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Abstract

We consider the multi-armed bandit problem under the PAC (“probably approximately correct”)
model. It was shown by Even-Dar et al. (2002) that given n arms, a total of O

(

(n/ε2) log(1/δ)
)

trials suffices in order to find an ε-optimal arm with probability at least 1 − δ. We establish a
matching lower bound on the expected number of trials under any sampling policy. We furthermore
generalize the lower bound, and show an explicit dependence on the (unknown) statistics of the
arms. We also provide a similar bound within a Bayesian setting. The case where the statistics of
the arms are known but the identities of the arms are not, is also discussed. For this case, we provide
a lower bound of Θ

(

(1/ε2)(n+ log(1/δ))
)

on the expected number of trials, as well as a sampling
policy with a matching upper bound. If instead of the expected number of trials, we consider the
maximum (over all sample paths) number of trials, we establish a matching upper and lower bound
of the form Θ

(

(n/ε2) log(1/δ)
)

. Finally, we derive lower bounds on the expected regret, in the
spirit of Lai and Robbins.

1. Introduction

The multi-armed bandit problem is a classical problem in decision theory. There is a number of
alternative arms, each with a stochastic reward whose probability distribution is initially unknown.
We try these arms in some order, which may depend on the sequence of rewards that have been
observed so far. A common objective in this context is to find a policy for choosing the next arm
to be tried, under which the sum of the expected rewards comes as close as possible to the ideal
reward, i.e., the expected reward that would be obtained if we were to try the “best” arm at all
times. One of the attractive features of the multi-armed bandit problem is that despite its simplicity,
it encompasses many important decision theoretic issues, such as the tradeoff between exploration
and exploitation.

The multi-armed bandit problem has been widely studied in a variety of setups. The problem
was first considered in the 50’s, in the seminal work of Robbins (1952), which derives policies that
asymptotically attain an average reward that converges in the limit to the reward of the best arm.
The multi-armed bandit problem was later studied in discounted, Bayesian, Markovian, expected
reward, and adversarial setups. See Berry and Fristedt (1985) for a review of the classical results on
the multi-armed bandit problem.
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Lower bounds for different variants of the multi-armed bandit have been studied by several
authors. For the expected regret model, where the regret is defined as the difference between the
ideal reward (if the best arm were known) and the reward under an online policy, the seminal work
of Lai and Robbins (1985) provides asymptotically tight bounds in terms of the Kullback-Leibler
divergence between the distributions of the rewards of the different arms. These bounds grow loga-
rithmically with the number of steps. The adversarial multi-armed bandit problem (i.e., without any
probabilistic assumptions) was considered in Auer et al. (1995, 2002b), where it was shown that the
expected regret grows proportionally to the square root of the number of steps. Of related interest
is the work of Kulkarni and Lugosi (2000) which shows that for any specific time t, one can choose
the reward distributions so that the expected regret is linear in t.

The focus of this paper is the classical multi-armed bandit problem, but rather than looking
at the expected regret, we are concerned with PAC-type bounds on the number of steps needed
to identify a near-optimal arm. In particular, we are interested in the expected number of steps
that are required in order to identify with high probability (at least 1− δ) an arm whose expected
reward is within ε from the expected reward of the best arm. This naturally abstracts the case
where one must eventually commit to one specific arm, and quantifies the amount of exploration
necessary. This is in contrast to most of the results for the multi-armed bandit problem, where
the main aim is to maximize the expected cumulative reward while both exploring and exploiting.
In Even-Dar et al. (2002), a policy, called the median elimination algorithm, was provided which
requires O((n/ε2) log(1/δ)) trials, and which finds an ε-optimal arm with probability at least 1−δ.
A matching lower bound was also derived in Even-Dar et al. (2002), but it only applied to the case
where δ > 1/n, and therefore did not capture the case where high confidence (small δ) is desired.
In this paper, we derive a matching lower bound which also applies when δ > 0 is arbitrarily small.

Our main result can be viewed as a generalization of a O((1/ε2) log(1/δ)) lower bound provided
in Anthony and Bartlett (1999), and Chernoff (1972), for the case of two bandits. The proof in An-
thony and Bartlett (1999) is based on a hypothesis interchange argument, and relies critically on the
fact there are only two underlying hypotheses. Furthermore, it is limited to “nonadaptive” policies,
for which the number of trials is fixed a priori. The technique we use is based on a likelihood ratio
argument and a tight martingale bound, and applies to general policies.

A different type of lower bound was derived in Auer et al. (2002b) for the expected regret in
an adversarial setup. The bounds derived there can also be used to derive a lower bound for our
problem, but do not appear to be tight enough to capture the log(1/δ) dependence on δ. Our work
also provides fundamental lower bounds in the context of sequential analysis (see, e.g., Chernoff,
1972; Jennison et al., 1982; Siegmund, 1985). In the language of Siegmund (1985), we provide a
lower bound on the expected length of a sequential sampling policy under any adaptive allocation
scheme. For the case of two arms, it was shown in Siegmund (1985) (p. 148) that if one restricts to
sampling policies that only take into account the empirical average rewards from the different arms,
then the problems of inference and arm selection can be treated separately. As a consequence, and
under this restriction, Siegmund (1985) shows that an optimal allocation cannot be much better than
a uniform one. Our results are different in a number of ways. First, we consider multiple hypotheses
(multiple arms). Second, we allow the allocation rule to be completely general and to depend on
the whole history. Third, unlike most of the sequential analysis literature (see, e.g., Jennison et al.,
1982), we do not restrict ourselves to the limiting case where the probability of error converges to
zero. Finally, we consider finite time bounds, rather than asymptotic ones. We further comment that
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EXPLORATION IN MULTI-ARMED BANDITS

our results extend those of Jennison et al. (1982), in that we consider the case where the reward is
not Gaussian.

Paper Outline

The paper is organized as follows. In Section 2, we set up our framework, and since we are mainly
interested in lower bounds, we restrict to the special case where each arm is a “coin,” i.e., the rewards
are Bernoulli random variables, but with unknown parameters (“biases”). In Section 3, we provide
a O((n/ε2) log(1/δ)) lower bound on the expected number of trials under any policy that finds an
ε-optimal coin with probability at least 1− δ. In Section 4, we provide a refined lower bound that
depends explicitly on the specific (though unknown) biases of the coins. This lower bound has
the same log(1/δ) dependence on δ; furthermore, every coin roughly contributes a factor inversely
proportional to the square difference between its bias and the bias of a best coin, but no more that
1/ε2. In Section 5, we derive a lower bound similar to the one in Section 3, but within a Bayesian
setting, under a prior distribution on the set of biases of the different coins.

In Section 6 we provide a bound on the expected regret which is similar in spirit to the bound
in Lai and Robbins (1985). The constants in our bounds are slightly worse than the ones in Lai and
Robbins (1985), but the different derivation, which links the PAC model to regret bounds, may be
of independent interest. Our bound holds for any finite time, as opposed to the asymptotic result
provided in Lai and Robbins (1985).

The case where the coin biases are known in advance, but the identities of the coins are not,
is discussed in Section 7. We provide a policy that finds an ε-optimal coin with probability at
least 1− δ, under which the expected number of trials is O

(

(1/ε2)(n+ log(1/δ))
)

. We show that
this bound is tight up to a multiplicative constant. If instead of the expected number of trials, we
consider the maximum (over all sample paths) number of trials, we establish a matching upper and
lower bounds of the form Θ((n/ε2) log(1/δ)). Finally, Section 8 contains some brief concluding
remarks.

2. Problem Definition

The exploration problem for multi-armed bandits is defined as follows. We are given n arms. Each
arm ` is associated with a sequence of identically distributed Bernoulli (i.e., taking values in {0,1})
random variables X `

k , k = 1,2, . . ., with unknown mean p`. Here, X `
k corresponds to the reward

obtained the kth time that arm ` is tried. We assume that the random variables X `
k , for ` = 1, . . . ,n,

k = 1,2, . . ., are independent, and we define p = (p1, . . . , pn). Given that we restrict to the Bernoulli
case, we will use in the sequel the term “coin” instead of “arm.”

A policy is a mapping that given a history, chooses a particular coin to be tried next, or selects
a particular coin and stops. We allow a policy to use randomization when choosing the next coin to
be tried or when making a final selection. However, we only consider policies that are guaranteed
to stop with probability 1, for every possible vector p. (Otherwise, the expected number of steps
would be infinite.) Given a particular policy, we let Pp be the corresponding probability measure (on
the natural probability space for this model). This probability space captures both the randomness
in the coins (according to the vector p), as well as any additional randomization carried out by the
policy. We introduce the following random variables, which are well defined, except possibly on
the set of measure zero where the policy does not stop. We let T` be the total number of times that
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coin ` is tried, and let T = T1 + · · ·+Tn be the total number of trials. We also let I be the coin which
is selected when the policy decides to stop.

