean outcomes for each set of matched controls denoted Y a,j with j =

1, ..., T indexing the iterations of the algorithm and Y b,k with k = 1, ..., T

respectively. We also get a second vector that contains the measure of balance

quality associated with each Y a,j and Y b,k. Recall that our measure of balance

quality is the lowest p-value from Kolmogorov-Smirnov (KS) tests and either

the paired or the unpaired t-test for all raw covariates, two-way interaction,

and quadratic terms. We denote these vectors of balance measures by pa,j

8This can require many thousands of evaluations and days of computation time, even
on a fast dedicated server.
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and pb,k respectively.

Finally, for all j and k we bin the Y a,j and Y b,k according to their

corresponding p-values into intervals denoted by Il with l = 1, ..., λ. In

our analysis, we chose λ = 5, and selected intervals that we were curi-

ous about and that represent conventional thresholds for statistical signif-

icance. For the runs with the paired t-test we defined the intervals as

I1 = [0, 0.01], I2 = (0.01, 0.05], I3 = (0.05, 0.10], I4 = (0.10, 1], I5 = (0.15, 1].

Since much higher lowest p-values can be achieved using the more lenient un-

paired t-tests instead of the paired t-test, we defined the intervals for the for-

mer as Ĩ1 = [0, 0.05], Ĩ2 = (0.05, 0.15], Ĩ3 = (0.15, 0.30], Ĩ4 = (0.30, 0.1], Ĩ5 =

(0.50, 1].9

The last step of the test is then to compute and examine, within each bin,

the differences in the mean outcomes between the sets of matched controls

from both placebo groups. For the runs with the paired t-test:

δl = Y a,j − Y b,k ∀ (j, k) : pa,j ∧ pb,k ∈ Il

and for the runs with the unpaired t-test:

δl = Y a,j − Y b,k ∀ (j, k) : pa,j ∧ pb,k ∈ Ĩl

The logic of our placebo test rests on the idea that the distribution of δ can

9The binning scheme we chose is somewhat arbitrary. We confirmed our substantive
results were robust across several different binning schemes.
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provide information about the quality of the covariate balance achieved and

the reliability of the ATT estimate. As long as there are still considerable

differences in the mean outcomes between the two matched placebo control

groups, at least one of these matched groups is not a valid representation

of what would have happened to the treatment group in the absence of the

treatment. Under these circumstances, better balance is necessary to assure

robust, reliable results.

Using the distribution of δ as a balance measure is appealing for several

reasons. First, since a test based on δ never involves looking at the outcomes

for the treated units it is “blind to the answer”. Second, in contrast to

conventional balance tests based on a set of particular X, our placebo test

implies a check of the robustness of the matching procedure across multiple

models and samples because it involves specifying the combination of X and

propensity scores repeatedly in different ways.10 Third, the placebo test can

help to establish a balance threshold for a particular data-set. If a researcher

finds that as balance improves the mean of δ moves towards zero, and yet

considerable bias remains, then the conclusion would be that better balance

or alternative adjustments are required.

10The elements of δ result from different (iterative) random draws populating the
W weight matrix, and it is this weight matrix that determines which control units get
matched.
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4 Empirical Assessment of the Placebo Test

4.1 Data

To probe the plausibility of our hypotheses we utilize the National Sup-

ported Work Demonstration Program dataset (Dehejia and Wahba (1997;

1999; 2002), Lalonde (1986), Smith and Todd (2001; 2005a; 2005b), which

derives from a randomized job training experiment implemented in the mid-

1970s. This is the classic dataset that scholars have used repeatedly over

several decades to evaluate methods and tools for causal inference. The

standard NSW research design is to use the experimentally-derived result

as a benchmark ATT estimate, and then attempt to recover this result af-

ter replacing the randomized control group with Current Population Survey

(CPS) data. The goal is to construct an inferential challenge akin to what

analysts face in nonexperimental settings, such that there is a known bench-

mark answer allowing one to evaluate the reliability of a given estimator.

The dataset is described in detail in Dehejia and Wahba (1995; 1997).

It includes covariate information on individuals’ age, sex, race, marital sta-

tus, education, and two years of pretreatment annual income. There are

185 treated units and 15,992 CPS control units. As discussed above, run-

ning the placebo test involved randomly dividing the control group into two

placebo subgroups, running the random-search matching algorithm for each

subgroup, and recording balance-related output based on KS, paired-t, and

unpaired-t test p-values for all covariates, squared terms, and two-way inter-
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actions. We ran more than 5000 evaluations for each subgroup before halting

the procedure and examining the results.

