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Convergence and Asymptotic Agreement 
in Distributed  Decision Problems 

JOHN N. TSITSIKLIS AND MICHAEL ATHANS, FELLOW, IEEE 

Abstract -We  consider  a  distributed  team  decision  problem  in  nrhich 
different  agents  obtain  from  the  environment  different  stochastic  measure- 
ments,  possibly  at  different  random  times,  related to the  same  uncertain 
random  vector.  Each  agent  has  the  same  objective  function  and  prior 
probability  distribution.  We  assume  that  each  agent can compute  an 
optimal  tentative  decision  based upon his o m  observation  and  that  these 
tentative  decisions  are  communicated  and  received, possibly at random 
times, by- a subset of other  agents.  Conditions  for  asymptotic  convergence 
of each  agent’s  decision  sequence and asymptotic  agreement of  all  agents’ 
decisions are  derived. 

I. INTRODUCTION 

C ONSIDER the following situation. A set (1, . . . , X }  of IV 
agents possessing a common model of the world (same 

prior probabilities) and having the same cost function (common 
objective) want to make an optimal decision. Each agent bases 
his decision on a set of observations he has obtained and we 
allow these observations to be different for each agent. Given this 
setting, the decisions of the agents will be generally different. 
Aumann [4] has shown, however, that agreement is guaranteed in 
the following particular case. If the decision to be made is the 
evaluation of the posterior probability of some event and if all 
agents’ posteriors are common knowledge, then all agents agree. 
(In Aumann’s terminology, common knowledge of an event means 
that all agents know it, all agents know that all agents know it, 
and so on, ad infinitum.) 

The situation where  each  agent’s posterior is common knowl- 
edge is very  unlikely, in general. On the other hand, if agreement 
is to be guaranteed, posteriors have to be common knowledge. 
The problem then becomes how to reach a state of agreement 
where decisions are common knowledge, starting from an initial 
state of disagreement. 

Geanakoplos and Polemarchakis [7] and Borkar and Varaiya 
[6] gave the following natural solution to the above problem. 
Namely, agents start communicating to each other their tentative 
posteriors (or,  in the formulation of [6], the conditional expecta- 
tion of a fixed random variable) and then update their own 
posterior, taking into account the new information they have 
received. In the limit, each person’s posterior converges (by the 
martingale convergence theorem) and assuming that  “enough” 
communications have taken pIace,  they  all  have to converge to a 
common limit. 

The above results hold  even  when  each agent obtains  addi- 
tional raw observations during the adjustment process and when 
the history of communications is itself random. Similar results 
were also proved for a detection problem [6]. 
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A related-and much more general situation-is the subject of 
this paper; we assume that the agents are not just interested in 
obtaining an optimal estimate or a likelihood ratio,  but their 
objective is to try to minimize some common cost function, given 
the available information. (Clearly, if each agent has a different 
cost function, no agreement is possible even if each agent had 
identical information.) In t h ~ s  setting. we assume that agents 
communicate to each other tentative decisions (which initially 
will be different). That is, at any time, an agent computes an 
optimal decision given the information he possesses and com- 
municates it to other agents. Whenever an agent receives such a 
message from another agent, his information essentially increases 
and he  will, in general, update his own tentative decision, and so 
on. In the sequel we prove that the qualitative results obtained in 
[6], [7] for the estimation problem (convergence and asymptotic 
agreement) are also valid for the decision-making problem for 
several, quite general, choices of the structure of the cost func- 
tion. However, tentative decisions do not form a martingale 
sequence and a substantially different mathematical approach is 
required for the proofs. We point out that estimation problems 
are a special case of the decision problems studied in this paper, 
being equivalent to the minimization of the mean square  error. 

A drawback of the above setting is that each agent is assumed 
to have an infinite memory. We have implicitly assumed that the 
knowledge of an agent can only increase with  time and, therefore, 
he has to remember the entire sequence of messages  he has 
received in the past. There is also the implicit assumption that if 
an agent receives additional raw data from the environment, 
while the communication process is going on, these data are 
remembered forever. These assumptions are undesirable, espe- 
cially if the agents are supposed to model humans, because 
limited memory is a fundamental component of the bounded 
rationality behavior of human decision makers [14]. We  will 
therefore relax the infinite memory assumption and allow the 
agents to forget any portion of their past knowledge. We only 
constrain them to remember their most recent decision and the 
most recent message (tentative decision) coming from another 
agent.  (For a particular class of communication protocols. we 
even  allow  them to forget their most recent decision.) We then 
obtain convergence results similar to those obtained for the 
unbounded memory model, although in a slightly weaker sense. 

A particular problem of interest is one in which  all random 
variables are jointly Gaussian and the cost is a quadratic function 
of an unknown state of the world and the decision. It was 
demonstrated in [6] that the common limit to which decisions 
converge (for the estimation problem) is actually the centralized 
estimate, i.e., the estimate that would be obtained if  all agents 
were to communicate their detailed observations. We prove (Sec- 
tion IV) that the same is true in the presence of memory limita- 
tions, provided that each agent never forgets his own  raw ob- 
servations. (That is,  he  may  only forget past tentative decisions 
sent to him by other agents.) We indicate that for linear quadratic 
Gaussian (LQG) problems our scheme is essentially a decomposi- 
tion algorithm for solving static linear estimation problems. As 
we point out in Section IV, this scheme has certain appealing 
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features: there is significant parallelism in the computations 
which matches nicely  with the assumed distribution of the data; 
also, in the course of the algorithm, acceptable estimates are 
obtained much earlier than the time that would be needed to 
compute the optimal estimate by centralizing the information. 
These tentative estimates can be very  useful  whenever there are 
strict time limits within which certain decisions have to be made. 

We also consider (Section V) a slightly different scheme in 
which  each agent transmits his tentative decision to a coordina- 
tor. The latter evaluates a weighted  average of the tentative 
decisions he has received and sends it back to all agents. We 
show that  our results remain valid for this scheme as well, and 
suggest an economic interpretation in which  the coordinator can 
be viewed as some sort of market mechanism. We also show that 
making optimal tentative decisions corresponds to Nash strate- 
gies for a certain sequential game. 

A weak point  of  the model  is that not only does each agent 
have the same prior information and knows the statistics of the 
other agents’ observations, but also has the same model of the 
probabilistic mechanism that generates interagent communica- 
tions. In particular, if h s  is a deterministic mechanism, an agent 
must know the precise history of communications between any 
pair of other agents, a strong requirement. If it is a stochastic 
mechanism, then there are two possibilities: either the history of 
communications becomes commonly known on-line (at the ex- 
pense of additional communications) or each agent will have to 
make probabilistic inferences about the communications between 
all other agents. These weaknesses disappear, however, if every 
tentative decision is broadcast simultaneously to all other agents, 
at each stage. In  that case the history of communications is 
simple, commonly known, and easy to remember. (This will be 
the case, for example, if a set of experts with the same objective 
teleconfer and take turns suggesting what they believe to be the 
optimal decision.) 