We say that a policy is (ε,δ)-correct if

Pp

(

pI > max
`

p`− ε
)

≥ 1−δ,

for every p ∈ [0,1]n. It was shown in Even-Dar et al. (2002) that there exist constants c1 and c2 such
that for every n, ε > 0, and δ > 0, there exists an (ε,δ)-correct policy under which

Ep[T ] ≤ c1
n
ε2 log

c2

δ
, ∀ p ∈ [0,1]n.

A matching lower bound was also established in Even-Dar et al. (2002), but only for “large” values
of δ, namely, for δ > 1/n. In contrast, we aim at deriving bounds that capture the dependence of the
sample-complexity on δ, as δ becomes small.

3. A Lower Bound on the Sample Complexity

We start with our central result, which can be viewed as an extension of Lemma 5.1 from Anthony
and Bartlett (1999), as well as a special case of Theorem 5. We present it here because it admits
a simpler proof, but also because parts of the proof will be used later. Throughout the rest of the
paper, log will stand for the natural logarithm.

Theorem 1 There exist positive constants c1, c2, ε0, and δ0, such that for every n ≥ 2, ε ∈ (0,ε0),
and δ ∈ (0,δ0), and for every (ε,δ)-correct policy, there exists some p ∈ [0,1]n such that

Ep[T ] ≥ c1
n
ε2 log

c2

δ
.

In particular, ε0 and δ0 can be taken equal to 1/8 and e−4/4, respectively.

Proof Let us consider a multi-armed bandit problem with n + 1 coins, which we number from 0
to n. We consider a finite set of n + 1 possible parameter vectors p, which we will refer to as
“hypotheses.” Under any one of the hypotheses, coin 0 has a known bias p0 = (1+ε)/2. Under one
hypothesis, denoted by H0, all the coins other than zero have a bias of 1/2,

H0 : p0 =
1
2

+
ε
2
, pi =

1
2
, for i 6= 0 ,

which makes coin 0 the best coin. Furthermore, for ` = 1, . . . ,n, there is a hypothesis

H` : p0 =
1
2

+
ε
2
, p` =

1
2

+ ε, pi =
1
2
, for i 6= 0, ` ,

which makes coin ` the best coin.
We define ε0 = 1/8 and δ0 = e−4/4. From now on, we fix some ε ∈ (0,ε0) and δ ∈ (0,δ0), and

a policy, which we assume to be (ε/2,δ)-correct . If H0 is true, the policy must have probability at
least 1−δ of eventually stopping and selecting coin 0. If H` is true, for some ` 6= 0, the policy must
have probability at least 1−δ of eventually stopping and selecting coin `. We denote by E` and P`

the expectation and probability, respectively, under hypothesis H`.
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We define t∗ by

t∗ =
1

cε2 log
1
4δ

=
1

cε2 log
1
θ
, (1)

where θ = 4δ, and where c is an absolute constant whose value will be specified later.1 Note that
θ < e−4 and ε < 1/4.

Recall that T` stands for the number of times that coin ` is tried. We assume that for some coin
` 6= 0, we have E0[T`] ≤ t∗. We will eventually show that under this assumption, the probability of
selecting H0 under H` exceeds δ, and violates (ε/2,δ)-correctness. It will then follow that we must
have E0[T`] > t∗ for all ` 6= 0. Without loss of generality, we can and will assume that the above
condition holds for ` = 1, so that E0[T1] ≤ t∗.

We will now introduce some special events A and C under which various random variables of
interest do not deviate significantly from their expected values. We define

A = {T1 ≤ 4t∗},
and obtain

t∗ ≥ E0[T1] ≥ 4t∗P0(T1 > 4t∗) = 4t∗(1−P0(T1 ≤ 4t∗)),

from which it follows that
P0(A) ≥ 3/4.

We define Kt = X1
1 + · · ·+X1

t , which is the number of unit rewards (“heads”) if the first coin is
tried a total of t (not necessarily consecutive) times. We let C be the event defined by

C =
{

max
1≤t≤4t∗

∣

∣

∣
Kt −

1
2

t
∣

∣

∣
<
√

t∗ log(1/θ)
}

.

We now establish two lemmas that will be used in the sequel.

Lemma 2 We have P0(C) > 3/4.

Proof We will prove a more general result:2 we assume that coin i has bias pi under hypothesis H`,
define Ki

t as the number of unit rewards (“heads”) if coin i is tested for t (not necessarily consecutive)
times, and let

Ci =
{

max
1≤t≤4t∗

∣

∣

∣
Ki

t − pit
∣

∣

∣
<
√

t∗ log(1/θ)
}

.

First, note that K i
t − pit is a P`-martingale (in the context of Theorem 1, pi = 1/2 is the bias of

coin i = 1 under hypothesis H0). Using Kolmogorov’s inequality (Corollary 7.66, in p. 244 of Ross,
1983), the probability of the complement of Ci can be bounded as follows:

P`

(

max
1≤t≤4t∗

∣

∣

∣
Ki

t − pit
∣

∣

∣
≥
√

t∗ log(1/θ)

)

≤ E`[(Ki
4t∗ −4pit∗)2]

t∗ log(1/θ)
.

Since E`[(Ki
4t∗ −4pit∗)2] = 4pi(1− pi)t∗, we obtain

P`(Ci) ≥ 1− 4pi(1− pi)

log(1/θ)
>

3
4
, (2)

where the last inequality follows because θ < e−4 and 4pi(1− pi) ≤ 1. �

1. In this and subsequent proofs, and in order to avoid repeated use of truncation symbols, we treat t ∗ as if it were
integer.

2. The proof for a general pi will be useful later.
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Lemma 3 If 0 ≤ x ≤ 1/
√

2 and y ≥ 0, then

(1− x)y ≥ e−dxy,

where d = 1.78.

Proof A straightforward calculation shows that log(1− x)+ dx ≥ 0 for 0 ≤ x ≤ 1/
√

2. Therefore,
y(log(1− x)+ dx) ≥ 0 for every y ≥ 0. Rearranging and exponentiating, leads to (1− x)y ≥ e−dxy.
�

We now let B be the event that I = 0, i.e., that the policy eventually selects coin 0. Since the
policy is (ε/2,δ)-correct for δ < e−4/4 < 1/4, we have P0(B) > 3/4. We have already shown that
P0(A) ≥ 3/4 and P0(C) > 3/4. Let S be the event that A, B, and C occur, that is S = A∩B∩C. We
then have P0(S) > 1/4.

Lemma 4 If E0[T1] ≤ t∗ and c ≥ 100, then P1(B) > δ.

Proof We let W be the history of the process (the sequence of coins chosen at each time, and the
sequence of observed coin rewards) until the policy terminates. We define the likelihood function
L` by letting

L`(w) = P`(W = w),

for every possible history w. Note that this function can be used to define a random variable L`(W ).
We also let K be a shorthand notation for KT1 , the total number of unit rewards (“heads”) obtained
from coin 1. Given the history up to time t − 1, the coin choice at time t has the same probability
distribution under either hypothesis H0 and H1; similarly, the coin reward at time t has the same
probability distribution, under either hypothesis, unless the chosen coin was coin 1. For this reason,
the likelihood ratio L1(W )/L0(W ) is given by

L1(W )

L0(W )
=

( 1
2 + ε)K( 1

2 − ε)T1−K

( 1
2)T1

= (1+2ε)K(1−2ε)K(1−2ε)T1−2K

= (1−4ε2)K(1−2ε)T1−2K . (3)

We will now proceed to lower bound the terms in the right-hand side of Eq. (3) when event S occurs.
If event S has occurred, then A has occurred, and we have K ≤ T1 ≤ 4t∗, so that

(1−4ε2)K ≥ (1−4ε2)4t∗ = (1−4ε2)(4/(cε2)) log(1/θ)

≥ e−(16d/c) log(1/θ)

= θ16d/c.

We have used here Lemma 3, which applies because 4ε2 < 4/42 < 1/
√

2.
Similarly, if event S has occurred, then A∩C has occurred, which implies,

T1 −2K ≤ 2
√

t∗ log(1/θ) = (2/ε
√

c) log(1/θ),
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where the equality above made use of the definition of t∗. Therefore,

(1−2ε)T1−2K ≥ (1−2ε)(2/ε
√

c) log(1/θ)

≥ e−(4d/
√

c) log(1/θ)

= θ4d/
√

c.

Substituting the above in Eq. (3), we obtain

L1(W )

L0(W )
≥ θ(16d/c)+(4d/

√
c).