4.2 Results

We first examined whether the distribution of δ within a particular bin was

a good signal about the quality of the covariate balance associated with the

values in that bin.11 Covariate balance was first measured by taking the

lowest p-value obtained across all Kolmogorov-Smirnov (KS) and paired t-

tests. Figure 1 shows the distribution of δ within our p-value intervals, and

two features become immediately apparent.

First, the figure conveys strong convergence of the distribution of δ to-

wards zero (both mean and variance) as we go from lower to higher balance

quality bins. For example, consider the black line which represents the den-

sity distribution of δ in the bin of lowest p-value [0, 0.01]. At this low balance

level, the distribution of δ, i.e. the differences in mean outcome between the

two matched control groups, is fairly wide and centered far to the right of

zero. Compare this to the blue line, which represents the density distribu-

tion of δ in the bin of lowest p-value (0.10, 1]. The mean of this distribution

is closer to zero and the variance has decreased. Yet, only in the highest

balance bin with lowest p-value of (0.15, 1] does the distribution of δ center

in on the close neighborhood of zero. This placebo test result suggests that

11Each bin contained at least 100 evaluations. Bins associated with the worst balance
estimates had more than 10000 evaluations.
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ATT estimates are robust and adequate balance has obtained only for these

evaluations with the very highest p-values. Figure 2, which plots the em-

pirical cumulative distribution function of the absolute values of δ for each

balance bin makes the convergence in the distribution of δ at higher balance

levels even clearer.

The second feature apparent in figure 1 is that—consistent with the find-

ings in Diamond and Sekhon (2005)— our results suggest that a very high

balance standard is needed for reliable causal inference (at least in this data-

set). The distribution of δ centers around zero only at the highest balance

quality bin of lowest p-values (0.15, 1]. Note that this refers to the lowest

p-value across all KS and paired t-tests and thus constitutes a much higher

balance hurdle than conventionally demonstrated in the matching literature.

Hitherto, virtually all matching papers only rely on unpaired t-tests to

evaluate covariate balance. Usually these tests are restricted to the variables

used in the matching (no interactions or quadratic terms are tested) and

a lowest p-value of higher than 0.05 or 0.1 is considered the cutoff point

for sufficient balance. Such a balance standard seems much too lenient and

does not allow for reliable causal inference given that considerable differences

between the mean outcomes in the two control groups remain.

Figure 1 clarifies this point by plotting the distribution of δ for each lowest

p-value bin, this time using the lowest p-value across KS and unpaired t-tests

as our measure of covariate balance between the treatment group and each of

the particular control groups. There is no strong indication of convergence in
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the distribution of δ towards zero, even for the highest quality bins. Consider

the orange line, for example, which plots the distribution of δ in the interval

of lowest p-values of (0.05, 0.15], the balance level commonly regarded as

sufficient in the literature. Strikingly, the distribution of δ still exhibits a

very large variance and the distribution is centered far to the right of zero.

Clearly, at this level of balance reliable causal inference seems impossible

given the considerable differences observed in the mean outcome between

the two control groups.

But even for the highest balance quality bin (with lowest p-values in the

interval (0.5, 1], which is astoundingly high by this metric) the distribution

of δ is still not centered around zero. The empirical cumulative distribution

functions of the absolute values of δ displayed in figure 4 confirms the lack

of convergence. As balance (measured by the lowest p-value across KS and

unpaired t-tests) improves, the distribution of δ does not collapse over zero.

Taken together, these findings suggest that (1) the cutoff commonly used for

the lowest p-value is much too low, and that (2) the unpaired t-test does not

represent an effective balance criterion.12

Thus far, we have shown evidence to support our claims that:

1. the distribution of δ is a good proxy for the quality of the covariate

balance achieved between treatment group and each of the particular

12Note that in contrast to the usual balance standard used in the literature here we also
incorporate the KS test and check balance across all interactions and quadratic terms.
Were we to only use the unpaired t-test across the raw covariates the convergence in δ
would probably look even worse.
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control groups (as measured by the lowest p-value across all KS and

paired t-tests).

2. unpaired t-tests do not provide a valid balance criterion.