Finally, we point out the ways in which our scheme is different 
from other schemes for distributed decision making or computa- 
tion: in team decision theory [9] each agent tries to behave 
optimally, while trying to anticipate the behavior of the other 
agents; the issue of who implements what component of the 
decision vector is  very important; we are interested instead in 
consensus and  in a common decision, quite independently of 
implementation issues. In many schemes for distributed computa- 
tion [2], [5] each agent specializes in  updating only those compo- 
nents of the decision vector that have been assigned to h i m ,  
whereas in  our scheme each agent updates the entire decision 
vector. 

Motivation 

There are many real world situations in which  several agents 
(or processors) with different on-line information have to cooper- 
ate, combine their information, and arrive at a common decision. 
Examples can be drawn from power, air traffic control, and 
command and control systems. Consensus on the optimal can be 
certainly reached by transmitting all information to a prede- 
termined agent (centralization) but there are situations in which 
this is impractical, due to time and communications limitations. 
So, it may be preferable to communicate aggregate data. De- 
termining an optimal way to “aggregate” is not a well-posed 
problem. If constraints  are placed on the number of bits to be 
transmitted, the problem becomes computationally intractable, 
even in very simple situations where there is only a finite number 
of possible events and decisions [ l l ] .  On the other  hand, if a 
message is allowed to be any real number, all data can be coded 
in a single  message. (This is reminiscent of decentralized control 
problems in which an agent may observe the decisions of other 
agents-the so-called control sharing pattern [l],  [13].) Any such 
trick is very sensitive to noise in the channel and is effectively just 
a more complicated way  of centralizing information, which was 
deemed undesirable in  the first place. 

The above discussion implies that a particular aggregation of 
the data should be chosen by means of some ad hoc rule that 
guarantees that certain desirable characteristics are present. Un- 
less some particular structure on the problem is assumed, the 
optimal tentative decision given an agent’s information seems to 
be a natural message that an agent could transmit and this is the 
reason that we have adopted such a framework in this paper. Of 
course, a demonstration that  our scheme leads to approximate 
consensus with fewer communications and/or computations than 
direct centralization has to rely on numerical experimentation 
and the answer will depend on the specific situation. 

11. MODEL FORMULATION 

In this section we present a mathematical formulation of the 
model informally described in the Introduction. We start with the 
general assumptions and  later proceed to the development of 
alternative specialized models to be considered (e.g., memory 
limitations, particular forms of the cost function, etc.). As f a r  as 
the description of the sequence of communications and  updates 
goes, we basically adopt the model of Borkar and Varaiya [6] 
except that time is considered to be discrete. As in [6], events are 
timed with respect to a common, absolute clock. As far as 
notation is concerned, we  will  use subscripts to denote time and 
superscripts to denote agents. 

We assume that we are given a set {I, . . . , N } of N agents, an 
underlying probability space (D,  9, P), and a real valued cost 
function c: Q X U tf R ,  where U is the set of admissible values of 
the decision variable. It will be useful in the sequel to distinguish 
between elements of U and U-valued random variables. The  letter 
u will be used to denote elements of U whereas u, w will be used 
to denote U-valued random variables (measurable functions from 
D to U ) .  

Assumption I :  Either 
1.1: U is a finite set, or 
1.2: U = R“, for some n .  

Assumption 2: The cost function c is nonnegative and  jointly 
measurable in (a, C J ) .  Moreover, E[c(u)]  < co, Vu E U. When 
Assumption 1.2 holds, we assume that there exists a positive and 
measurable function A :  D tf R such that 

(Remark: If  we fix u l ,  u, ,  u1 f u2 and take expectations of both 
sides of (l), it follows that A is integrable.) 

Inequality (1) implies that c is a strictly convex function of u 
and strict convexity holds in a uniform way, for any fixed w E C2. 
It also follows that c( w ,  v )  is continuous for any w E 9. This 
assumption is satisfied, in particular, if c is twice continuously 
differentiable in u and its Hessian is positive definite, uniformly 
in c, for  any fixed w E a. 

We  may use the function A ,  defined in Assumption 2, to define 
a new measure p on ( 9 ,  S) by 

p ( B ) = J A ( w ) d P ( w ) ,  B E S .  
E 

This measure will be used in Section III. 
We  now consider the generic situation facing agent i at some 

time n. Let q. c 9 be a u-field of events describing the informa- 
tion possessed by agent i at time n. Because of Assumption 2, the 
conditional expectation E [  c( u )  I 9:] exists (is finite), is %-mea- 
surable, and is uniquely determined up to a set of measure zero, 
for any fixed u E U. Agent i then computes a tentative decision u; 
that minimizes E [  c( u )  I c.1. The following lemma @roved in the 
Appendix) states  that u i  is well defined and *-measurable. 
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Lemma 1: Under Assumptions 1.2 and 2, there exists an %,'- 
measurable random variable u;,, which  is unique up to a set of 
measure zero, such that 

for any U-valued,  %.-measurable random variable w. The same 
results are true (except for uniqueness) under Assumptions 1.1 
and 2. 

We continue with a description of the process of communica- 
tions between agents. When, at time n ,  agent i computes his 
tentative optimal decision u i ,  he may communicate its realized 
value (say L ( )  to any other agent. (If c(, is not unique, a particular 
minimizing L$, is selected according to some commonly known 
rule.) Whether, when, and to which agents c(, is to be sent is a 
random event whose statistics are described by (a, F, 8). In 
particular, it may depend on the data possessed  by agent i at time 
n .  So, we implicitly allow the agents to influence the process of 
communications, although we do not require this influence to be 
optimal in any sense. This allows the possibility of signaling 
additional information, beyond that contained in z?:. by ap- 
propriately choosing when and to which agents to communicate. 
We  allow the communication delays to be random but finite. We 
also assume that when an agent receives a message,  he knows the 
identity of the agent who sent it. 

We  now impose conditions on the number of messages to be 
communicated in the long r u n ;  these conditions are necessaq for 
agreement to be guaranteed. Namely, we require that there is an 
indirect communication link from any agent to any other agent 
which is used an infinite number of times. This can  be made 
precise as follows. 

Let A (   i )  be the set of all agents that send an infinite number of 
messages to agent i ,  with probability 1. Then, we make the 
following assumption. 

Assumption 3: There is a sequence MI, . . . , m k +  , = m ,  of not 
necessarily distinct agents such that m, E A ( m , - l ) ,  i =1,2, . . . , k .  
Each agent appears at least once in this sequence. 

The main consequence of Assumption 3, which will be re- 
peatedly used, is the following. If { hi:  1 ,  . . . , N } is a set of 
numbers such that h i <  hJ,  V j  E A ( i ) ,  Vi, then h ' =  hJ. V i , j .  

We continue with a more detailed specification of the opera- 
tion of the agents. We introduce assumptions on the knowledge 
q,' which are directly related to the properties of the memory of 
agent i .  An agent may receive (at any time) observations on the 
state of the world or receive tentative decisions (messages) of 
other agents. The knowledge of an agent at some time will be a 
subset (depending on the properties of his memory) of the total 
information he has received up to that time. We consider four 
alternative models of memory, formalized with the four assump- 
tions that follow. 

Let w; be any message  received by agent i at time n. Our most 
general assumption requires that w,: and u:, - , are remembered at 
time n .  