By picking c large enough (c = 100 suffices), we obtain that L1(W )/L0(W ) is larger than θ = 4δ
whenever the event S occurs. More precisely, we have

L1(W )

L0(W )
1S ≥ 4δ1S,

where 1S is the indicator function of the event S. Then,

P1(B) ≥ P1(S) = E1[1S] = E0

[

L1(W )

L0(W )
1S

]

≥ E0[4δ1S] = 4δP0(S) > δ,

where we used the fact that P0(S) > 1/4. �

To summarize, we have shown that when c≥ 100, if E0[T1]≤ (1/cε2) log(1/(4δ)), then P1(B) >
δ. Therefore, if we have an (ε/2,δ)-correct policy, we must have E0[T`] > (1/cε2) log(1/(4δ)), for
every ` > 0. Equivalently, if we have an (ε,δ)-correct policy, we must have E0[T ] > (n/(4cε2)) log(1/(4δ)),
which is of the desired form. �

4. A Lower Bound on the Sample Complexity - General Probabilities

In Theorem 1, we worked with a particular unfavorable vector p (the one corresponding to hypothe-
sis H0), under which a lot of exploration is necessary. This leaves open the possibility that for other,
more favorable choices of p, less exploration might suffice. In this section, we refine Theorem 1
by developing a lower bound that explicitly depends on the actual (though unknown) vector p. Of
course, for any given vector p, there is an “optimal” policy, which selects the best coin without
any exploration: e.g., if p1 ≥ p` for all `, the policy that immediately selects coin 1 is “optimal.”
However, such a policy will not be (ε,δ)-correct for all possible vectors p.

We start with a lower bound that applies when all coin biases pi lie in the range [0,1/2]. We
will later use a reduction technique to extend the result to a generic range of biases. In the rest of
the paper, we use the notational convention (x)+ = max{0,x}.

Theorem 5 Fix some p ∈ (0,1/2). There exists a positive constant δ0, and a positive constant c1

that depends only on p, such that for every ε ∈ (0,1/2), every δ ∈ (0,δ0), every p ∈ [0,1/2]n, and
every (ε,δ)-correct policy, we have

Ep[T ] ≥ c1

{

(|M(p,ε)|−1)+

ε2 + ∑
`∈N(p,ε)

1
(p∗− p`)2

}

log
1
8δ

,
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where p∗ = maxi pi,

M(p,ε) =
{

` : p` > p∗− ε, and p` > p, and p` ≥
ε+ p∗

1+
√

1/2

}

, (4)

and

N(p,ε) =
{

` : p` ≤ p∗− ε, and p` > p, and p` ≥
ε+ p∗

1+
√

1/2

}

. (5)

In particular, δ0 can be taken equal to e−8/8.

Remarks:

(a) The lower bound involves two sets of coins whose biases are not too far from the best bias
p∗. The first set M(p,ε) contains coins that are within ε from the best and would therefore be
legitimate selections. In the presence of multiple such coins, a certain amount of exploration
is needed to obtain the required confidence that none of these coins is significantly better than
the others. The second set N(p,ε) contains coins whose bias is more than ε away from p∗;
they come into the lower bound because again some exploration is needed in order to obtain
the required confidence that none of these coins is significantly better than the best coin in
M(p,ε).

(b) The expression (ε+ p∗)/(1+
√

1/2) in Eqs. (4) and (5) can be replaced by (ε+ p∗)/(2−α)
for any positive constant α, by changing some of the constants in the proof.

(c) This result actually provides a family of lower bounds, one for every possible choice of p. A
tighter bound can be obtained by optimizing the choice of p, while also taking into account the
dependence of the constant c1 on p. This is not hard (the dependence of c1 on p is described
in Remark 7), but does not provide any new insights.

Proof Let us fix δ0 = e−8/8, some p ∈ (0,1/2), ε ∈ (0,1/2), δ ∈ (0,δ0), an (ε,δ)-correct policy,
and some p ∈ [0,1/2]n. Without loss of generality, we assume that p∗ = p1. Let us denote the true
(unknown) bias of each coin by qi. We consider the following hypotheses:

H0 : qi = pi, for i = 1, . . . ,n ,

and for ` = 1, . . . ,n,
H` : q` = p1 + ε, qi = pi, for i 6= `.

If hypothesis H` is true, the policy must select coin `. We will bound from below the expected
number of times the coins in the sets N(p,ε) and M(p,ε) must be tried, when hypothesis H0 is true.
As in Section 3, we use E` and P` to denote the expectation and probability, respectively, under the
policy being considered and under hypothesis H`.

We define θ = 8δ, and note that θ < e−8. Let

t∗` =











1
cε2 log

1
θ
, if ` ∈ M(p,ε),

1
c(p1 − p`)2 log

1
θ
, if ` ∈ N(p,ε),
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where c is a constant that only depends on p, and whose value will be chosen later. Recall that T`

stands for the total number of times that coin ` is tried. We define the event

A` = {T` ≤ 4t∗` }.

As in the proof of Theorem 1, if E0[T`] ≤ t∗` , then P0(A`) ≥ 3/4.
We define K`

t = X `
1 + · · ·+X `

t , which is the number of unit rewards (“heads”) if the `-th coin is
tried a total of t (not necessarily consecutive) times. We let C` be the event defined by

C` =
{

max
1≤t≤4t∗`

|K`
t − p`t| <

√

t∗` log(1/θ)
}

.

Similar to Lemma 2, and since θ = 8δ < e−8, we have3

P0(C`) > 7/8.

Let B` be the event {I = `}, i.e., that the policy eventually selects coin `, and let Bc
` be its

complement. Since the policy is (ε,δ)-correct with δ < δ0 < 1/2, we must have

P0(B
c
`) > 1/2, ∀ ` ∈ N(p,ε).

We also have ∑`∈M(p,ε) P0(B`) ≤ 1, so that the inequality P0(B`) > 1/2 can hold for at most one
element of M(p,ε). Equivalently, the inequality P0(Bc

`) ≤ 1/2 can hold for at most one element of
M(p,ε). Let

M0(p,ε) =
{

` ∈ M(p,ε) and P0(B
c
`) >

1
2

}

.

It follows that |M0(p,ε)| ≥ (|M(p,ε)|−1)+.
The following lemma is an analog of Lemma 4.

Lemma 6 Suppose that `∈M0(p,ε)∪N(p,ε) and that E0[T`]≤ t∗` . If the constant c in the definition
of t∗ is chosen large enough (possibly depending on p), then P`(Bc

`) > δ.

Proof Fix some ` ∈ M0(p,ε)∪N(p,ε). For future reference, we note that the definitions of M(p,ε)
and N(p,ε) include the condition p` ≥ (ε+ p∗)/(1+

√

1/2). Recalling that p∗ = p1, p` ≤ 1/2, and
using the definition ∆` = p1 − p` ≥ 0, some easy algebra leads to the conditions

ε+∆`

1− p`
≤ ε+∆`

p`
≤ 1√

2
. (6)

We define the event S` by
S` = A`∩Bc

` ∩C`.

Since P0(A`) ≥ 3/4, P0(Bc
`) > 1/2, and P0(C`) > 7/8, we have

P0(S`) >
1
8
, ∀ ` ∈ M0(p,ε)∪N(p,ε).

3. The derivation is identical to Lemma 2 except for Eq. (2), where one should replace the assumption that θ < e−4

with the stricter assumption that θ < e−8 used here.
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As in the proof of Lemma 4, we define the likelihood function L` by letting

L`(w) = P`(W = w),

for every possible history w, and use again L`(W ) to define the corresponding random variable.
Let K be a shorthand notation for K`

T`
, the total number of unit rewards (“heads”) obtained from

coin `. We have

L`(W )

L0(W )
=

(p1 + ε)K(1− p1 − ε)T`−K

pK
` (1− p`)T`−K

=

(

p1

p`
+

ε
p`

)K(1− p1

1− p`
− ε

1− p`

)T`−K

=

(

1+
ε+∆`

p`

)K(

1− ε+∆`

1− p`

)T`−K

,

where we have used the definition ∆` = p1 − p`. It follows that

L`(W )

L0(W )
=

(

1+
ε+∆`

p`

)K(

1− ε+∆`

p`

)K(

1− ε+∆`

p`

)−K(

1− ε+∆`

1− p`

)T`−K

=

(

1−
(

ε+∆`

p`

)2
)K
(

1− ε+∆`

p`

)−K(

1− ε+∆`

1− p`

)T`−K

=

(

1−
(

ε+∆`

p`

)2
)K
(

1− ε+∆`

p`

)−K(

1− ε+∆`

1− p`

)K(1−p`)/p`

·
(

1− ε+∆`

1− p`

)(p`T`−K)/p`

. (7)

We will now proceed to lower bound the right-hand side of Eq. (7) for histories under which
event S` occurs. If event S` has occurred, then A` has occurred, and we have K ≤ T` ≤ 4t∗, so that
for every ` ∈ N(ε, p), we have

(

1−
(

ε+∆`

p`

)2
)K

≥
(

1−
(

ε+∆`

p`

)2
)4t∗`

=

(

1−
(

ε+∆`

p`

)2
)(4/c∆2

` ) log(1/θ)

a
≥ exp

{

−d
4
c

((ε/∆`)+1
p`

)2
log(1/θ)

}

b
≥ exp

{

−d
16

cp`
2 log(1/θ)

}

= θ16d/p2
`c.

