Lecture 3: Hydrostatic Equilibrium of an Ideal Gas or Fluid

An ideal gas or an ideal fluid is defined with the following assumptions:
a. There are no interparticle forces.
b. It is a classical (non-relativistic) system
c. It is incompressible.

The key variables for an ideal fluid are:

$$
\begin{array}{ll}
\text { density, } \rho_{0} & {\left[\rho_{0}\right] \equiv \mathrm{g} \mathrm{~cm}^{3}} \\
\text { velocity, } \boldsymbol{v}(\boldsymbol{r}, t) & {[v] \equiv \mathrm{cm} \mathrm{~s}^{-1}}
\end{array}
$$

Equation of Continuity

The equation of continuity is equivalent to the Conservation of Mass Principle. In an ideal fluid, mass is neither created nor destroyed.

Figure 1: A volume element of a fluid. An infinitesimal area element with velocity $\boldsymbol{v}(\boldsymbol{r}, \mathrm{t})$ is shown.
Conservation of mass requires that at all times

$$
\frac{\mathrm{d} M}{\mathrm{~d} t}=0 \quad \text { where } \quad M=\int \mathrm{d} V \rho(\boldsymbol{r}, t)
$$

Taking the total derivative of $\rho(\boldsymbol{r}, t)$ with respect to time,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int \mathrm{~d} V \rho(\boldsymbol{r}, t)=\frac{\partial}{\partial t} \int \mathrm{~d} V \rho+\oint \mathrm{d} \boldsymbol{A} \cdot \boldsymbol{j}=0 \tag{1}
\end{equation*}
$$

Here we have defined the mass flux,

$$
\boldsymbol{j}(\boldsymbol{r}, \boldsymbol{t})=\rho \boldsymbol{v} \quad \text { with dimensions } \quad[j]=[\rho][v]=\mathrm{g} \mathrm{~cm}^{-3} \cdot \mathrm{~cm} \mathrm{~s}^{-1}=\mathrm{g} \mathrm{~cm}^{2} \mathrm{~s}
$$

Applying the divergence theorem on Eqn. 1,

$$
\begin{equation*}
\int \mathrm{d} V \frac{\partial \rho}{\partial t}+\int \mathrm{d} V \nabla \cdot \boldsymbol{j}=\int \mathrm{d} V\left\{\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}\right\}=0 \tag{2}
\end{equation*}
$$

This gives us the continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}=0 \tag{3}
\end{equation*}
$$

Substituting for the mass flux into the Eqn. 3,

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+ & \nabla \cdot(\rho \boldsymbol{v})=\frac{\partial \rho}{\partial t}+\rho \boldsymbol{\nabla} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{\nabla} \rho=0 \\
& \Rightarrow \frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho+\rho(\boldsymbol{\nabla} \cdot \boldsymbol{v})=0
\end{aligned}
$$

This emphasizes the fact that the conservation of mass always holds.

Consider the total time derivative of $\rho(\boldsymbol{r}, t)$ with implicit time dependence in position:

$$
\begin{gather*}
\frac{\mathrm{d} \rho}{\mathrm{~d} t}=\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial \rho}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial \rho}{\partial z} \frac{\partial z}{\partial t}=\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \rho \cdot \boldsymbol{v} \\
\Rightarrow \quad \frac{\mathrm{d} \rho}{\mathrm{~d} t}=\frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \rho \tag{4}
\end{gather*}
$$

$\frac{\partial \rho}{\partial t}$ gives us the usual stationary time derivative (Eulerian derivative), i.e. the time derivative of density when the observer is at rest. On the other hand, Eqn. 4 gives us the moving time derivative (Lagrangian time derivative). This is the time derivative seen by the observer moving along with the fluid flow.

For an incompressible fluid (or Euler fluid), the density ρ does not vary in position or time.

$$
\frac{\mathrm{d} \rho}{\mathrm{~d} t}=\frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \nabla) \rho=0
$$

Thus, The continuity equation (Eqn. 3) reduces to

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{v}=0 \tag{5}
\end{equation*}
$$

Note

Eqn. 5 is reminiscent of Gauss's Law for \boldsymbol{E} and \boldsymbol{B} in the absence of sources.
A more rigorous criterion for incompressibility is $\rho(\boldsymbol{r}, t)=\rho_{0}$. Though Eqn. 5 is sufficient, the latter criterion is easier to deal with.

Hydrostatic Equilibrium

Figure 2: A region of an incompressible fluid is shown. An infinitesimal volume element is considered with pressures exerted at either face length $\mathrm{d} x$ apart.