The last remaining step in validating our placebo test is to show that the

convergence in the distribution of δ also gets us closer to the true answer, by

which we mean the ATT estimate obtained from the experimental dataset.

Evidence for this claim is provided in table 1 which summarizes the link

between mean squared error and the convergence of the distribution of |δ|.
Here, MSE is computed as the average squared deviation of the experimental

benchmark ATT estimate from the ATT estimates obtained by comparing

the mean outcome of the treatment group with the mean outcome of each of

the matched control groups contained in each bin.

The upper panel shows the results using the paired t-test, the scenario for

which we previously found convergence in the distribution of δ. The conver-

gence is again evident in the table, as the mean and the standard deviation of

|δ| monotonically decreases from lower to higher balance quality bins. Con-

sistent with our argument, the MSE is also monotonically decreasing, and we

find a very strong positive correlation between the MSE and the means and

variances of |δ| across the bins. The high correlation suggests that the |δ|
of estimates in a bin contains information about the extent to which those

estimates are biased.

The lower panel shows the same type of information using the unpaired
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t-test. Here, again we see evidence that the unpaired t-test does not exhibit

the nice properties of the paired test. Also, consistent with our argument,

we see similarly high positive correlation between the MSE and the mean of

|δ| across the bins even though the mean and standard deviation of |δ| is no

longer monotonically increasing across the bins.

5 Conclusion

We present the placebo test as a new diagnostic instrument intended to

supplement, not replace, existing methods for evaluating balance. We agree

with Ho et. al. (2006), who caution against relying on one measure to assess

balance. We certainly think it is wise, whenever possible, to look at the entire

empirical distribution of the matching covariates, especially those believed

to produce the most significant confounding.

Moreover, we recognize that the placebo test will not be easy to implement

in all cases. When the dataset is such that it is difficult to find good matches

using all the controls, finding good matches using only half the controls may

well prove impossible. In the NSW empirical example, this was not such

a serious problem because there were far more controls than treated units.

Were the numbers of treated and control more nearly equal, the matching

exercise would have proven much more difficult.13

Our final caveat is that it is always dangerous to draw conclusions from

13In practice, we have found it difficult to match effectively across many covariates when
the ratio of controls to treated is less than 3-to-1.
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one empirical case. The NSW example was intended as a plausibility probe.

The next step is to perform additional analyses vis-a-vis Monte Carlo exper-

iments and other real-world datasets for which a target “correct” answer is

known.

These issues aside, we believe that our proposed diagnostic offers several

important benefits. First, it does not require looking at the answers, which

means that the test can be designed, performed, and repeated with honesty

and impartiality. Second, the test represents a check on the robustness of

one’s estimates across different datasets and matching models. Third, as

we show, examining the distribution of δ as balance improves can provide

information about the extent to which matching reduces the bias and variance

of treatment effect estimates. Thus, our placebo test is the first diagnostic

that allows to establish a balance threshold for a particular data-set.
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6 Figures
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Figure 2:
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Figure 3:
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Figure 4:
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7 Tables

Table 1: Mean Squared Error and the Distribution of δ at Different Balance
Levels.

Kolmogorov-Smirnov and Paired T-Tests
Bin Il 1 2 3 4 5
p-value interval [0, 0.01] (0.01, 0.05] (0.05, 0.10] (0.10, 1] (0.15, 1]
MSE 120683 105812 95750 95678 64448
|δI | 471 398 320 247 162
SD |δI | 315 269 223 181 118

Cor(|δI |, MSE) 0.95

Kolmogorov-Smirnov and Unpaired T-Tests
Bin Ĩl 1 2 3 4 5
p-value interval [0, 0.05] (0.05, 0.15] (0.15, 0.30] (0.30, 1] (0.50, 1]
MSE 110647 80309 108379 144329 91552
|δĨ | 400 398 504 538 388
SD |δI | 283 257 283 265 237

Cor(|δĨ |, MSE) 0.81

|δI | and SD |δI | denote the mean and the standard deviation of the absolute value of the difference of the mean outcomes

between each set of matched controls from the two placebo groups computed in each bin Il or Ĩl of lowest p-values. For
each matched control group, the lowest p-value was obtained by comparing it to the experimental treatment group with
respect to all raw covariates plus their two-way interactions and quadratic terms. MSE is the mean squared error of ATT
estimates, in each bin, from the experimental benchmark ATT estimate.
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