Assumption 4 (Imperfect  Memory): For all n ,  the o-field F; is 
such that u:, - and W; are %:-measurable. 

Assumption 4 can be further weakened if some restrictions are 
imposed on the communications protocol. 

Assumption 5 (Imperfect  Memory): For each n there exists a set 
I (  n )  of agents such that: 

a) u:, - , E F/, V i  E I(  n - l ) ,  V j  E I (  n )  
b) = Fi-l, V i  not in I ( n ) .  

Intuitively, I ( n )  is the set of agents that update their decision 
at time n. Assumption 5 is satisfied by the following two common 
communication protocols, provided that agent i may obtain  addi- 
tional observations only at times such that i E I (n) .  

Ring Protocol: I ( n )  = { k } ,  where k is the unique integer such 
that 1 < k < N and k + mN = n ,  for some integer m .  Here, ex- 
actly one agent updates at any time instance and communicates 
his tentative decision to the next agent, and so on. 

StarProtocol: I(n)={l,--.,N-l},ifnisodd;Z(n)={N}, 
if n is  even. Here all agents but the last one update simulta- 
neously. communicate to the last agent who updates, and com- 
municates to all other agents, and so on. 

Assumption 6 (Own Data  Remembered): Let Gi be the subfield 
of Fdescribing all information that has been observed by agent i 
up to time n ,  except for the messages of other agents. We assume 
that G:, c z,'. 

With Assumption 6, we allow the agents to forget the message 
they received in the past, but they are restricted to remember all 
their past observations. In this case the total information avail- 
able to all agents is preserved. 

Assumption 7 (Perfect Memoty): We  let Assumptions 4 and 6 
hold and assume that 9; c F;+,, V i ,  n. 

Whenever Assumption 7 holds, we will denote by S$ the 
smallest a-field containing F;, for all n.  

We  now define a few special  cases of particular interest. 
1) Estimation  Problem: We are given a R" valued random 

vector x on (0,F. 8). The objective is to minimize the mean 
square error. Hence, the cost function is c( u )  = (x - v ) ~ (  x - z,), 
where T denotes transpose. It is  easy to see that this is a 
particular case of a strictly convex function covered by Assump- 
tion 2, with A (  w )  being a constant. 

2) Static Linear Quadratic Gaussian  Decision  Problem (LQG): 
Let x be an unknown random vector. Let the sequence of 
transmission and reception times be deterministic. We assume 
that the random variables observed by the agents are zero mean 
and, together with x .  jointly normally distributed. We  allow the 
total number of observations to be infinite. Let U = R". The 
objective is to fix z! so as to minimize  the expectation of the 
quadratic cost function C(C)  = oTRu + xTQu, nith R > 0. It fol- 
lows that the optimal tentative decision of agent i at time n is 
u:, = GE[  xly",'] = E[Gxl42;,'], where G is a precomputable matrix. 
If  we redefine the unknown vector x to be equal to G.r instead of 
x, we conclude that we may restrict to estimation problems, 
without loss of generality. 

3) Finite  Probability  Spaces: Here we let D be a finite set. 
Then. there exist finitely many u-fields of subsets of 8. Strict 
convexity implies that for each u-field Fo c S a n d  any w E 0 of 
positive probability there exists a unique optimal tentative deci- 
sion. This implies in turn that tentative decisions take values in 
some finite subset of U ,  with probability 1. We  will therefore 
assume, nithout loss of generality, that U is a finite set. 

We conclude this section by presenting a simple example that 
illustrates our scheme, under imperfect memory assumptions, 
where  each agent forgets everytlung, except for his last decision 
and the most recent message he has received. 

Suppose that we only have two agents, who communicate to 
each other their tentative decisions at each instant of time. Let 
x .  zf,. z:, n = 1.2, . . . be independent random variables, with 
knonm probability distributions. Let y,: = h ( x ,  z; ,)  be the observa- 
tion of agent i at time n. Let c(x, o) be a cost function, satisfying 
Assumption 2. 

The tentative decisions are defined inductively as follows. 
Suppose that y,:, u t -  ,. u t - ,  are known by agent i at time n. He 
then cqmputes. for each L', the conditional cpst E [ c ( x ?  cl)ly;. 
U ~ , ~ ~ , U ; - ~ ] .  which is equal to g; , (y; ,  uk- , ,  u ; - , .  E ) ,  for some 
Bore1 function g;,. Fin?ly,  he  chooses a minimizing L', which  is a 
function of y,;, ut, - u; - , and this is his tentative decision at 
time n .  Hence, for appropriate functions f:, fn2, we have 

If  we  now define (0, F,8) to be the product of the probability 
spaces on which x, z;  y e  defined, and let TI' be the  u-field 
generated by yi, u: -,, u; - , ,  Assumptions 3 and 4 are satisfied 
and the asymptotic properties of the above recursions can be 
analyzed within our general framework. 
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111. CONVERGENCE AND AGREEMENT RESULTS 

In this section we state  and discuss our main results. All proofs 
can  be found in the Appendix. Assumptions 2 and 3 will be 
assumed throughout the rest of the paper and will not be ex- 
plicitly mentioned in the statement of  each theorem. We start 
with the least restrictive assumptions on memory. 

Theorem I :  We assume that transmissions and receptions are 
deterministic, that communication delays are  bounded, and that 
the time between consecutive transmissions from agentj to agent 
i [withj E A ( i ) ]  is bounded. Then, under Assumption 1.2 (convex 
costs) and either Assumption 4 or 5 (imperfect memory): 

a) lim,! - %( uf+  - u f )  = 0, in  probability  and in 
L 7 ( 8 , 9 , P ) .  - .  . .  

b) lim,-,(u:, - u i )  = 0, Vi, j ,  in probability and in 
L , ( Q ,  9, u). - .  

Consider' the following situation. At time zero, before any 
observations are obtained, the sequence of transmissions and 
receptions is selected at random, according to a statistical law 
which is independent from all observations to be obtained in the 
future and from c( u ) ,  for any LI E U. In other words, communica- 
tions do not carry any information relevant to the decision 
problem, other  than the cuntent of the message being communi- 
cated. Suppose that the sequence of communications that has 
been selected  becomes known to all agents. From  that  point on, 
the situation is identical with that of deterministic communica- 
tions. In fact, a moment's thought will show that it is sufficient 
for the history of communications to become commonly known 
as it occurs: agent i only needs to know, at time n ,  what 
communications have occurred up to that time, so that he can 
interpret correctly the meaning of the messages he is receiving. 

We can formalize these ideas as follows.  We are given a 
product probability space ( D  X a*, 9 X .F*, 9 X 9*) where 
(a ,  9, 8 )  describes  the  decision problem  and where 
(a*, 9*, 9*) describes the communications process. We assume 
that for each w* E a*, the resulting process of communications 
satisfies the assumptions of Theorem 1. Then, note  that for each 
w* E a* we obtain a distributed decision problem on (Q,9, 9)  
with deterministic communications. In that case Theorem 2 fol- 
lows. 

Theorern 2: Under Assumption 1.2, either Assumptions 4 or 5, 
and independent, commonly known communications (as de- 
scribed above), l i m , , , ( u ~ + l - u ~ ) = l i m , , , ( u f - u ~ ) = O ,  in 
probability with respect to 9 x 9*. 