The pressure p on a surface is defined as the force exerted on the surface per unit area. Considering the volume element of the incompressible fluid in Fig. 2, the infinitesimal forces exerted in the x -direction,

$$
\begin{aligned}
\mathrm{d} F_{x} & =-p(x+\mathrm{d} x, y, z) \mathrm{d} y \mathrm{~d} z+p(x, y, z) \mathrm{d} y \mathrm{~d} z \\
& =-\left(\frac{p(x+\mathrm{d} x, y, z)-p(x, y, z)}{\mathrm{d} x}\right) \mathrm{d} V \\
\Rightarrow \lim _{x \rightarrow 0} \frac{\mathrm{~d} F_{x}}{\mathrm{~d} V} & =-\left.\frac{\partial p}{\partial x}\right|_{y, z}
\end{aligned}
$$

Thus, the derivative w.r.t. volume of the x-component of the force,

$$
f_{x}=\frac{\mathrm{d} F_{x}}{\mathrm{~d} V}=-\frac{\partial p}{\partial x}
$$

And by a similar reasoning, for the y and z-components,

$$
f_{y}=-\frac{\partial p}{\partial y} \quad \text { and } \quad f_{z}=-\frac{\partial p}{\partial z}
$$

This result can be expressed in vector form as

$$
\begin{equation*}
f_{p}=-\nabla p \tag{6}
\end{equation*}
$$

The dimensions of \boldsymbol{f} are

$$
\left[f_{p}\right]=[\nabla p]=[\nabla][p]=\left(\mathrm{cm}^{-1}\right)\left(\text { dyne }^{\mathrm{cm}^{-2}}\right)=\text { dyne } \mathrm{cm}^{-3}
$$

In the case of gravity, the force is locally independent of volume, $\boldsymbol{F}=m \boldsymbol{g}$. In this case, f is simply the force per unit volume

$$
\begin{equation*}
f_{g}=\rho g \tag{7}
\end{equation*}
$$

In hydrostatic equilibrium, $\boldsymbol{f}_{\boldsymbol{g}}+\boldsymbol{f}_{p}=0$. Thus, from Eqns. $6 \& 7$ we obtain the condition for equilibrium

$$
\begin{equation*}
\nabla p=\rho \boldsymbol{g} \tag{8}
\end{equation*}
$$

Note that Eqn. 8 is valid for both compressible and incompressible fluids.

Example: Pressure under the surface of a lake

Figure 3: Hydrostatic equilibrium in a lake. The force due to gravity causes a pressure gradient with depth. The atmospheric pressure on the lake surface $(z=0)$ is p_{0}.

Assume that the water is incompressible ($\rho \equiv \rho_{0}$). The pressure should be isotropic in the x and y directions, i.e. the pressure is a function of only z. Hence, Eqn. 8 reduces to

$$
\frac{\mathrm{d} p}{\mathrm{~d} z} \hat{\boldsymbol{z}}=-\rho_{0} g \hat{\boldsymbol{z}} \quad \Rightarrow \quad \frac{\mathrm{~d} p}{\mathrm{~d} z}=-\rho_{0} g
$$

Integrating up to z,

$$
\begin{aligned}
\int_{0}^{z} \mathrm{~d} z \frac{\mathrm{~d} p}{\mathrm{~d} z} & =-\rho_{0} g \int_{0}^{z} \mathrm{~d} z \\
\Rightarrow p(z)-p(0) & =-\rho_{0} g z
\end{aligned}
$$

Hence we obtain the useful result

$$
\begin{equation*}
p(z)=p(0)-\rho_{0} g z \tag{9}
\end{equation*}
$$

Non-equilibrium (Hydrodynamics)

If the forces do not balance, the net force per unit volume is given by Newton's Second Law

$$
\begin{aligned}
\rho \boldsymbol{a} & =\sum_{i} \boldsymbol{f}_{i} \\
& =-\nabla p+\rho \boldsymbol{g}
\end{aligned}
$$

This gives us the Euler equation

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=-\boldsymbol{\nabla} p+\rho \boldsymbol{g} \tag{10}
\end{equation*}
$$

As with the density functional in Eqn. 4, the total time derivative of the velocity can be expressed as

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \tag{11}
\end{equation*}
$$

Thus the Euler equation can be reexpressed as

$$
\begin{equation*}
\rho \frac{\partial \boldsymbol{v}}{\partial t}+\rho(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}=-\boldsymbol{\nabla} p+\rho \boldsymbol{g} \tag{12}
\end{equation*}
$$

