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Abstract 

Success of engineered systems and devices is contingent upon their approval 
by expert committees. For example, advisory panels to the Food and Drug 

Administration make crucial recommendations regarding the approval and 
diffusion of medical devices in the United States. Systems and devices are sub-
ject to opinions and institutional bias that might drive decision outcomes in an 

unfavorable direction. Computational linguistics algorithms, such as Latent 
Semantic Analysis, provide a quantitative metric for the dynamics of the 

multi-stakeholder decision making underlying approval meetings. Insights 
from the analysis can lead to recommendations for how such committees 

might be structured to improve system performance with minimal cost and 
rework.   

Introduction 

Large-scale engineered systems must successfully pool knowledge and expertise from 
many domains if they are to be effective. Furthermore, any large-scale engineered system must 
receive the approval of several stakeholders, many of whom have differing requirements, and 
hence different perceptions, of the system and its functionality. Examples include design reviews 
that large-scale engineered systems must pass (consider, for example, the PDR and CDR cycles 
within the aerospace domain). These approval activities are aimed at bringing in additional ex-
pertise, and, ideally, improving the ultimate design. In general, committee decision making can 
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have a large impact upon a device or system of devices, affecting the system’s architecture be-
fore it enters the market. Methods developed in this work for understanding differential institu-
tional perception can be extended to similar studies in other domains of interest to engineers. 
Furthermore, the question of how to design decision-making processes that successfully leverage 
different perspectives is one that is extensible to a range of technology and policy activities 
across both public and private sectors.   

In the United States, the FDA is responsible both for determining the safety and efficacy 
of medical devices and for promoting medical device innovation (Merrill 1994). The most uncer-
tain, and therefore difficult, of these devices are reviewed by expert advisory panels, aimed at 
generating scientifically and empirically sound, i.e., “evidence-based,” recommendations. A de-
vice’s approval, and future diffusion, often rests upon the panel’s assessment of the device’s 
safety. These panels are aimed at producing a recommendation, informed by the expertise and 
knowledge of panel members, which can supplement the FDA’s “in-house” decision process. 
Multiple experts are consulted so that the group decision’s efficacy can take advantage of many 
different institutional perspectives. Panel members’ values and institutional contexts may differ, 
leading to different readings of the evidence, and therefore different recommendations (Gelijns, 
Brown et al. 2005). It is difficult to determine whether panel recommendations promote FDA’s 
mission of promoting both safety and innovation, particularly since there is no alternative against 
which a panel’s decision may be compared. This suggests that, in order to determine the FDA’s 
ability to differentiate between devices, we must be able to distinguish how specific innovations 
are perceived by actors at the regulatory level of the health care system. 

Most large-scale engineered systems are situated within a complex regulatory environ-
ment involving multiple stakeholders. (Nelson 2005) notes that systems situated within highly-
regulated sectors, such as health care and the military, are much more subject to professional and 
political judgment, and less subject to market forces, than are many other sectors of the econ-
omy. In health care, (Gelijns, Brown et al. 2005) notes that this leads to an inability to make 
strictly evidence-based decisions for the following reasons: 
1. A given data-set may be interpreted differently by different experts, especially in the pres-

ence of high uncertainty. Unless these experts can learn from one another, good decision-
making might be impaired. 

2. Patterns of technological change are difficult to predict, particularly when innovations are 
ultimately used for different purposes than originally intended.   

3. Even in the case of clear evidence, decision-makers may disagree on its implications due to 
differing value systems. 

This suggests that a device’s determination as safe or efficacious depends strongly on the opin-
ions  of advisory panel members. (Douglas and Wildavsky 1982) argues that these are largely 
shaped by the perceptions, and hence, the knowledge and expertise, of risk assessors. Institutions 
that might impact decision-making include membership in a particular profession, specialty, or 
bureaucratic organization (Freiman 1985; Savage and Robertson 1999; Savage 2004; Gelijns, 
Brown et al. 2005).  