In step (a), we have used Lemma 3 which applies because of Eq. (6); in step (b), we used the fact
ε/∆` ≤ 1, which holds because ` ∈ N(ε, p).
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Similarly, for ` ∈ M(ε, p), we have

(

1−
(

ε+∆`

p`

)2
)K

≥
(

1−
(

ε+∆`

p`

)2
)4t∗`

=

(

1−
(

ε+∆`

p`

)2
)(4/cε2) log(1/θ)

a
≥ exp

{

−d
4
c

(1+(∆`/ε)
p`

)2
log(1/θ)

}

b
≥ exp

{

−d
16

cp`
2 log(1/θ)

}

= θ16d/p2
`c.

In step (a), we have again used Lemma 3; in step (b), we used the fact ∆`/ε ≤ 1, which holds
because ` ∈ M(ε, p).

We now bound the product of the second and third terms in Eq. (7).
If b ≥ 1, then the mapping y 7→ (1− y)b is convex for y ∈ [0,1]. Thus, (1− y)b ≥ 1−by, which

implies that
(

1− ε+∆`

1− p`

)(1−p`)/p`

≥
(

1− ε+∆`

p`

)

,

so that the product of the second and third terms can be lower bounded by

(

1− ε+∆`

p`

)−K(

1− ε+∆`

1− p`

)K(1−p`)/p`

≥
(

1− ε+∆`

p`

)−K(

1− ε+∆`

p`

)K

= 1.

We still need to bound the fourth term of Eq. (7). We start with the case where ` ∈ N(p,ε). We
have

(

1− ε+∆`

1− p`

)(p`T`−K)/p` a
≥

(

1− ε+∆`

1− p`

)(1/p`)
√

t∗` log(1/θ)

(8)

b
=

(

1− ε+∆`

1− p`

)(1/p`
√

c∆`) log(1/θ)

c
≥ exp

{

− d√
c
· ε+∆`

∆`(1− p`)p`
log(1/θ)

}

(9)

d
≥ exp

{

− 2d√
c(1− p`)p`

log(1/θ)

}

(10)

e
≥ exp

{

− 4d√
cp`

log(1/θ)

}

= θ4d/(p`
√

c) .

Here, (a) holds because we are assuming that the events A` and C` occurred; (b) uses the definition
of t∗` for ` ∈ N(p,ε); (c) follows from Eq. (6) and Lemma 3; (d) follows because ∆` > ε; and (e)
holds because 0 ≤ p` ≤ 1/2, which implies that 1/(1− p`) ≤ 2.
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Consider now the case where ` ∈ M0(p,ε). Equation (8) holds for the same reasons as when
` ∈ N(p,ε). The only difference from the above calculation is in step (b), where t ∗` should be
replaced with (1/cε2) log(1/θ). Then, the right-hand side in Eq. (9) becomes

exp

{

− d√
c
· ε+∆`

ε(1− p`)p`
log(1/θ)

}

.

For ` ∈ M0(p,ε), we have ∆` ≤ ε, which implies that (ε+∆`)/ε ≤ 2, which then leads to the same
expression as in Eq. (10). The rest of the derivation is identical. Summarizing the above, we have
shown that if ` ∈ M0(p,ε)∪N(p,ε), and event S` has occurred, then

L`(W )

L0(W )
≥ θ(4d/p`

√
c)+(16d/p2

`c) .

For ` ∈ M0(p,ε)∪N(p,ε), we have p < p`. We can choose c large enough so that L`(W )/L0(W ) ≥
θ = 8δ; the value of c depends only on the constant p. Similar to the proof of Theorem 1, we have

L`(W )

L0(W )
1S` ≥ 8δ1S` ,

where 1S` is the indicator function of the event S`. It follows that

P`(B
c
`) ≥ P`(S`) = E`[1S` ] = E0

[

L`(W )

L0(W )
1S`

]

≥ E0[8δ1S` ] = 8δP0(S`) > δ,

where the last inequality relies on the already established fact P0(S`) > 1/8. �

Since the policy is (ε,δ)-correct, we must have P`(Bc
`) ≤ δ, for every `. Lemma 6 then implies

that E0[T`] > t∗` for every ` ∈ M0(p,ε)∪N(p,ε). We sum over all ` ∈ M0(p,ε)∪N(p,ε), use the
definition of t∗` , together with the fact |M0(p,ε)| ≥ (|M(p,ε)| − 1)+, to conclude the proof of the
theorem. �

Remark 7 A close examination of the proof reveals that the dependence of c1 on p is captured by
a requirement of the form c1 ≤ c2 p2, for some absolute constant c2. This suggests that there is a
tradeoff in the choice of p. By choosing a large p, the constant c1 is made larger, but the sets M and
N become smaller, and vice versa.

The preceding result may give the impression that the sample complexity is high only when
the pi are bounded by 1/2. The next result shows that similar lower bounds hold (with a different
constant) whenever the pi can be assumed to be bounded away from 1. However, the lower bound
becomes weaker (i.e., the constant c1 is smaller) when the upper bound on the pi approaches 1.
In fact, the dependence of a lower bound on ε cannot be Θ(1/ε2) when maxi pi = 1. To see this,
consider the following policy π. Try each coin O((1/ε) log(n/δ)) times. If one of the coins always
resulted in heads, select it. Otherwise, use some (ε,δ)-correct policy π̃. It can be shown that the pol-
icy π is (ε,δ)-correct (for every p ∈ [0,1]n), and that if maxi pi = 1, then Ep[T ] = O((n/ε) log(n/δ)).
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Theorem 8 Fix an integer s ≥ 2, and some p ∈ (0,1/2). There exists a positive constant c1 that

depends only on p such that for every ε ∈ (0,2−(s+2)), every δ ∈ (0,e−8/8), every p ∈ [0,1−2−s]n,
and every (ε,δ)-correct policy, we have

Ep[T ] ≥ c1

sη2

{

(|M(p̃,εη)|−1)+

ε2 + ∑
`∈N(p̃,ηε)

1
(p∗− p`)2

}

log
1
8δ

,

where p∗ = maxi pi, η = 2s+1/s, p̃ is the vector with components p̃i = 1 − (1 − pi)
1/s (for i =

1,2, . . . ,n), and M and N are as defined in Theorem 5.

Proof Let us fix s ≥ 2, p ∈ (0,1/2), ε ∈ (0,2−(s+2)), and δ ∈ (0,e−8/8). Suppose that we have
an (ε,δ)-correct policy π whose expected time to termination is Ep[T ], whenever the vector of coin
biases happens to be p. We will use the policy π to construct a new policy π̃ such that

Pp̃

(

p̃I > max
i

p̃i −ηε
)

≥ 1−δ, ∀ p̃ ∈ [0,(1/2)+ηε]n;

(we will then say that π̃ is (ηε,δ)-correct on [0,(1/2)+ηε]n). Finally, we will use the lower bounds
from Theorem 5, applied to π̃, to obtain a lower bound on the sample complexity of π.

The new policy π̃ is specified as follows. Run the original policy π. Whenever π chooses to try
a certain coin i once, policy π̃ tries coin i for s consecutive times. Policy π̃ then “feeds” π with 0 if
all s trials resulted in 0, and “feeds” π with 1 otherwise. If p̃ is the true vector of coin biases faced
by policy π̃, and if policy π chooses to sample coin i, then policy π “sees” an outcome which equals
1 with probability pi = 1− (1− p̃i)

s. Let us define two mappings f ,g : [0,1] 7→ [0,1], which are
inverses of each other, by

f (pi) = 1− (1− pi)
1/s, g(p̃i) = 1− (1− p̃i)

s,

and with a slight abuse of notation, let f (p) = ( f (p1), . . . , f (pn)), and similarly for g(p̃). With our
construction, when policy π̃ is faced with a bias vector p̃, it evolves in an identical manner as the
policy π faced with a bias vector p = g(p̃). But under policy π̃, there are s trials associated with
every trial under policy π, which implies that T̃ = sT (T̃ is the number of trials under policy π̃) and
therefore

Eπ̃
p̃[T̃ ] = sEπ

g(p̃)[T ], Eπ̃
f (p)[T̃ ] = sEπ

p[T ], (11)

where the superscript in the expectation operator indicates the policy being used.
We will now determine the “correctness” guarantees of policy π̃. We first need some algebraic

preliminaries. Let us fix some p̃∈ [0,(1/2)+ηε]n and a corresponding vector p, related by p̃ = f (p)
and p = g(p̃). Let also p∗ = maxi pi and p̃∗ = maxi p̃i. Using the definition η = 2s+1/s and the
assumption ε < 2−(s+2), we have p̃∗ ≤ (1/2)+(1/2s), from which it follows that

p∗ ≤ 1−
(

1
2
− 1

2s

)s

= 1− 1
2s

(

1− 1
s

)s

≤ 1− 1
2s ·

1
4

= 1−2−(s+2).