Strictly speaking, Theorems 1 and 2 do not guarantee conver- 
gence of the decisions of each agent. Suppose, however, that the 
agents operate under the following  rule. Fix some small y > 0; let 
the sequence of communications and updates of tentative deci- 
sions take place until lui - u{l< y ,  V i ,  j (small disagreement) 
and I u ~ + ~  - u:,l< y, Vi (small foreseeable changes in tentative 
decisions). Then, we obtain the following. 

Corollary I :  With the above rule and the assumptions of 
Theorems 1 or 2, the process terminates in finite time,  with 
probability 1, for any y > 0. 

When Q and U are finite, convergence and agreement are 
obtained  after finitely many stages. 

Theorem 3: If D and U are finite sets, if each agent communi- 
cates all the values of u that minimize E[ c ( u ) ) q ]  and if  As- 
sumption 4 holds, then there exists some positive integer M such 
that 

ut,<= uk, V i ,  j and u i f + , = u i f ,  V i ,  V n > 0 ,  Vw EQ. 

Strictly speaking, tentative decisions in the above theorem are 
not elements of U but subsets of U. This is to compensate for the 
possibility of nonuniqueness of optimal tentative decisions. The 
equalities appearing in Theorem 3 have to be interpreted, there- 
fore, as equalities of sets. 

We now assume that the agents have perfect memory.  We 

obtain results similar to Theorems 1 and 2 under much more 
relaxed assumptions on the communications process. Namely, we 
only need to assume the following. 

Assumption 8: Let Mi' be the kth message sent by agent j to 
agent i. We assume that when agent i receives MLJ, he knows that 
this is indeed the kth message sent to him by agent j .  

Remark: This assumption is trivially satisfied if messages arrive 
at exactly the same order as they are sent, with probability 1. 

Theorem 4: Under Assumption 1.2 (convex costs), Assump- 
tion 7 (perfect memory), and Assumption 8, there exists a U- 
valued random variable u* such that l i n ~ , , - ~ u i  = u*, V i ,  in 
probability and in L,(D, 6, p): 

For estimation problems (u ;  = E [  xl9:]), Theorem 4 can be 
slightly strengthened [5 ,  Theorem 21. 

Theorem 5: For estimation problems, under the assumptions 
of Theorem 4, convergence to u* takes place with probability 1. 

We  now consider the case where U is finite but (unlike Theo- 
rem 3 )  Q is allowed to be infinite. Several complications may 
arise, all of them due  to the fact  that optimal decisions, given 
some information, are not guaranteed to be unique. We discuss 
these issues briefly, in  order to motivate the next theorem. 

Suppose that U = { ul ,  v~}. It is conceivable that E[c(o1)I9~]  
- E [  c(  u2)l%'] is never zero and changes sign an infinite number 
of times, on a set of positive probability. In that case, the 
decisions of agent i do not converge.  Even  worse, it  is conceivable 
that E [ C ( L ~ ) ~ ~ , ' ]  > E [ c ( u 2 ) 1 9 , ' ]  and E [ c ( u , ) l ~ , j ]  < 
E[c(u2)1S5'], for all n and for all w in a set of positive probabil- 
ity,  in which case agents i a n d j  disagree forever. It is not hard to 
showthat inbothoftheabovecasesE[c(u,)(~~J=E[c(oz)l9~] ,  
on a set of positive probability and this nonuniqueness is the 
source of the pathology. The following theorem states that con- 
vergence and agreement are still obtained, provided that we 
explicitly exclude the possibility of nonuniqueness. 

Theorem 6: Under Assumption 1.1 (finite U )  and Assumption 
7 (perfect memory), and if the random variable u' that minimizes 
E [  c( w)] over all 9;-measurable random variables is unique up to 
a set of measure zero, for all i, then h,, - ,ui = u', almost 
surely, and u1 = uJ, V i ,  j .  

Although the preceding theorems guarantee that (under certain 
conditions) all agents will agree, nothing has been said concern- 
ing the particular decision to which all agents' decisions converge. 
In particular, it is not necessarily true, as one would be tempted 
to conjecture, that the limit decision is the optimal centralized 
solution (that is, the solution to be  obtained if all agents were to 
communicate all their information). On the other  hand, the 
centralized solution is reached for LQG problems, under the 
perfect memory assumption [6]  and is also reached generically for 
an estimation problem on a finite probability space [7]. This issue 
will be touched again in the next section. 

Robustness  with  Respect to Communication  Noise 

Schemes that centralize information by coding, e.g., by using 
the least significant bits of the allowed  messages [l], [13], tend to 
require high bandwidth and are sensitive to noise in the com- 
munication channel. In our scheme, although real numbers are 
being transmitted (infinite information content), the least signifi- 
cant  bits are not as essential. As a result, the qualitative conver- 
gence properties of our scheme are retained even if communica- 
tions of the tentative decisions are assumed to be noisy.  We 
provide a proof of this fact  for estimation problems, under the 
perfect memory assumption. 

Suppose, as before, that at random times agent j communicates 
his optimal tentative decision ui .  However, the message  received 
by the other agents is i(! = u i  + q i ,  where qnJ is a random vector 
representing the noise in the channel. For simplicity, we assume 
that the noise vectors are independent, i d e n t i d y  distributed. 

Theorem 7: Assume noisy communications (as described 
above). For estimation problems, under Assumption 7 (perfect 
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memory), there exists a U-valued random variable u* such that 
lim,f - x u : ,  = u*, Vi, with probability 1. 

IV. THE LINEAR QUADRATIC GAUSSIAN  (LQG) MODEL 

In this section we specialize and strengthen some of our results 
by restricting to the linear quadratic Gaussian model described in 
Section 11. (Recall that any such problem is equivalent to  an 
estimation problem; therefore, u;, = 2; = E [  xl,y",'], for some ran- 
dom vector x.) Theorems 1, 4, and 5 are applicable. Moreover, 
the results of [6] guarantee that, under Assumption 7 (perfect 
memory), u i  converges to the optimal centralized estimate, given 
the information possessed by all agents. The following theorem 
states that the same is true under the weaker Assumption 6. 

Theorem 8: For  the  LQG problem, under the assumptions of 
Theorem 1 and Assumption 6 (imperfect memory; own data 
remembered), limfr = 2, in the mean square, where f = 
E [ x 1 F X ]  andFx is the smallest u-field containingq;, for all i, n. 

Note that Theorem 8 is much stronger than Theorem 1 which 
was proved for the general case of imperfect memory.  We have 
here convergence to a limit solution which is also guaranteed to 
be the optimal centralized solution. 

Our next result concerns the finite dimensional LQG problem 
in which the total number of observations is finite. Namely, the 
smallest cs-field containing gi for all i ,  n is generated by a finite 
number of (jointly Gaussian) random variables. In that case, the 
centralized solution is going to be reached by all agents in a finite 
number of stages, provided that all agents have perfect memory. 

Theorem 9: For  the LQG problem with finitely many observa- 
tions and under Assumption 7 (perfect memory), the centralized 
solution is reached by all agents in a finite number of stages. 