Medical Device Approval in the FDA 

The task of approving medical devices for the US market falls to the Food and Drug Ad-
ministration’s Center for Devices and Radiological Health (CDRH). Figure 1, sourced from 
(Maisel 2004), provides an overview of the process by which a device is reviewed for approval 
by CDRH. The grant of a 510(k) or Pre-Market Approval (PMA) by the FDA allows a device to 
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be marketed. These approvals often act as de facto monopolies for the device involved because 
any competitor must demonstrate additional safety or efficacy of the new device as compared to 
the initial baseline in order to receive approval. Advisory panels review devices “as needed” 
(Parisian 2001).  Devices brought to committees for review are generally those which the FDA 
does not have the “in-house expertise” to evaluate. As such, the devices under evaluation by the 
committees are likely to be the most radical innovations facing medical practice, and those fac-
ing the most uncertainty. Furthermore, advisory panel members are “by definition, the world’s 
experts who are engaged in cutting-edge bench science, clinical research and independent con-
sulting work” (Sherman 2004). Advisory panels therefore serve to bring needed expert knowl-
edge and political credibility  with industry and consumer advocate groups to the FDA device 
approval process. Audience members will include representatives of the media, consumer advo-
cate groups, the financial community, and competitor companies, all of whom are looking for 
information regarding how the medical device might perform on the market (Pines 2002). Panel 
recommendations, and the judgments and statements of individual members, therefore carry sig-
nificant weight both inside and outside the FDA.  

 
Figure 1: Medical devices are classified into three categories based upon risk to the 

patient. Diagram sourced from (Maisel 2004) 
Although FDA advisory committees are aimed at producing “evidence-based” recom-

mendations, differential interpretation of the evidence allows room for debate, and concomitant 
accusations of bias. Panel members’ professional experiences might allow for intuition that can 
seem to go against the indications shown by the data. (Friedman 1978) expressed a concern that 
this constitutes a form of “specialty bias,” especially when multiple specialties are involved. On 
the other hand, this view presupposes that a reading of the data that is entirely uninformed by 
past experience is best, which seems to obviate the role of expertise in advisory panel decision 
making. Others argue that conflicts of interest should be mitigated in advisory panels. On the 
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other hand, a prominent study recently found only a minor correlation between conflict of inter-
est and voting patterns, with no actual effect on device approval (Lurie, Almeida et al. 2006).  A 
distinction must be drawn between decision-making that is based on evidence and decision-
making that is driven by one “orthodox” reading of the evidence.  

Methodological Approach 

We have stated that group membership may affect perception of data (Douglas 1986). 
This is reflected in the fact that each institution, and indeed, each specialty, possesses its own 
unique language and jargon. This is particularly true in medical and academic disciplines, where 
conceptual precision is required to communicate within the specialty. (Nelson 2005) notes the 
importance of written and oral language as a means of encapsulating and transferring tacit 
knowledge. On the other hand, an outsider to the institution may be unable to understand the dis-
course. Casting “organization [as] the mobilization of bias”, (Cobb and Elder 1983) recognizes 
institution-specific symbolism in language, noting that the choice of terminology in defining a 
problem may be seen as a means of mobilizing support. Furthermore, the linguistic definition of 
a problem dictates, to some extent, its solution. Choosing to use specialized technical words 
serves to narrow the range of subjective meaning of otherwise ambiguous terminology (such as 
“safety” or “efficacy” in FDA’s context) thereby implicitly redefining the problem according to a 
given speaker’s particular interest. Determining the speaker’s intention in using both precise and 
“symbolic” language can allow insight into their institutional frame of reference.  

Latent Semantic Analysis. One way of determining actors’ institutional frames is to 
analyze the associations that they make between specific words. As a means of analyzing termi-
nology in context, we turn to latent semantic analysis (LSA) – a natural language processing tool 
which was developed for purposes of information retrieval and topic grouping (Deerwester, Du-
mais et al. 1990; Landauer, Foltz et al. 1998). LSA was initially created to address the issues of 
synonymy and polysemy in information retrieval. Synonymy refers to the use of different words 
to represent the same concept (e.g., spice and seasoning), whereas polysemy refers to the repre-
sentation of different concepts by the same word (e.g., bat that flies vs. bat that hits the baseball). 
LSA addresses the synonymy issue through the use of Singular Value Decomposition and di-
mensionality reduction. This will be explained as follows: We would like to associate words to-
gether that have similar meanings. For the purposes of LSA, we assume that words which have 
similar meanings tend to appear within the same contexts; i.e., words with similar meanings will 
co-occur either with each other or with the same sets of words. For example, one might encoun-
ter the following sentences: 
d1: Pepper and salt add seasoning to the salad. 
d2: Pepper and salt are the two spices found most often in American restaurants. 
These two sentences both contain the words “pepper” and “salt”. From a brief overview of both 
documents, we would be able to infer that pepper and salt are seasonings (as in the first docu-
ment), and that pepper and salt are spices. We would like to be able to infer that spices are sea-
sonings.  