The derivative f ′ of f is monotonically increasing on [0,1). Therefore,

f ′(p∗) ≤ f ′(1−2−(s+2)) =
1
s

(

2−(s+2)
)(1/s)−1

=
1
s

2−(s+2)(1−s)/s

=
1
s

2s+1−(2/s) ≤ 1
s

2s+1 = η.
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Thus, the derivative of the inverse mapping g satisfies

g′(p̃∗) ≥
1
η

,

which implies, using the concavity of g, that

g(p̃∗−ηε) ≤ g(p̃∗)−g′(p̃∗)εη ≤ g(p̃∗)− ε.

Let I be the coin index finally selected by policy π̃ when faced with p̃, which is the same as
the index chosen by π when faced with p. We have (the superscript in the probability indicates the
policy being used)

Pπ̃
p̃ (p̃I ≤ p̃∗−ηε) = Pπ̃

p̃ (g(p̃I) ≤ g(p̃∗−ηε))

≤ Pπ̃
p̃ (g(p̃I) ≤ g(p̃∗)− ε)

= Pπ
p (pI ≤ p∗− ε)

≤ 1−δ,

where the last inequality follows because policy π was assumed to be (ε,δ)-correct. We have there-
fore established that π̃ is (ηε,δ)-correct on [0,(1/2) + ηε]n. We now apply Theorem 5, with ηε
instead of ε. Even though that theorem is stated for a policy which is (ε,δ)-correct for all possible
p, the proof only requires the policy to be (ε,δ)-correct for p ∈ [0,(1/2)+ ε]n. This gives a lower
bound on Eπ̃

p̃[T̃ ] which, using Eq. (11), translates to the claimed lower bound on Eπ
p[T ]. This lower

bound applies whenever p = g(p̃), for some p̃ ∈ [0,1/2]n, and therefore whenever p ∈ [0,1−2−s]n.
�

5. The Bayesian Setting

There is another variant of the problem which is of interest. In this variant, the parameters pi

associated with each arm are not unknown constants, but random variables described by a given
prior. In this case, there is a single underlying probability measure which we denote by P, and
which is the average of the measures Pp over the prior distribution of p. We also use E to denote
the expectation with respect to P. We then define a policy to be (ε,δ)-correct, for a particular prior
and associated measure P, if

P
(

pI > max
i

pi − ε
)

≥ 1−δ.

We then have the following result.

Theorem 9 There exist positive constants c1, c2, ε0, and δ0, such that for every n≥ 2 and ε∈ (0,ε0),
there exists a prior for the n-bandit problem such that for every δ ∈ (0,δ0), and (ε,δ)-correct policy
for this prior, we have

E[T ] ≥ c1
n
ε2 log

c2

δ
.

In particular, ε0 and δ0 can be taken equal to 1/8 and e−4/12, respectively.
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Proof Let ε0 = 1/8 and δ0 = e−4/12, and let us fix ε ∈ (0,ε0) and δ ∈ (0,δ0). Consider the hy-
potheses H0, . . . ,Hn, introduced in the proof of Theorem 1. Let the prior probability of H0 be 1/2,
and the prior probability of H` be 1/2n, for ` = 1, . . . ,n. Fix an (ε/2,δ)-correct policy with respect
to this prior, and note that it satisfies

E[T ] ≥ 1
2

E0[T ] ≥ 1
2

n

∑̀
=1

E0[T`]. (12)

Since the policy is (ε/2,δ)-correct, we have P(pI > max` p`− (ε/2)) ≥ 1−δ.
As in the proof of Theorem 5, let B` be the event that the policy eventually selects coin `. We

have
1
2

P0(B0)+
1
2n

n

∑̀
=1

P`(B`) ≥ 1−δ,

which implies that
1
2n

n

∑̀
=1

P`(B0) ≤ δ. (13)

Let G be the set of hypotheses ` 6= 0 under which the probability of selecting coin 0 is at most
3δ, i.e.,

G = {` : 1 ≤ ` ≤ n, P`(B0) ≤ 3δ}.
From Eq. (13), we obtain

1
2n

(n−|G|)3δ < δ,

which implies that |G| > n/3. Following the same argument as in the proof of Lemma 4, we
obtain that there exists a constant c such that if δ′ ∈ (0,e−4/4) and E0[T`] ≤ (1/cε2) log(1/4δ′),
then P`(B0) > δ′. By taking δ′ = 3δ and requiring that δ ∈ (0,e−4/12), we see that the inequality
E0[T`] ≤ (1/cε2) log(1/12δ) implies that P`(B0) > 3δ (here, c is the same constant as in Lemma
4). But for every ` ∈ G we have P`(B0) ≤ 3δ, and therefore E0[T`] ≥ (1/cε2) log(1/12δ). Then,
Eq. (12) implies that

E[T ] ≥ 1
2 ∑̀

∈G

E0[T`] ≥ |G| 1
cε2 log

1
12δ

≥ c′1
n
ε2 log

c2

δ
,

where we have used the fact |G| > n/3 in the last inequality.
To conclude, we have shown that there exists constants c′1 and c2 and a prior for a problem with

n + 1 coins, such that any (ε/2,δ)-correct policy satisfies E[T ] ≥ (c′1n/ε2) log(c2/δ). The result
follows by taking a larger constant c′1 (to account for having n+1 and not n coins, and ε instead of
ε/2). �

6. Regret Bounds

In this section we consider lower bounds on the regret of any policy, and show that one can derive
the Θ(log t) regret bound of Lai and Robbins (1985) using the techniques in this paper. The results
of Lai and Robbins (1985) are asymptotic as t → ∞, whereas ours deal with finite times t. Our
lower bound has similar dependence in t as the upper bounds given by Auer et al. (2002a) for some
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natural sampling algorithms. As in Lai and Robbins (1985) and Auer et al. (2002a), we also show
that when t is large, the regret depends linearly on the number of coins.

Given a policy, let St be the total number of unit rewards (“heads”) obtained in the first t time
steps. The regret by time t is denoted by Rt , and is defined by

Rt = t max
i

pi −St .

Note that the regret is a random variable that depends on the results of the coin tosses as well as of
the randomization carried out by the policy.

Theorem 10 There exist positive constants c1,c2,c3,c4, and a constant c5, such that for every n≥ 2,
and for every policy, there exists some p ∈ [0,1]n such that for all t ≥ 1,

Ep[Rt ] ≥ min{c1t, c2n+ c3t, c4n(log t − logn+ c5)}. (14)

The inequality (14) suggests that there are essentially two regimes for the expected regret. When
n is large compared to t, the expected regret is linear in t. When t is large compared to n, the regret
behaves like log t, but depends linearly on n.

Proof We will prove a stronger result, by considering the regret in a Bayesian setting. By proving
that the expectation with respect to the prior is lower bounded by the right-hand side in Eq. (14), it
will follow that the bound also holds for at least one of the hypotheses. Consider the same scenario
as in Theorem 1, where we have n+1 coins and n+1 hypotheses H0,H1, . . . ,Hn. The prior assigns a
probability of 1/2 to H0, and a probability of 1/2n to each of the hypotheses H1,H2, . . . ,Hn. Similar
to Theorem 1, we will use the notation E` and P` to denote expectation and probability when the
`th hypothesis is true, and E to denote expectation with respect to the prior.

Let us fix t for the rest of the proof. We define T` as the number of times coin ` is tried in the
first t time steps. The expected regret when H0 is true is

E0[Rt ] =
ε
2

n

∑̀
=1

E0[T`],

and the expected regret when H` (` = 1, . . . ,n) is true is

E`[Rt ] =
ε
2

E`[T0]+ ε ∑
i6=0,`

E`[Ti],

so that the expected (Bayesian) regret is

E[Rt ] =
1
2
· ε

2

n

∑̀
=1

E0[T`]+
ε
2
· 1

2n

n

∑̀
=1

E`[T0]+
ε

2n

n

∑̀
=1

∑
i6=0,`

E`[Ti]. (15)

Let D be the event that coin 0 is tried at least t/2 times, i.e.,

D = {T0 ≥ t/2} .

We consider separately the two cases P0(D) < 3/4 and P0(D) ≥ 3/4. Suppose first that P0(D) <
3/4. In that case, E0[T0] < 7t/8, so that ∑n

`=1 E0[T`] ≥ t/8. Substituting in Eq. (15), we obtain
E[Rt ] ≥ εt/32. This gives the first term in the right-hand side of Eq. (14), with c1 = ε/32.
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We assume from now on that P0(D) ≥ 3/4. Rearranging Eq. (15), and omitting the third term,
we have

E[Rt ] ≥
ε
4

n

∑̀
=1

(

E0[T`]+
1
n

E`[T0]

)

.