Theorems 8 and 9 imply that the scheme considered in this 
paper may be viewed as an algorithm for solving static linear 
estimation problems, an issue that we discuss below. 

The intuitive argument behind Theorem 9 is the following: 
once an agent has received enough messages,  he is able to infer 
exactly the values of the observations of the other agents (or of 
some appropriate linear combinations of these observations) and 
compute the centralized solution himself. So, communicating 
optimal tentative decisions is in this case just another way  of 
communicating all information to all other agents. This scheme 
does not seem to have any particular advantages (in terms of 
communication and computation requirements) over the scheme 
where  each agent communicates all his data directly. 

However, the scheme of Theorem 8 (imperfect memory) seems 
to have some appealing features, as we indicate below. Suppose 
that we  have a single processor who obtains an NM-dimensional 
vector of observations. He then divides his observations into N 
M-dimensional vectors that will play the role of the agents of our 
scheme. Finally, the processor, instead of inverting the N M  X N M  
covariance matrix to obtain the optimal estimate (which  would 
require O( N 3 M 3 )  operations), he  uses the scheme of Theorem 8. 
At each round there will be one inversion per block of data. that 
is O ( N M 3 )  operations per round. If,  for example, an acceptable 
estimate is obtained after O(N) rounds, the final objective will 
have been accomplished with a total of O ( N 2 M 3 )  operations, 
which is one order of magnitude less than the usual algorithm. It 
is not hard to show that if the noises in observations belonging to 
different blocks are uncorrelated, agreement is obtained after two 
rounds only. Accordingly, if the noises in observations in differ- 
ent blocks are weakly correlated, we expect our scheme to be 
faster than the standard algorithm. We present below some 
numerical results that  support the above statements. So, our 
scheme leads to a potentially advantageous decomposition algo- 
rithm 'for static linear estimation problems. (This algorithm has 
some conceptual similarities with those suggested in [8].) 

We now discuss some issues related to the distributed imple- 
mentation of the decomposition algorithm, where each block of 
data actually corresponds to a physically distinct agent 

(processor). For any i, n, 2; = aby, where a:, is a row vector and 
y is the vector of all available observations. When agentj receives 
i;l, he must also learn in  order to be able to extract informa- 
tion from .ti. There are two choices: either agentj computes ab, 
which  may be done off-line, or, agent i transmits a:, to agent j .  
Which of the two should be done clearly depends on whether 
communications or computations are most costly. Whether one 
of the above two variations can be  useful depends on the particu- 
larities of the actual situation and  its inherent communication 
and computation limitations. More numerical experience is 
needed before a definite answer can be given. 

Numerical Results 

Let x be an unknown scalar, zero mean, random variable to be 
e s t i m a t e d ( E [ x 2 ] = 5 ) . L e t ~ ~ , = x + + ~ , , ( i = 1 , . . . , 1 8 ) b e t h e o b -  
servations. The noises w j  are assumed to be independent of x. 
(The covariance Z, of the noises  was randomly generated.) We 
split the 18-dimensional observation vector into blocks of data 
(corresponding to distinct agents) and used the decomposition 
algorithm of Theorem 8.  We employed the ring protocol and 
assumed that at each stage an agent only knows his own observa- 
tions and the most recent message  he  received (Assumptions 5 
and 6). 

Let Mi be the number of observations assigned to agent i .  We 
considered two alternative decompositions: 1) N = 2, M I  =lo, 
M2 = 8; 2) N = 6. M I  = . . . = M6 = 3.  We first executed the algo- 
rithm using the covariance E,, and then once more using the 
covariance E, + I .  

The results are presented in Figs. 1 and 2. The horizontal axis 
denotes stages (each stage corresponds to an update by some 
agent) and the vertical axis indicates the associated mean square 
error. The dotted horizontal line indicates the centralized mean 
square error. The curves D l  and 0 2  correspond to the first and 
second decomposition, respectively.  As expected, convergence 
was much faster when the identity was added to the initial 
covariance; moreover, the first decomposition converged much 
faster than the second. 

To illustrate the merits of the decomposition algorithm we 
performed a rough count of operations. We only took matrix 
inversions into account, assuming that the inversion of an A4 x M 
matrix requires M 3  operations, which  is accurate enough for our 
purposes. With this counting scheme, the centralized algorithm 
required 5832 operations. The points -4, B in the graphs were 
reached after 4100, 1152 operations, respectively. This leads to 
the following conclusion: while the first decomposition needs 
very few stages to converge, it does not have any particular 
computational advantages. The second decomposition, however, 
leads to an estimate close to the optimal with much fewer 
operations than the centralized algorithm. 

V. A MODEL INVOLVING A COORDINATOR 

In the previous sections we had assumed that for any pair of 
agents i, j ,  agent i is allowed to communicate toj .  In this section 
we assume that a particular agent (denoted by the superscript 0) 
has special status and acts like a coordinator. The scheme we 
envisage  is the following: at each instance of time n, agent i 
evaluates u:, which  he communicates to the coordinator. The 
coordinator then combines u', to u: to produce a tentative 
decision u l .  (We assume that the coordinator has no data of his 
own.) He then transmits uz to all other agents which accordingly 
update their decisions.  Were the coordinator to combine u i  to u," 
"optimally," the above scheme  would reduce to the one of the 
previous sections and  our past results would apply. We assume, 
however, that the coordinator simply sets 

x 
uz = a'uk 

1 = 1  
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Fio 2 Mean-square errors of distributed algorithms with covariance 5, I :  dashed line represents performance of centralized algorithm. 

where the coefficients a' are deterministic, positive, and X:: la' = 
1. The implicit behavioral assumptions are: 1) the coordinator 
has no memory; and 2)  he need not have a  good  knowledge of the 
problem. He only knows how much he can rely on each of the 
other agents; this is reflected by his choice of the coefficients a' 
which  may be thought of as a "reliability index" for agent i in  the 
eyes of the coordinator. We then obtain the following. 

Theorem IO: The conclusions of Theorems 1, 4, and 8 remain 
true (under their respective assumptions) with the scheme intro- 
duced in this section. 

The above scheme can be viewed as a fraplework for coopera- 
tion, where the coordinator simply aids the agents, or, for LQG 
problems, as  another decomposition algorithm. It can be also 
interpreted, however, from an entirely different point of view. 
Suppose that the agents are selfish and  independent individuals, 
faced  with identical situations, possessing different information 
and having to make repetitive decisions. They can certainly 
benefit by obsening past decisions of the  other agents but 
assume that this is not possible. They are able, however, to 
observe a  weighted  average u," of all decisions made in the last 
stage, which  they take into account for their future actions. The 
motivation for such  a model comes primarily from economics: 
each agent is a buyer (or seller) in the same market and  at each 
stage he obtains some aggregate information (e.g., the average 
price) on the transactions that were made in the previous stage. 
In this sense the "coordinator" simply represents a market mech- 
anism. Our results state that, eventually, an informational equi- 
librium will be reached. Such an equilibrium has been studied by 
Radner [12] in a different setting. However, there was no demon- 
stration of an adjustment process that could lead to such au 
equilibrium. Our scheme provides a  model of rational behavior 
which, if followed by each agent, leads to equilibrium. 