The LSA Algorithm. Consider a corpus of documents, D, containing n documents d1…dn. 
Consider, as well, the union of all words over all documents, W. Suppose there are m<n words, 
w1…wm. We may therefore construct a “word-document matrix”, X, with dimensions m x n, 
where each element in the matrix, xjk, consists of a frequency count of the number of times word 
j appears in document k.  
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We conceive of the original word-document matrix as a “noisy” representation of word-
word similarity (or equivalently, document-document similarity). One source of this “noise” is 
the use of multiple words to represent the same concepts. We would therefore like to recover the 
original associations, or concepts, implicit in each word. Singular Value Decomposition (SVD) 
with dimensionality reduction is a commonly used algorithm for the reduction of statistical noise. 
Using the above analogy, LSA performs noise reduction on the original word-document matrix. 

The Singular Value Theorem in linear algebra states that any matrix may be represented 
as the product of three matrices, X = W S DT, where X is the word-document matrix derived 
above. In this case, W is a m x m matrix of singular unit vectors, each of which are, by defini-
tion, mutually orthogonal.  Each of these singular vectors corresponds to a word. Similarly, D is 
a n x n matrix of mutually orthogonal singular unit vectors. Each of these vectors corresponds to 
a document. Finally, S is a m x m diagonal matrix of decreasing, non-negative singular values, 
with each element corresponding to a linear combination of weights associated with each singu-
lar vector.  

Without loss of generality, let r be the rank of X. In order to reduce the noise in X, we 
would like to reduce the rank of X such that r’ < r corresponds to the number of latent concepts 
within the corpus. We therefore set the smallest (r-r’) singular values to 0, generating S’. The 
value of r’ must be chosen by the user, although values of r’ between 100-300 seem to work well 
for information retrieval purposes (Landauer, Foltz et al. 1998). The resulting matrix,  
X’ = W S’ DT , is a rank r’ approximation of X that can be represented as having r’ mutually or-
thogonal singular vectors. Words and documents, which were previously represented by linear 
combinations of r mutually orthogonal singular vectors, are now represented as linear combina-
tions of r’ mutually orthogonal vectors, such that the locations of words and documents in the 
vector space represented by X’ approximate the corresponding locations of words and documents 
in X in a least-squares sense. If we were to treat X’ as a Euclidean space, the normalized inner 
product (i.e., the cosine between) of two word-vectors (represented as rows of the matrix W S’) 
can be thought of as the projection of each word upon a set of axes each of which corresponds to 
a latent concept. Therefore, this value would correspond to the two words’ degree of synonymy 
(or similarity for documents). LSA is therefore able to capture higher-order relations between 
synonymous words (e.g., words that do not directly co-occur, but that mutually co-occur with a 
third word as in the spice/seasoning example above).  

A query to LSA will return those words which are closest in the X’ metric space – 
namely, those words which co-occur most often with the query word, or with those words that 
occur with the query word, etc. In principle, these words are synonymous with the query word. 

LSA Implementation. We have implemented LSA in Python 2.5 and MATLAB. Python 
2.5 was used to parse an FDA Advisory Panel meeting into a word-document matrix, which was 
then imported into MATLAB. Singular value decomposition and log-entropy weighting (Dumais 
1991) were executed using built-in MATLAB functions, generating an LSA space. Finally spe-
cialized functions were written to perform the coherence analyses described below. 

Other applications of LSA have included automated student essay evaluation (Landauer 
and Dumais 1997), measurement of textual coherence (Foltz, Kintsch et al. 1998), knowledge 
assessment (Rehder, Schreiner et al. 1998), information visualization (Landauer, Laham et al. 
2004), the quantitative analysis of design team discourses (Dong, Hill et al. 2004), and the con-
struction of a theory of human learning and cognition (Landauer and Dumais 1997). In particu-
lar, (Dong 2005) has used LSA to study conceptual coherence in design and the process by 
which members of a design team agree upon a common design representation. This work begins 
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by extending Dong’s techniques to the realm of advisory committee decision-making, and is ul-
timately meant to contribute a data-driven methodology that may provide insight into the effects 
of institutional background on decision-making for complex engineered devices and systems. 

Application to Medical Device Approval 

Medical advisory panels may be viewed as teams (McMullin and Whitford 2007). Al-
though they are not designing an artifact, as in Dong’s work, such panels must produce a policy 
recommendation that will have a strong impact upon the success or failure of the technical sys-
tem under review. LSA may be used to study coalition formation within medical advisory panels, 
by studying the respective coherence of one actor as compared to another. In general, we suggest 
use of LSA for the analysis of team or committee dynamics. 

