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Appendix D. The Bayesian Approach
In this appendix we describe a Bayesian approach to variance and bias approximation. The expressions
for the mean and variance in the Bayesian setting are very similar to the ones for the classical setting.
The only difference is that certain expectations in the classical setting are replaced by conditional
(posterior) expectations in the Bayesian setting. However, for these expressions to be useful, one
should be able to compute the conditional expectations in a tractable manner. This will be the case
for Dirichlet priors on the transition probabilities and normal priors on the rewards, which is the case
that we consider in the sequel.
As before, we assume that the sample data consist of the number of transitions out of each state for

every action �N a
i � and the number of transitions from each state i to any other state j for every action a

�N a
ij �. We also observe the rewards associated with each transition in the sample data. We assume that

the expected reward Ra
ij associated with a transition from i to j under action a is a random variable

with a normal prior. We further assume that each transition probability Pa
ij is a random variable with a

Dirichlet prior (as in Strens 2000) and that the priors of Pa
ij and Ra

i are independent for different i or a.
We first recall some properties of a Dirichlet distribution. We refer the reader to Gelman et al. (1995)

for further details. Let 	0 =
∑

k 	k. We say that a vector �p1� p2� 
 
 
 � pm� has a Dirichlet distribution with
parameters 	1� 
 
 
 �	m, if its distribution is described by a joint probability density function of the
form �1/Z�	��

∏m
i=1 p

	i−1
i , where Z�	� is a normalizing constant. Some useful properties of the Dirichlet

distribution are:
1. The mean of pk is 	k/	0.
2. The variance of pk is 	k�	0−	k�/�	

2
0�	0+ 1��.

3. The covariance between pk and p�, for k �= �, is −�	k	���	
2
0�	0+ 1��.

Assume that the prior distribution of Pa
i· , the vector of transition probabilities out of state i under

action a, is Dirichlet with parameters 	a
i1� 
 
 
 �	

a
im. If in Na

i observed transitions, and for every j ,
exactly Na

ij transitions lead to state j , then the posterior distribution of Pa
i is again Dirichlet with

parameters 	a
i1 + Na

i1� 
 
 
 �	
a
im + Na

im. It then follows that the posterior distribution for Pi has mean
Ɛpost�P

a
ij � = �	a

ij + Na
ij �/�	

a
i0 + Na

i �, where 	a
i0 �=

∑
j 	

a
ij and Ɛpost is expectation w.r.t. the posterior. This

motivates us to define the estimated transition probabilities by

�Pa
ij = Ɛpost�P

a
ij �= �	a

ij +Na
ij �/�	

a
i0+Na

i �
�−3pt�

The difference between the estimated and the true model is then a zero mean random matrix �P �=
P− �P . The following lemma is an immediate consequence of the properties of the Dirichlet distribution
given earlier. Here, varpost and covpost are used to denote the posterior variance and covariance.

Lemma D.1. Under the assumption of a Dirichlet prior we have that:
(i) Ɛpost�P

a
ij �= �Pa

ij = �	a
ij +Na

ij �/�	
a
i0+Na

i �.
(ii) Ɛpost� �Pa

ik
�Pa
ij �= covpost�P a

ik� P
a
ij �=−��	a

ik +Na
ik��	

a
ij +Nij��/��	

a
i0+Na

i �
2�	a

i0+Na
i + 1��.

(iii) Ɛpost�� �Pa
ij �
2�= varpost�P a

ij �= ��	a
ij +Na

ij ��	
a
i0+Na

i −	a
ij −Na

ij ��/��	
a
i0+Na

i �
2�	a

i0+Na
i + 1��.