Moreover, within such a context (of selfish individuals con- 
fronted with identical situations) and for LQG problems with 
perfect memory, optimal tentative decisions constitute a set of 
strategies in  Nash equilibrium for a certain game. (Ths is why 

optimal tentative decisions can be called "a model of rational 
behavior.") Let us define the game of interest more  precisely. 

Let y i  be a vector of jointly Gaussian random variables that 
generate G,i,, the o-algebra of events known to agent i at time n if 
he had received no messages. At each stage, agent i selects a 
decision uh and incurs (but does not observe)  a cost aflc(uL), 
where 0 < a < 1 and c is a quadratic cost function. Then, u," = 
Ca'ui is formed and communicated to all agents. The total cost 
to agent i is J ' =  C~=', ,a"E[c(ub)] .  A strategy I" for agent i is a 
sequence { y;, i = 1,2, . . . } of measurable functions such that 
uk.= yA(yA, uf, . .. , uno-',,). A set { r',. . . , r"} of strategies is 
s a d  to be  in  Nash equilibrium if 

J'(r1,. . . ~ - 1  fr,ri+l , . . . , r ~ ) ~ ~ ' ( r l , . . . , r ; , . . . , r . ~ ' )  
for any strategy f', for any i. Let r = { r': i = 1, . . . , N }  denote 
the particular set of strategies where  each agent at each stage 
plays his optimal tentative decision. (Note  that these are linear 
strategies.) Then Theorem 11 follows. 

Theorem I I :  I' is a set of strategies in  Nash equilibrium. 

VI. CONCLUSIONS 

A set of agents with the same objective who start communicat- 
ing to each other their tentative optimal decisions are guaranteed 
to agree in the limit. Under certain assumptions, this is true even 
if the decisions are received in the presence of noise and even if 
their memory is limited and they &e  allowed to forget some of 
their past knowledge. Moreover, they are guaranteed to converge 
to the optimal centralized decision for linear estimation prob- 
lems, provided that they do not forget their own observations. 
This leads to a decomposition algorithm for  static linear estima- 
tion problems. Similar results are obtained if the agents do not 
communicate directly but receive  messages from a coordinator 
who evaluates a weighted  average of all tentative decisions. In the 
latter framework, for  LQG problems with perfect memory, opti- 
mal tentative decisions are Nash Strategies for a certain sequen- 
tial game and admit an economic interpretation. 

These results are valid when all agents share the same model of 
the world. The characterization of the behavior of agents with 
different models berceptions) is an open problem. 

APPENDIX 

Proof of Lemma 1: Let, for notational convenience, g(o ,  u )  
= E[c(u)lFi]. Under Assumptions 1.2 and 2, g( w ,  o) can  be 
chosen so that it is jointly measurable, strictly convex in u,  and 
converges to infinity as u converges to infinity, for any w E 3. 
Hence, Vw E 3, the infimum of g(w,  u )  is attained by some 
u:,( w ) ,  which is unique because of strict convexity. 

Let Q = { qk}?=' be a countable dense subset of U. Then, by 
continuity of g, inf,,,pg(.o, u )  = inf,.,.g(w, o), V u  E 3. More- 
over, inf, = pg( o, Ir) is %-measurable. Let +m( w )  = qk,  where k 
is the smallest index such that 

Then is %'-measurable and converges, for each w to ub. 
Hence, u; is F~-measurable. Inequality (3) now  follows from the 
definition of u; and uniqueness is  a consequence of strict convex- 
ity. The measurability of uk under Assumption 1.1 is trivial. 0 

Lemma 2: Let { u, }, { w, } be two sequences of  U-valued ran- 
dom variables such that 

E [ c ( u , ) ] =  lim E [ c ( w , ) ] .  
n - o o  n + x  
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If Assumptions 1.2 and 2 hold, then Em,, - x (  u,, - tv,,) = 0 in 
L, ( Q ,  9, p )  and  in probability. 

Proof: By Assumptions 1.2 and 2. and (4). 

which  shows that ( u , ,  - w,) converges to zero in L,(D. 9, p ) .  
Therefore, it also converges in measure with  respect to p .  

Recall that A ( w ) > O  and p ( B ) = I B A ( w ) d 9 ( w ) .  V B E F .  
Therefore, p (  B )  = 0 implies 9'( B )  = 0 and 9 is absolutely con- 
tinuous with respect to p.  Let B; = { I u , ,  - w,,la E } .  Since (u, ,  - 
\vn) converges to zero in measure p ,  for any c > 0. we have 
lim,, - x p (  B;)  = 0 and, by absolute continuity, lim,r ,9( E?:) = 

0, which  shows that we have convergence in probability. 0 
Proof of Theorem I: We start with the proof under Assump- 

tion 4. Since u:, is q,'- ,-measurable, we have (by the minimizing 
property of uj,- ,) E [ c (  u:,+ , ) I  < E [  c( u:, ) ] .  Since c is nonnegative, 
E [  c(uk)]  converges to some constant g'. We also note that 
(u: ,+ , + u:,)/2 is ,-measurable and by taking the limit in the 
relation 

we obtain limn - = E [  c(( ub+ + uk)/2)] = g'. Lemma 2 then yields 
the first part of the theorem. 

Let j E A (  i ) .  Then there exist sequences { m, } and { n k  } of 
positive integers such that lim, = m k  = lim, = n k  = co and 
m, , n, are the times of transmission and reception, respectively, 
of the kth message from agent j to agent i. Therefore, u : , ~  is 
cA-measurable, for all k ,  and E [ c (  u;,)] Q E [  c( u:,*)] which  shows 
that g' < gJ. Using Assumption 3, we conclude that g' = gJ. Vi, j .  

We note that ( u : , ~  + ~ : , ~ ) / 2  is q:A-measurable and, therefore, 

Taking the limit in (6), using Lemma 2 and the boundedness 
assumptions on the communications, we obtain the second  half 
of the theorem. 

We  now assume Assumption 5. Let i ( n )  be a sequence of 
agents such that i ( n )  E I( n), Vn. Then, u:") is9;$'i+')-measura- 
ble and E [  c( u::"))]  is a decreasing sequence. Similarly  with the 
first part of the proof, we conclude that u:;: t ' ) -  4;") converges 
to zero in L, (Q,  9, p )  and in probability. It follows that u;+ , - uk 
and u:, - ui  converge to zero, for i  E A ( i ) .  Using Assumption 3, 
u:, - u; converges to zero, for all i, j .  0 

Proof  of 7'heorem 2: Theorem 1 and the discussion preceding 
the statement of Theorem 2 show that lim,, - x (  u;,- , - u:, )  = 0, 
in probability with  respect to 9, for all w* E 8*. Let x,,(o. w * )  
be the characteristic function of the set { ( w , w * ) :  IIu:,+, - u~,Il < 
E }. Then, 

=/ lim / x n d B d B * = l .  
I t  + m 

(The first equality holds by the Fubini theorem, the second  by the 
dominated convergence theorem, the third by convergence of 
( ut,- , - u:,)  to zero,  with respect to the probability measure 9.) 
This shows that u:,+, - u; converges to zero in probability with 

respect to 9' X 9*. Similar steps show that u:, - u i  also converges 
to zero. in probability. 0 

Proof of Corollav I: By Theorem 1, the U X U-valued  se- 
quence of random variables (u:,  - u i ?  u : , ~ ,  - u;,) converges to 
(0,O) in probability. It therefore contains a subsequence converg- 
ing to (O,O), almost surely. Therefore, Vy > 0 and  for almost all 
w E 8,  3n,) such that I U : , ~ -  uiol < y ,  I U ~ ~ - ,  - U ~ , ~ I  < y and the 
termination condition is eventually satisfied with probability 1. 

