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Lecture 3: Hydrostatic Equilibrium

of an Ideal Gas or Fluid

An ideal gas or an ideal fluid is defined with the following assumptions:
a. There are no interparticle forces.

b. It is a classical (non-relativistic) system

c. It is incompressible.

The key variables for an ideal fluid are:

density, ρ0 [ρ0] ≡ g cm3

velocity, v(r, t) [v] ≡ cm s−1

Equation of Continuity

The equation of continuity is equivalent to the Conservation of Mass Principle. In an ideal
fluid, mass is neither created nor destroyed.

n

v(r,t)

dA  =  dA  n 

mρ(r,t)

Figure 1: A volume element of a fluid. An infinitesimal area element with velocity v(r,t) is shown.

Conservation of mass requires that at all times

dM

dt
= 0 where M =

∫
dV ρ(r, t)

Taking the total derivative of ρ(r, t) with respect to time,

d
dt

∫
dV ρ(r, t) =

∂

∂t

∫
dV ρ +

∮
dA · j = 0 (1)

Here we have defined the mass flux,

j(r, t) = ρv with dimensions [j] = [ρ][v] = g cm−3 · cm s−1 = g cm2 s
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Applying the divergence theorem on Eqn. 1,∫
dV

∂ρ

∂t
+

∫
dV ∇ · j =

∫
dV

{
∂ρ

∂t
+ ∇ · j

}
= 0 (2)

This gives us the continuity equation

∂ρ

∂t
+ ∇ · j = 0 (3)

Substituting for the mass flux into the Eqn. 3,

∂ρ

∂t
+ ∇ · (ρv) =

∂ρ

∂t
+ ρ ∇ · v + v ·∇ρ = 0

⇒ ∂ρ

∂t
+ (v ·∇)ρ + ρ(∇ · v) = 0

This emphasizes the fact that the conservation of mass always holds.

Consider the total time derivative of ρ(r, t) with implicit time dependence in position:

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x

∂x

∂t
+

∂ρ

∂y

∂y

∂t
+

∂ρ

∂z

∂z

∂t
=

∂ρ

∂t
+ ∇ρ · v

⇒ dρ

dt
=

∂ρ

∂t
+ (v ·∇)ρ (4)

∂ρ

∂t
gives us the usual stationary time derivative (Eulerian derivative), i.e. the time deriva-

tive of density when the observer is at rest. On the other hand, Eqn. 4 gives us the moving
time derivative (Lagrangian time derivative). This is the time derivative seen by the ob-
server moving along with the fluid flow.

For an incompressible fluid (or Euler fluid) , the density ρ does not vary in position or time.

dρ

dt
=

∂ρ

∂t
+ (v ·∇)ρ = 0

Thus, The continuity equation (Eqn. 3) reduces to

∇ · v = 0 (5)

Note

Eqn. 5 is reminiscent of Gauss’s Law for E and B in the absence of sources.

A more rigorous criterion for incompressibility is ρ(r, t) = ρ0. Though Eqn. 5 is sufficient,
the latter criterion is easier to deal with.
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Hydrostatic Equilibrium

x

y

z

dV = dx dy dz

p (x,y,z)

p (x +dx,y,z)

p(r)

Figure 2: A region of an incompressible fluid is shown. An infinitesimal volume element is considered with

pressures exerted at either face length dx apart.

The pressure p on a surface is defined as the force exerted on the surface per unit area.
Considering the volume element of the incompressible fluid in Fig. 2, the infinitesimal forces
exerted in the x-direction,

dFx = −p (x + dx, y, z) dy dz + p (x, y, z) dy dz

= −
(

p (x + dx, y, z)− p (x, y, z)
dx

)
dV

⇒ lim
x→0

dFx

dV
= −∂p

∂x

∣∣∣
y,z

Thus, the derivative w.r.t. volume of the x-component of the force,

fx =
dFx

dV
= −∂p

∂x

And by a similar reasoning, for the y and z-components,

fy = −∂p

∂y
and fz = −∂p

∂z

This result can be expressed in vector form as

fp = −∇p (6)

The dimensions of f are

[fp] = [∇p] = [∇][p] = (cm−1) (dyne cm−2) = dyne cm−3
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In the case of gravity, the force is locally independent of volume, F = mg. In this case,
f is simply the force per unit volume

fg = ρg (7)

In hydrostatic equilibrium, fg + fp = 0. Thus, from Eqns. 6 & 7 we obtain the condition
for equilibrium

∇p = ρg (8)

Note that Eqn. 8 is valid for both compressible and incompressible fluids.

Example: Pressure under the surface of a lake

air

water

p(z)

z

g = - g z p0

incompressible
  ρ = ρ0

Figure 3: Hydrostatic equilibrium in a lake. The force due to gravity causes a pressure gradient with

depth. The atmospheric pressure on the lake surface (z = 0) is p0.

Assume that the water is incompressible (ρ ≡ ρ0). The pressure should be isotropic in
the x and y directions, i.e. the pressure is a function of only z. Hence, Eqn. 8 reduces to

dp

dz
ẑ = −ρ0 g ẑ ⇒ dp

dz
= −ρ0 g

Integrating up to z, ∫ z

0
dz

dp

dz
= −ρ0 g

∫ z

0
dz

⇒ p(z)− p(0) = −ρ0 g z

Hence we obtain the useful result

p(z) = p(0)− ρ0 g z (9)
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Non-equilibrium (Hydrodynamics)

If the forces do not balance, the net force per unit volume is given by Newton’s Second Law

ρa =
∑

i

f i

= −∇p + ρg

This gives us the Euler equation

dv

dt
= −∇p + ρg (10)

As with the density functional in Eqn. 4, the total time derivative of the velocity can
be expressed as

dv

dt
=

∂v

∂t
+ (v ·∇)v (11)

Thus the Euler equation can be reexpressed as

ρ
∂v

∂t
+ ρ (v ·∇)v = −∇p + ρg (12)
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