We note that if 	a
ij = 0 (for j = 0� 
 
 
 �m), then we get the same approximations as in the classical

approach (up to the +1 in the denominator of the variance and the covariance).
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Similarly, we define the prior distribution for the immediate reward when moving from state i to
state j when using action a. Notice that this reward can be drawn from any family of distributions for
which Bayesian updates can be carried out in closed form. As a special case, we assume the reward
distribution is normal with mean Ra

ij and variance �
a
ij . We assume independence of the priors, i.e., that

the prior distribution of Ra
ij given �aij does not depend on �aij , and that the prior distribution of R

a
ij is

normal with mean �a
ij and standard deviation �a

ij .
For each i, j , and a, we observe Na

ij sample rewards �xij� a1 � 
 
 
 � �xij� aNij
. We denote the sample variance

by saij . Following the analysis of normal data with a semiconjugate prior distribution (see, e.g., Gelman
et al. 1995), the posterior distribution (given �aij ) for the mean reward is then normal with mean

��a
ij �
post = �a

ij/��
a
ij �
2+∑Nij

k=1 �xij� ak /��aij �
2

1/��a
ij �
2+Na

ij /��
a
ij �
2

�

and standard deviation: ��a
ij �
post = 1/�1/��a

ij �
2+ �N a

ij /��
a
ij �
2��1/2. We may further assume priors for �aij and

derive its posterior. For simplicity, we can approximate ��a
ij �
post and ��a

ij �
post by substituting saij for �

a
ij .

This leads us to define �Ra
ij as the approximation for ��

a
ij �
post that results from this substitution.

As in the classical case, we consider a fixed (possibly randomized) stationary policy �, and define
the following quantities:
1. An (unknown) m×m matrix P representing the transition probabilities, whose ith row is Pi· =∑
a ��a 	 i�P a

i· , its estimate �Pi· =
∑

a ��a 	 i� �Pa
i· , and the difference matrix �P = P − �P .

2. An m-dimensional vector representing the immediate reward whose i component is Ri =∑
a ��a 	 i�

∑
j P

a
ijR

a
ij , and its estimate �Ri =

∑
a ��a 	 i�

∑
j
�Pa
ij
�Ra
ij .

Using a second-order approximation and applying Lemma D.1, we obtain expressions for the pos-
terior bias and variance of the estimated value function estimate under the posterior. The proofs are
almost identical to those of Propositions 4.1 and 4.2 and are omitted.

Proposition D.1. The expectation (under the posterior) of Y �= �I −	P�−1R satisfies:

Ɛpost�Y �= 
Y +	2 
X 
Q
Y +	 �B+Lbexp�

where 
X �= �I −	 �P�−1; 
Y = 
X �R; vector �B and matrix 
Q are computed according to

�Bi =
∑
a

��a 	 i�2 �Ra
i· �Ma

i

X·i (EC1)

and

Qij = ĉov�i�j· 
X·i in which ĉov�i� =∑

a

��a 	 i�2 �Ma
i � (EC2)

where matrix �Ma
i is the posterior covariance matrix of Pa

i· as specified by parts ii and iii of Lemma D.1, and
higher order terms

Lbexp =
�∑
k=3

	kƐ�f b
k � �P�� �R+

�∑
k=2

	kƐ�f b
k � �P� �R��

in which �P = P − �P , �R=R− �R and f b
k �

�P�= 
X� �P 
X�k.
Proposition D.2. Using the same notation as in Proposition D.1, the second moment of Y �= �I −	P�−1R

is approximately

Ɛpost�YY

�= 
Y 
Y 
 + 
X%	2� 
Q
Y �R
 + �R
Y 
 
Q
�+	

[ �B �R
 + �R �B
]+ �W' 
X
 +Lbvar�

where 
X �= �I −	 �P�−1, 
Y �= 
X �R, �W is a diagonal matrix such that

�Wii =
∑
a

��a 	 i�2
{
�	
Y 
 + �Ra

i·� �Ma
i �	
Y + � �Ra

i·�

�+∑

k

�Pa
ik

(
1

��a
ik�

2
+ Na

ik

�saik�
2

)−1}

and 
Q and �B are calculated according to Equations (EC2) and (EC1); and higher-order terms

Lvar =
∑

k� l� k+l>2
	k+�Ɛ�f b

k � �P�� �R �R
 + � �R� �R
 + �R� �R�
 + � �R�� �R�
)f b
� � �P�
�
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