Proof of Theorem 3: Because of the finiteness of 9. there 
exists a finite (nonrandom) time after which communications 
(conditioned on past events) are deterministic. We may take that 
time as the initial time and assume, without loss of generality, 
that all communications are deterministic. 

Let u:, be the set of elements of LI which are optimal, given E;. 
Let N;: denote an 9;-measurable random variable such that 
t t ; : ( w )  E u; , (  w ) .  Vw E 9. (Xote  that E[c(wi ) ]  is independent of 
how w;: has  been selected.) By finiteness of 9 and Ul there exist 
finitely many L;-valued random variables and. since E [  c( w#;+ , )I  
Q E [  c( H:,:)], we conclude that there exists some positive integer T 
and some g' such that E [  c( 4 ) ]  = g'. V n  > T. For any tz > T ,  
E [ c (  w:,:)] = E [ c ( \ v , : ~ , ) ]  and since HI,: is9;.,-measurable, .;: mini- 
mizes E [  c( w)] over allz:+ ,-measurable random variables. Hence, 
~ , : ( u ) ~ u ; - , ( w ) ,  VUEQ which  shows that ~ ; , ( w ) c u ; ~ . , ( w ) ,  
Vw E Q. Again, by finiteness of U and Q ,  there exists some 
positive integer M such that u : , + , ( w )  = u : , ( w ) ,  t l n  > M .  Vu E Q ,  
V i .  

I f j  E A (  i). there exist m, n > M such that is  F;-rneasurable 
and this shows that gJ L g'. By Assumption 3. we obtain g' = gJ, 
Vi. j .  Therefore, &til minimizes E [  c( w)] over all q:-measurable 
random variables and, therefore, w,',(w) E u: , (w) ,  or, u ; , ( w )  c 
u:,( w ) .  VU E Q .  Recalling Assumption 3, we obtain u ; , ( o )  = 

u : , ( w ) .  Vi , ; ,  V m , n  > M , V u .  0 
Lemma 3: Let T be a finite stopping time of an increasing 

family { z,} of o-fields. Let u,,, n = 1,2,  . . . be random variables 
that minimize E [  c( w*)lq,],  almost surely, ovcr  all q,-measurable 
random variables w. Then, u y  minimizes E [ c (  w)] over all Fr 
measurable random variables w ,  where uT is defined to be equal 
to u,  if and only if T =  n .  

Proof: Let x, be the indicator function of the set { w :  
T( w )  = n}. Since Tis  a stopping time, x,, isFn-measurable.  Note 
that x,c( u , ~ )  = x,c( u T ) .  Let w be an  Srmeasurable random 
variable and note  that x,,c(w) = x,,c(x,,w) and x,,w is q,-mea- 
surable. Therefore, 

E [ X , , C ( W ) I ~ ]  = X , , E [ C ( X ~ , ~ ) I % I   ~ x n E [ c ( ~ n ) I E l  

= E [ x , , c ( u , , ) l ~ , I  = ~ [ X , , C ( ~ T ) 1 ~ 1 .  

Taking expectations, we obtain 

E [ x , , ~ ( ~ ~ ) ]  2 E [ x ~ c ( u T > I  

and summing over  all n's (and using the monotone convergence 
theorem to interchange summation and expectation) we obtain 

Proof  of Theorem 4: Since u:, is  measurabl sur ab le, we have 
E [  c( ut,- ,)I Q E [  c( u;)] .  Since c is nonnegative, E [  c( u t ) ]  con- 
verges to some constant g'. We also note that (24; + u:,-,,,)/2 is 
?,'- ",-measurable.  Therefore, E [  c(( u;,+ + u; , ) /2 ) ]  b 
E [  c( a g'. Fix some E > 0, and let n be large enough so 
that E [  c(u;)] Q g' + c .  Then, using Assumption 3,  we obtain 
E [ A ( O ) I I U ; , _ . ,  - u;,l12] < E,  V m  L 0. Therefore, { uk} is a Cauchy 
sequence in L,( 8, 9, p) .  By the completeness of L2 spaces, there 
exists a U-valued random variable ui such that l i m n  x u ;  = u', in 
&(a, F , p )  and, therefore, in probability, with respect to 9. 
(The proof of the last implication is contained in the proof of 
Lemma 2.) Since 

E[c(\t;)]  z E [ c ( u T ) ] .  0 

E[E[c(u:,-,)IYZ;1:,1 I%;] Q E[E[c (u : , ) l c+ , ]  I T ]  
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{ E [  c( U : ~ ) I ~ ; ] ,  n =1 ,2 ,  . . . } is a supermartingale, with respect to 
{E;}. Moreover, since for any fixed u E U,  E [ c ( u ; ) ~ ~ ]  < 
E[c(u)I9:] ,  it is a uniformly integrable supermartingale [lo, 
Theorem T19, p. 901. 

Let j E A ( i ) .  Let m,, n ,  be the times of transmission and 
reception, respectively, of the kth message fromj  to i. Because of 
Assumption 8, mk and nk are stopping times of {e:},{ E:}, 
respectively, and since j E A ( i ) ,  they are almost surely finite 
stopping times, for all k. Moreover, k < mk < n, and  by the 
optional sampling theorem [ lo ,  Theorem T28, p. 901 

which  shows  that lim , E [  c( ub,)] = g'. Similarly, 
~ , + x E [ c ( u ~ k ) l = g J .  

Note  that uAk is qk-measurable  and, by Lemma 3, E [  c( u/),,)] 
2 E [ c ( u ; , ) ] .  Taking the limit, we obtain gJ 2 g', and by As- 
sumption 3 ,  g' = g J  = g, Vi, j .  

We now take the limit of the inequalities 

to obtain  limk,,E[ c( (u;  + uL,)/2)] = g and,  by Lemma 2, lim, - x ( u ~ l k -  uL,)= 0, in k , (D,9 ,~)  and in probability. 
We also take the limit of the inequalities 

to obtain lim, -~ E [ c ( (  u; + u;,)/2)] = g' and, by Lemma 2, 
lim, - , (u;  - u; )  = 0. Similarly, we obtain lim, - I c (~ ; lk -  u i )  
= O1 which  shows that u' = uJ,  almost surely. 0 

Proof  of Theorem 6: Fix some v E U and let B = { w :  u'(  w )  
= c}. Then, E[c(v ) l9 ; ]<  E[c(o*)lF;] ,  Vu* EU, for almost all 
w E B. By the martingale convergence theorem [ lo ,  Theorem T17, 
p. 841, we conclude that,  for almost all w E B ,  there exists some 
N ( w )  such that 

E [ c ( u ) l E : ]  < E [ c ( v * ) I c . ]  V n > N ( o ) .  