Since E`[T0] ≥ (t/2)P`(D), we have

E[Rt ] ≥
ε
4

n

∑̀
=1

(

E0[T`]+
t

2n
P`(D)

)

. (16)

For every ` 6= 0, let us define δ` by

E0[T`] =
1

cε2 log
1

4δ`
.

(Such a δ` exists because of the monotonicity of the mapping x 7→ log(1/x).) Let δ0 = e−4/4. If
δ` < δ0, we argue exactly as in Lemma 4, except that the event B in that lemma is replaced by event
D. Since P0(D) ≥ 3/4, the same proof applies and shows that P`(D) ≥ δ`, so that

E0[T`]+
t

2n
P`(D) ≥ 1

cε2 log
1

4δ`
+

t
2n

δ`.

If on the other hand, δ` ≥ δ0, then E0[T`] ≤ (1/cε2) log(1/4δ0), which implies (by the earlier anal-
ogy with Lemma 4) that P`(D) ≥ δ0, and

E0[T`]+
t

2n
P`(D) ≥ 1

cε2 log
1

4δ`
+

t
2n

δ0.

Using the above bounds in Eq. (16), we obtain

E[Rt ] ≥
ε
4

n

∑̀
=1

(

1
cε2 log

1
4δ`

+h(δ`)
t

2n

)

, (17)

where h(δ) = δ if δ < δ0, and h(δ) = δ0 otherwise. We can now view the δ` as free parameters, and
conclude that E[Rt ] is lower bounded by the minimum of the right-hand side of Eq. (17), over all δ`.
When optimizing, all the δ` will be set to the same value. The minimizing value can be δ0, in which
case we have

E[Rt ] ≥
n

4cε
log

1
4δ0

+δ0
ε
8

t.

Otherwise, the minimizing value is δ` = n/2ctε2, in which case we have

E[Rt ] ≥
(

1
16cε

+
1

4cε
log(cε2/2)

)

n+
1

4cε
n log(1/n)+

n
4cε

log t.

Thus, the theorem holds with c2 = (1/4cε) log(1/4δ0), c3 = δ0ε/8, c4 = 1/4cε, and c5 = (1/4)+
log(cε2/2). �
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7. Permutations

We now consider the case where the coin biases pi are known up to a permutation. More specifically,
we are given a vector q ∈ [0,1]n, and we are told that the true vector p of coin biases is of the form
p = q ◦σ, where σ is an unknown permutation of the set {1, . . . ,n}, and where q ◦σ stands for
permuting the components of the vector q according to σ, i.e., (q◦σ)` = qσ(`). We say that a policy
is (q,ε,δ)-correct if the coin I eventually selected satisfies

Pq◦σ

(

pI > max
`

q`− ε
)

≥ 1−δ,

for every permutation σ of the set {1, . . . ,n}. We start with a O
(

(n+ log(1/δ))/ε2
)

upper bound
on the expected number of trials, which is significantly smaller than the bound obtained when the
coin biases are completely unknown (cf. Sections 3 and 4). We also provide a lower bound which
is within a constant factor of our upper bound.

We then consider a different measure of sample complexity: instead of the expected number of
trials, we consider the maximum (over all sample paths) number of trials. We show that for every
(q,ε,δ)-correct policy, there is a Θ((n/ε2) log(1/δ)) lower bound on the maximum number of trials.
We note that in the median elimination algorithm of Even-Dar et al. (2002), the length of all sample
paths is the same and within a constant factor from our lower bound. Hence our bound is again
tight.

We therefore see that for the permutation case, the sample complexity depends critically on
whether our criterion involves the expected or maximum number of trials. This is in contrast to the
general case considered in Section 3: the lower bound in that section applies under both criteria, as
does the matching upper bound from Even-Dar et al. (2002).

7.1 An Upper Bound on the Expected Number of Trials

Suppose we are given a vector q ∈ [0,1]n, and we are told that the true vector p of coin biases is a
permutation of q. The policy in Table 1 takes as input the accuracy ε, the confidence parameter δ,
and the vector q. In fact the policy only needs to know the bias of the best coin, which we denote
by q∗ = max` q`. The policy also uses an additional parameter δ′ ∈ (0,1/2].

The following theorem establishes the correctness of the policy, and provides an upper bound
on the expected number of trials.

Theorem 11 For every δ′ ∈ (0,1/2], ε ∈ (0,1), and δ ∈ (0,1), the policy in Table 1 is guaranteed
to terminate after a finite number of steps, with probability 1, and is (q,ε,δ)-correct. For every
permutation σ, the expected number of trials satisfies

Eq◦σ[T ] ≤ 1
ε2

(

c1n+ c2 log
1
δ

)

,

for some positive constants c1 and c2 that depend only on δ′.

Proof We start with a useful calculation. Suppose that at iteration k, the median elimination algo-
rithm selects a coin Ik whose true bias is pIk . Then, using the Hoeffding inequality, we have

P(|p̂k − pIk | ≥ ε/3) ≤ exp{−2(ε/3)2mk} ≤
δ
2k . (18)
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Input: Accuracy and confidence parameters ε ∈ (0,1) and δ ∈ (0,1); the bias of the best
coin q∗.

Parameter: δ′ ≤ 1/2.

0. k = 1;
1. Run the median elimination algorithm to find a coin Ik whose bias is within ε/3

of q∗, with probability at least 1−δ′.
2. Try coin Ik for mk = d(9/2ε2) log(2k/δ)e times.

Let p̂k be the fraction of these trials that result in “heads.”
3. If p̂k ≥ q∗−2ε/3 declare that coin Ik is an ε-optimal coin and terminate.
4. Set k := k +1 and go back to Step 1.

Table 1: A policy for finding an ε-optimal coin when the bias of the best coin is known.

Let K be the number of iterations until the policy terminates. Given that K > k− 1 (i.e., the
policy did not terminate in the first k− 1 iterations), there is probability at least 1− δ′ ≥ 1/2 that
pIk ≥ q∗− (ε/3), in which case, from Eq. (18), there is probability at least 1− (δ/2k) ≥ 1/2 that
p̂k ≥ q∗− (2ε/3). Thus, P(K > k | K > k−1)≤ 1−η, with η = 1/4. Consequently, the probability
that the policy does not terminate by the kth iteration, P(K > k), is bounded by (1−η)k. Thus, the
probability that the policy never terminates is bounded above by (3/4)k for all k, and is therefore 0.

We now bound the expected number of trials. Let c be such that the number of trials in one
execution of the median elimination algorithm is bounded by (cn/ε2) log(1/δ′). Then, the number
of trials, t(k), during the kth iteration is bounded by (cn/ε2) log(1/δ′) + mk. It follows that the
expected total number of trials under our policy is bounded by

∞

∑
k=1

P(K ≥ k)t(k) ≤ 1
ε2

∞

∑
k=1

(1−η)k−1
(

cn log(1/δ′)+(9/2) log(2k/δ)+1
)

=
1
ε2

∞

∑
k=1

(1−η)k−1 (cn log(1/δ′)+(9/2) log(1/δ)+(9k/2) log2+1
)

≤ 1
ε2 (c1n+ c2 log(1/δ)),

for some positive constants c1 and c2.
We finally argue that the policy is (q,ε,δ)-correct. For the policy to select a coin I with bias

pI ≤ q∗ − ε, it must be that at some iteration k, a coin Ik with pIk ≤ q∗ − ε was obtained, but p̂k

came out larger than q∗−2ε/3. From Eq. (18), for any fixed k, the probability of this occurring is
bounded by δ/2k. By the union bound, the probability that pI ≤ q∗−ε is bounded by ∑∞

k=1 δ/2k = δ.
�

Remark 12 The knowledge of q∗ turns out to be significant: it enables the policy to terminate
as soon as there is high confidence that a coin has been found whose bias is larger than q∗ − ε,
without having to check the other coins. A policy of this type would not work for the hypotheses
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considered in the proofs of Theorems 1 and 5: under those hypotheses, the value of q∗ is not a priori
known. We note that Theorem 11 disagrees with a lower bound in a preliminary version (Mannor
and Tsitsiklis, 2003) of this paper. It turns out that the latter lower bound is only valid under an
additional restriction on the set of policies, which will be the subject of Section 7.3.

7.2 A Lower Bound

We now prove that the upper bound in Theorem 11 is tight, within a constant.

Theorem 13 There exist positive constants c1, c2, ε0, and δ1, such that for every n ≥ 2 and ε ∈
(0,ε0), there exists some q ∈ [0,1]n, such that for every δ ∈ (0,δ1) and every (q,ε,δ)-correct policy,
there exists some permutation σ such that

Eq◦σ[T ] ≥ 1
ε2

(

c1n+ c2 log
1
δ

)

.

Proof Let ε0 = 1/4 and let δ1 = δ0/5, where δ0 is the same constant as in Theorem 5. Let us fix
some n ≥ 2 and ε ∈ (0,ε0). We will establish the claimed lower bound for

q = (0.5+ ε, 0.5− ε, . . . ,0.5− ε), (19)

and for every δ∈ (0,δ1). In fact, it is sufficient to establish a lower bound of the form (c2/ε2) log(1/δ)
and a lower bound of the form c1n/ε2. We start with the former.

Part I. Let us consider the following three hypothesis testing problems. For each problem, we are
interested in a δ-correct policy, i.e., a policy whose probability of error is less than δ under any
hypothesis. We will show that a δ-correct policy for the first problem can be used to construct a
δ-correct policy for the third problem, with the same sample complexity, and then apply Theorem 5
to obtain a lower bound.

Π1: We have two coins and the bias vector is either (0.5− ε, 0.5 + ε) or (0.5 + ε, 0.5− ε). We
wish to determine the best coin. This is a special case of our permutation problem, with n = 2.

Π2: We have a single coin whose bias is either 0.5− ε or 0.5 + ε, and we wish to determine the
bias of the coin.4

Π3: We have two coins and the bias vector can be (0.5, 0.5−ε), (0.5+ε, 0.5−ε), or (0.5,0.5+ε).
We wish to determine the best coin.

Consider a δ-correct policy for problem Π1 except that the coin outcomes are encoded as fol-
lows. Whenever coin 1 is tried, record the outcome unchanged; whenever coin 2 is tried, record the
opposite of the outcome (i.e., record a 0 outcome as a 1, and vice versa). Under the first hypothesis
in problem Π1, every trial (no matter which coin was tried) has probability 0.5−ε of being equal to
1, and under the second hypothesis has probability 0.5+ ε of being equal to 1. With this encoding,
it is apparent that the information provided by a trial of either coin in problem Π1 is the same as the

4. A lower bound for this problem was provided in Lemma 5.1 from Anthony and Bartlett (1999). However, that bound
is only established for policies with an a priori fixed number of trials, whereas our policies allow the number of trials
to be determined adaptively, based on observed outcomes.
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information provided by a trial of the single coin in problem Π2. Thus, a δ-correct policy for Π1

translates to a δ-correct policy for Π2, with the same sample complexity.
In problem Π3, note that coin 2 is the best coin if and only if its bias is equal to 0.5 + ε (as

opposed to 0.5− ε). Thus, any δ-correct policy for Π2 can be applied to the second coin in Π3, to
yield a δ-correct policy for Π3 with the same sample complexity.

We now observe that problem Π3 involves a set of three hypotheses, of the form considered in
the proof of Theorem 5, for the case of two coins. More specifically, in terms of the notation used
in that proof, we have p = (0.5,0.5− ε), and N(p,ε) = {2}. It follows that the sample complexity
of any δ-correct policy for Π3 is lower bounded by (c1/ε2) log(1/8δ), where c1 is the constant in
Theorem 5.5 Because of the relation between the three problems established earlier, the same lower
bound applies to any δ-correct policy for problem Π1, which is the permutation problem of interest.

We have so far established a lower bound proportional to (1/ε2)/ log(1/δ) for problem Π1,
which is the permutation problem we are interested in, with a q vector of the form (19), for the case
n = 2. Consider now the permutation problem for the q vector in (19), but for general n. If we are
given the information that the best coin can only be one of the first two coins, we obtain problem
Π1. In the absence of this side-information, the permutation problem cannot be any easier. This
shows that the same lower bound holds for every n ≥ 2.

Part II: We now continue with the second part of the proof. We will establish a lower bound of the
form c1n/ε2 for the permutation problem associated with the bias vector q introduced in Eq. (19),
to be referred to as problem Π. The proof involves a reduction of Π to a problem Π̃ of the form
considered in the proof of Theorem 5.

The problem Π̃ involves n+1 coins (coins 0,1, . . . ,n) and the following n+2 hypotheses:

H ′
0 : p0 = 0.5, pi = 0.5− ε, for i 6= 0 ,

H ′′
0 : p0 = 0.5+ ε, pi = 0.5− ε, for i 6= 0 ,

and
H` : p0 = 0.5, p` = 0.5+ ε, pi = 0.5− ε, for i 6= 0, `.

Note that the best coin is coin 0 under either hypothesis H ′
0 or H ′′

0 , and the best coin is coin ` under
H`, for ` ≥ 1. This leads us to define H0 as the hypothesis that either H ′

0 or H ′′
0 is true.

We say that a policy for Π̃ is δ-correct if it selects the best coin with probability at least 1− δ.
We will show that if we have a (q,ε,δ)-correct policy π for Π, with a certain sample complexity,
we can construct an (ε,5δ)-correct policy π̃ with a related sample complexity. We will then apply
Theorem 5 to lower bound the sample complexity of π̃, and finally translate to a lower bound for π.

The idea of the reduction is as follows. In problem Π̃, if we knew that H0 is not true, we would
be left with a permutation problem with n coins, to which π could be applied. However, if H0 is
true, the behavior of π is unpredictable. (In particular, π might not terminate, or it might terminate
with an arbitrary decision: this is because we are only assuming that π behaves properly when faced
with the permutation problem Π.) If H0 is true, we can replace coin 1 with a coin whose bias is
0.5 + ε, resulting in the bias vector q, in which case π is guaranteed to work properly. But what if
we replace coin 1 as above, but some H`, ` 6= 0,1, happens to be true? In that case, there will be two
coins with bias 0.5 + ε and π may misbehave. The solution is to run two processes in parallel, one

5. Although Theorem 5 is stated for (ε,δ)-correct policies, it is clear from the proof that the lower bound applies to any
policy that has the desired behavior under all of the hypotheses considered in the proof.
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with and one without this modification, in which case one of the two will have certain performance
guarantees that we can exploit.

Consider the (q,ε,δ)-correct policy π for problem Π. Let tπ be the maximum (over all permuta-
tions σ) expected time until π terminates when the true coin bias vector is q◦σ.

We define two more bias vectors that will be used below:

q− = (0.5− ε, . . . ,0.5− ε) ,

and
q+ = (0.5+ ε, 0.5+ ε, 0.5− ε, . . . ,0.5− ε) .

Note that if H0 is true in problem Π̃, and π is applied to coins 1, . . . ,n, then π will be faced with the
bias vector q−. Also, if H`, is true in problem Π̃, for some ` 6= 0,1, and we modify the bias of coin
1 to 0.5+ ε, then policy π will be faced with the bias vector q+.

Let us note for future reference that, as in Eq. (18), if we sample a coin with bias 0.5 + ε for

m
4
= d(1/ε2) log(1/δ)e times, the empirical mean reward is larger than 0.5 with probability at least

1− δ. Similarly, if we sample a coin with bias 0.5− ε for m times, the empirical mean reward
is smaller than 0.5 with probability at least 1− δ. Sampling a specific coin that many times, and
comparing the empirical mean to 0.5, will be referred to as “validating” the coin.

We now describe policy π̃ for problem Π̃. The policy involves two parallel processes A and B:
it alternates between the two processes, and each process samples one coin in each one of its turns.
The processes continue to sample the coins alternately until one of them terminates and declares
one of the coins as the best coin (or equivalently selects a hypothesis). The parameter k below is set
to k = d18log(1/δ)e.

A : Apply policy π to coins 1,2, . . . ,n. If π terminates and selects coin `, validate coin ` by
sampling it m times. If the empirical mean reward is more than 0.5, then A terminates and
declares coin ` as the best coin. If the empirical mean reward is less than or equal to 0.5, then
A terminates and declares coin 0 as the best coin. If π has carried out dtπ/δe trials, then A
terminates and declares coin 0 as the best coin.

B: Sample coin 1 for m times. If the empirical mean reward is more than 0.5, then B terminates
and declares coin 1 as the best coin. Otherwise, replace coin 1 with another coin whose bias
is 0.5+ ε. Initialize a counter N with N = 0.

Repeat k times the following:

(a) Pick a random permutation τ (uniformly over the set of permutations).

(b) Run a τ-permuted version of π, to be referred to as τ◦π; that is, whenever π is supposed
to sample coin i, τ◦π samples coin τ(i) instead.

(c) If τ◦π terminates and selects coin 1 as the best coin, set N := N +1.

If N > 2k/3, then B terminates and declares coin 0 as the best coin. Otherwise, wait until
process A terminates.