Therefore, lim,,,u;(w)= u ,  for almost al! w E B and, by con- 
sidering the other elements of U as well, limn - mu; = u', almost 
surely. 

If j E A (  i), uJ is 9;-measurable and E [  c( u')] E [  c( u')]. By 
Assumption 3, E [  c( u') ]  = E [  c( uJ)], Vi, j .  Therefore, forj  E A ( i ) ,  
uI minimizes E [  c( w)] over  all 9;-measurable random variables 
and by the assumptions of the theorem, ui = uJ,  almost surely. 
Using Assumption 3 once more, we obtain u' = u', Vi, j .  0 

Proof  of Theorem 7: Let x be the unknown vector to be 
estimated. Then u:, = E[x19;]  and converges almost surely to 
u' = E{ x lFd] .  Moreover, u' minimizes E [  c(w)]  over  all Fd-mea- 
surable random variables w. L e t j  E A ( i )  and let m ,  be the time 
of transmission of the kth message from j to i. Note  that 
( l /M)Er= licAl is q;w-measurable (and hence 9;-measurable) 
and converges to uJ  almost surely. Therefore, U J  is 9;-measura- 
ble  and E [  c( u ' ) ]  < E [  c( uJ)]  and, by Assumption 3, E [  c( u')] = 
E[c(u')], Vi ,  j .  The minimizing property of u1 and the strict 
convexity of the quadratic cost function imply that u' = d ,  
almost surely. 0 

Proof  of Theorem 8: As is usual in linear least squares 
estimation, we  use the setting of Hilbert spaces of square integra- 
ble random variables. Let G be a Hilbert space of zero mean, 
jointly Gaussian random variables on (8,9,9') such that each 
component of the unknown vector x and the observations belong 
to G. The inner product in G is defined by (x, y )  = E[xy]. 

For each agent i, let H' denote the smallest closed subspace of 
G containing all observations obtained by him. Let HA be the 

smallest closed subspace of G containing all observations ob- 
tained by agent i up to time n. (Note that H i  does not contain all 
random variables known by agent i at time n because it does not 
need to contain any of the messages  received  by agent i.) Note 
also that, by Assumption 6, HA c HA+ c H' and  that E:= H i  is 
the total knowledge available to all agents at time n. The central- 
ized estimate is the projection of x on Z : = l H k .  We assume, 
without loss of generality, that x is a scalar random variable, 
since each component can be separately estimated. 

Let 4; = E [ . x l c ]  and e; = x - and, by the orthogonality of 
errors and observations, we have E[x-y] = E[2: ly] ,  Vy E HA. As 
in the proof of Theorem 1 we have ~ ~ e ~ + l ~ ~ 2  < ~ ~ e ~ , ~ ~ ' ,  Vn,i which 
implies that 

llxl12 > 111:,+,11' 2 Iln;l12. (7) 

In particular, (7) implies that { .?:} is a norm-bounded sequence. 
By the weak local sequential compactness of Hilbert.spaces [15, 
p. 1261, { 4;} contains a weakly convergent subsequence { i:,/}. 
In other words, there exists an element 2, E G such that ( y ,  n:,,) 
converges to (y, i,). VJJ E G. Moreover, 4:, E Z2=lH,f( c 
Zf==,H' and since  closed subspaces are also weakly  closed [15, 
Theorem 11, p. 1251, 4, E C;=,Hk.  Now let y E Hi.  Then, 
( y ,  4;,) = ( y ,  x ) ,  for all 1 such that n , 2  n, which implies that 
( y ,  i,) = (y ,  x). Moreover, the sequence of subspaces { H i }  
generates H' which implies that ()I, , t X )  = ( y ,  x ) ,  V y  E H'.  

By Theorem 1, (x;,  - xi) converges In the mean square (and 
therefore weakly) to zero, which implies that im is also a weak 
limit point of {PiI}. The same argument as before shows that 
( y ,  im) = (y,x), V y  E H J ,  V j .  Therefore, (y,4,) = (17, x), Vy 
E E:==, H k .  But this is exactly the condition that 4= is the 
centralized estimate, given the observations of all agents. So, 
{ 2; } has a unique weak limit point, which is the same for all i 
and coincides with the centralized estimate. 

It only remains to show that converges to 2, strongly (in 
the mean square). We know from [15, p. 1201 that Il4,ll < 
liminf,, ,ll.?;ll. On the other  hand, 

llxp - Il4,ll = IIX - -?,I12 < 1I.X - -?:,I12 = llx112 - 1p;JZ 

which  shows that lliocll < limsup,,,lli;ll. Therefore, I l i , l l =  
l i m n + x ~ ~ i ~ ~ ~  and by [ l j ,  Theorem 8, p. 1241, we conclude that 
Lm,z-,x~~4; - kX1l2 = 0. 0 

Proof of Theorem 9: We  use again the Hilbert space for- 
malism of the previous proof. Let G; be the subspace of G 
describing the knowledge of agent i at time n (both his observa- 
tions and the messages  he has received). By Assumption 7, we 
have GA c GAL! c G. Since G can be chosen to be finite dimen- 
sional, there exists  some M (depending on the sequence of 
communications but deterministic) such that Gi,,,, = Cif, V n  2 0, 
Vi. Equivalently, 4;,,,, = .ti,, V n  > 0, Vi, and by Theorem 8, 
i i ,  = ii, = .?x. Vi, j .  0 

Proof  of Tkorem 10: Since ui is q,+ ,-measurable, it follows 
that 

N 
< a%[ c (  u;)] 

j = l  

Also, since u; is E;+ ,-measurable, E [  c( u;)]  decreases and con- 
verges to some g'. Taking the limit in (8) we conclude that 
g' = gJ, Vi, j .  From this point on, the proofs of Theorems 1, 4, 
and 8 (with minor modifications) are valid and establish the 
desired conclusions. 0 

Proof of Theorem 11: Let u:, u i  be the coordinator messages 
and decisions, respectively,  when  all agents use r'. Let eli be the 
smallest o-algebra generated by y,: and ui', . . . , u: . ,. Now sup- 
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pose  that  a  particular agent, say agent 1, uses a  strategy f’ 
different  from I“, while all other  agents use r’. Let k z ,  kk be the 
coordinator messages and decisions resulting from  the applica- 
tion of this new set of strategies. 

We proceed  by induction. Clearly, 2: is F/-measurable. As- 
sume  that k: and k;, . . . , :,: - are %‘-measurable. Then, because 
of the linearity of the I’ s, u; - k; ,  ( i  f l), is linear in ui’ - 

%‘+,-measurable and 9’ c K:l (perfect  memory), i iz  is 
measurable,  and so is k c + l .  The  induction shows that this is true 
for all n.  

Therefore, by the mhimizhg property of u:, E[c(  u; ) ]  < 
E [  c( e!,)], V n  and this completes the  proof. 0 

k f ?  . . . , u,“ - - u, - 1, and hence  %‘-measurable.  Since u o  is L O  
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