We first address the issue of correctness of policy π̃. Note that π̃ is guaranteed to terminate in
finite time, because process A can only run for a bounded number of steps. We consider separately
the following cases:
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1. Process A terminates first, H0 is true. In this case the true bias vector faced by π is q− rather
than q. An error can happen only if π terminates and the coin erroneously passes the validation
test. The probability of this occurring is at most δ. In all other cases (validation fails or the
running time exceeds the time limit dtπ/δe), process A correctly declares H0 to be the true
hypothesis.

2. Process A terminates first, H` is true for some ` 6= 0. Process A does not declare the correct
H` if one of the following events occurs: A fails to select the best coin (probability at most
δ, since π is (q,ε,δ)-correct); or the validation makes an error (probability at most δ); or the
time limit is exceeded. By Markov’s inequality, the probability that the running time Tπ of
policy π exceeds the time limit satisfies

Pq(Tπ ≥ tπ/δ) ≤ Eq[Tπ]δ/tπ ≤ tπδ/tπ = δ.

So, the total the probability of errors that fall within this case is bounded by 3δ.

3. Process B terminates first, H0 is true. Note that under H0, process B is faced with n coins
whose bias vector is q. Process B does not declare H0 if one of the following events occurs:
the initial validation of coin 1 makes an error (probability at most δ); or in k runs, the permuted
versions of policy π make at least k/3 errors. Each such run has probability at most δ of
making an error (since π is (q,ε,δ)-correct), independently for each run (because we use a
random permutation before each run). Using Hoeffding’s inequality, the probability of at least
k/3 errors is bounded by exp{−2k(1/3− δ)2}. Since δ < 1/12, this probability is at most
e−k/8. So, the total the probability of errors that fall within this case is bounded by δ+ e−k/8.

4. Process B terminates first, H` is true for some ` > 1. Process B does not declare H` if one
of the following events occurs: the initial validation of coin 1 makes an error (probability at
most δ); or in k runs, the permuted versions of policy π select coin 1 for N > 2k/3 times.
Since in each of the k runs the policy is faced with the bias vector q+, there are no guarantees
on its behavior. However, since we use a random permutation before each run, and since
there are two coins with bias 0.5+ ε, namely coins 1 and `, the probability that the permuted
version of π selects coin 1 at any given run is bounded by 1/2. Using Hoeffding’s inequality,
the probability of selecting coin 1 more than 2k/3 times is bounded by exp{−2k((2/3)−
(1/2))2} = e−k/18. So, the total the probability of errors that fall within this case is bounded
by δ+ e−k/18.

5. Process B terminates first, H1 is true. Process B fails to declare coin 1 only if an error is made
in the initial validation step, which happens with probability bounded by δ.

To conclude, using the union bound, when H0 is true, the probability of error is bounded by
2δ + e−k/8 ; when H1 is true, it is bounded by 4δ; and when H`, ` > 1 is true, it is bounded by
4δ + e−k/18. Since k = 18log(1/δ), we see that the probability of error, under any hypothesis, is
bounded by 5δ.

We now examine the sample complexity of policy π̃. We consider two cases, depending on
which hypothesis is true.

1. H0 is true. In process A , policy π is faced with the bias vector q− and has no termination
guarantees, unless it reaches the time limit dtπ/δe. As established earlier (case 3), Process B

645



MANNOR AND TSITSIKLIS

will terminate after the initial validation of coin 1 (m trials), plus possibly k runs of policy π
(expected number of trials ktπ), with probability at least 1− e−k/8. Otherwise, B waits until
A terminates (at most 1 + tπ/δ time). Multiplying everything by a factor of 2 (because the
two processes alternate), the expected time until π̃ terminates is bounded by

2(m+ ktπ)+2e−k/8(m+ tπ/δ+1).

2. H` is true for some ` 6= 0. In this case, process A terminates after the validation time m
and the time it takes for π to run. Thus, the expected time until termination is bounded by
2(m+1+ tπ).

We have constructed an (ε,5δ)-correct policy π̃ for problem Π̃. Using the above derived time
bounds, and the definitions of k and m, the expected number of trials, under any hypothesis H`, is
bounded from above by

4m+36

(

log

(

1
δ

)

+3

)

tπ.

On the other hand, problem Π̃ involves hypotheses of the form considered in the proof of Theorem
5, with p = (0.5, 0.5− ε, . . . ,0.5− ε), and with N(p,ε) = {1,2, . . . ,n}. Thus, the expected number
of trials under some hypothesis is bounded below by (c1n/ε2) log(c2/δ), for some positive constants
c1 and c2, leading to

c1
n
ε2 log

c2

δ
≤ 4m+36

(

log

(

1
δ

)

+3

)

tπ.

This translates to a lower bound of the form tπ ≥ c2n/ε2, for some new constant c2, and for all n
larger than some n0. But for n ≤ n0, we can use the lower bound (c2/ε2) log(1/δ) that was derived
in the first part of the proof. �

7.3 Pathwise Sample Complexity

The sample complexity of the policy presented in Section 7.1 was measured in term of the expected
number of trials. Suppose, however, that we are interested in a policy for which the number of
trials is always low. Let us say that a policy has a pathwise sample complexity of t, if the policy
terminates after at most t trials, with probability 1. We note that the median elimination algorithm
of Even-Dar et al. (2002) is a (q,ε,δ)-correct policy whose pathwise sample complexity is of the
form (c1n/ε2) log(c2/δ). In this section, we show that at least for a certain q, there is a matching
lower bound on the pathwise sample complexity of any (q,ε,δ)-correct policy.

Theorem 14 There exist positive constants c1, c2, ε0, and δ1 such that for every n ≥ 2 and ε ∈
(0,ε0), there exists some q ∈ [0,1]n, such that for every δ ∈ (0,δ1) and every (q,ε,δ)-correct policy
π, there exists some permutation σ under which the pathwise sample complexity of π is at least

c1
n
ε2 log

(c2

δ

)

.

Proof The proof uses a reduction similar to the one in the proof of Theorem 13. Let ε0 = 1/8 and
δ1 = δ0/2, where δ0 = e−8/8 is the constant in Theorem 5. Let q be the same as in the proof of
Theorem 13 (cf. Eq. (19)), and consider the associated permutation problem, referred to as problem
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Π. Fix some δ ∈ (0,δ1) and suppose that we have a (q,ε,δ)-correct policy π for problem Π whose
pathwise sample complexity is bounded by tπ for every permutation σ. Consider also the problem
Π̃ introduced in the proof of Theorem 13, involving the hypotheses H0, H1, . . . ,Hn. We will now
use the policy π to construct a policy π̃ for problem Π̃.

We run π on the coins 1,2, . . . ,n. If π terminates at or before time tπ and selects some coin `,
we sample coin ` for d(1/ε2) log(1/δ)e times. If the empirical mean reward is larger than 0.5 we
declare H` as the true hypothesis. If the empirical mean reward of coin ` is less than or equal to 0.5,
or if π does not terminate by time tπ, we declare H0 as the true hypothesis.

We start by showing correctness. Suppose first that H0 is true. For the policy π̃ to make an
incorrect decision, it must be the case that policy π selected some coin and the empirical mean
reward of this coin was larger than 1/2; using Hoeffding’s inequality, the probability of this event is
bounded by δ. Suppose instead that H` is true for some ` ≥ 1. In this case, policy π is guaranteed
to terminate within tπ steps. Policy π̃ will make an incorrect decision if either policy π makes an
incorrect decision (probability at most δ), or if policy π makes a correct decision but the selected
coin fails to validate (probability at most δ). It follows that policy π̃ is (q,ε,2δ)-correct.

The number of trials under policy π̃ is bounded by t ′ = tπ + d(1/ε2) log(1/δ)e, under any hy-
pothesis. On the other hand, using Theorem 5, the expected number of trials under some hypothesis
is bounded below by (c1n/ε2) log(c2/2δ), leading to

c1
n
ε2 log

c2

2δ
≤ tπ +

1
ε2 log

(

1
δ

)

.

this translates to a lower bound of the form t ≥ (c1n/ε2) log(c2/δ), for some new constants c1 and
c2. �

8. Concluding Remarks

We have provided bounds on the number of trials required to identify a near-optimal arm in a multi-
armed bandit problem, with high probability. For the problem formulations studied in Sections 3
and 5, the lower bounds match the existing O((n/ε2) log(1/δ)) upper bounds. For the case where
the values of the biases are known but the identities of the coins are not, we provided two different
tight bounds, depending on the particular criterion being used (expected versus maximum number
of trials). Our results have been derived under the assumption of Bernoulli rewards. Clearly, the
lower bounds also apply to more general problem formulations, as long as they include Bernoulli
rewards as a special case. It would be of some interest to derive similar lower bounds for other
special cases of reward distributions. It is reasonable to expect that essentially the same results will
carry over, as long as the Kullback-Leibler divergence between the reward distributions associated
with different arms is finite (as in Lai and Robbins, 1985).
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