The use of LSA to measure textual coherence can provide insight into the extent to which 
different speakers within an advisory panel meeting are using terminology in the same way. Co-
herence analysis was first implemented in (Foltz, Kintsch et al. 1998), and extended to design 
teams in (Dong 2005). In a design team, designers must be “on the same page”. This means that 
they must be speaking in words that are sufficiently similar as to be comprehensible to each 
other, i.e., speaking similar professional languages. LSA does allow for the analysis of relative 
linguistic homogeneity, thereby enabling a determination of the extent to which designers are 
“on the same page” relative to one another through a coherence metric.  

The combined analyses of coherence and changing synonymy associated with certain 
words can provide insights into the role of institutions in setting voting patterns. We may be able 
to determine, for example, whether coherence is higher between members of a given profession 
than between voting members or industry-representatives. This could provide empirical evidence 
of the role of group decision processes in enabling the transfer of knowledge required for effec-
tive committee decision-making. 

Preliminary Results 

 We show results from a preliminary analysis of a meeting of the Circulatory Systems De-
vices Advisory Panel Meeting held on April 22, 2005 (Gross 2005). In this panel meeting, the 
Circulatory System Devices Advisory Panel discussed and made recommendations regarding the 
approval of the “PAS-port”, a device aimed at reducing the risk of stroke inherent in coronary 
artery bypass (Maisel 2005). This device was under review for 510(k) approval when its predi-
cate device was pulled from the market. This had the effect of prompting the FDA to create new 
requirements for similar devices. Since the predicate device was now invalid, the PAS-Port de-
vice was brought to the advisory for review, despite the fact that the sponsors had initially not 
planned to execute full-fledged clinical trials. The device’s sponsors used observational data 
from two clinical trials conducted outside of the United States, and therefore under different 
conditions than those that might have been required by the FDA had they been conducted under 
an Investigational Device Exemption (IDE) for a PMA. As a result, there were several questions 
regarding the viability of the data (and hence, the sponsor’s contention that the device was safe). 
Among these were the following: 

1. The sponsor’s presentation attempted to combine the results of two clinical trials con-
ducted under different conditions. Thus, there was a question of whether the data could 
be pooled to yield meaningful results. 
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2. Following the failure of the predicate device, the FDA increased the lower bound for the 
confidence interval surrounding a proposed device’s patency rate (i.e., the rate at which a 
vein graft would remain un-blocked). This implied that a statistical test with higher power 
was required. Nevertheless, these new requirements occurred after the sponsor had al-
ready run the clinical trials. 

3. The data were collected outside of the United States, and therefore, was not supervised by 
the FDA. Rather, the studies were designed for European clinical trial reviewers. 

4. The device under study was improved between clinical trials, thereby leveraging the ex-
perience of the designers to improve its safety and efficacy, but simultaneously contribut-
ing to the non-comparability of the two trials. 

Coherence Analysis. The following analysis confirms our intuition upon reading the meet-
ing transcript, and is suggestive of a direction for future work. Figure 2 shows an analysis of the 
meeting described above. For the purposes of this analysis, actors were categorized into four 
bins: Voting members; FDA; Sponsors; and Non-Voting Members. Each point in a given time 
series is calculated as the cosine of the angle between the running average of all utterances gen-
erated by a specific group (the “group centroid”), and the final group centroid of the voting 
members. Note that the sponsor’s coherence with respect to the voting members’ final position 
drops dramatically. It is interesting to note that the FDA’s coherence also drops with respect to 
the voting members. This is likely due to the fact that the voting members ultimately chose to 
ignore the FDA representatives’ statistical analysis indicating that the data could not be pooled. 
Nevertheless, all members agreed that the data were not pooled correctly. 
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Figure 2: Coherence of group centroid with respect to final centroid of voting members. 
The horizontal axis, representing the utterance number in the discourse, represents pro-
gress through the discourse. The vertical axis is coherence as measured with respect to the 
final position of the voting members. Each curve corresponds to a different group present 
at the meeting (Non-voting panel members, FDA representatives, sponsors, and voting 
members).  
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Figure 3 further examines the sponsor’s coherence measured with respect to the final position of 
the voting members in semantic space. Note that the greatest drop occurs at the time of the pres-
entation of the data suggesting that it was indeed a disagreement on the interpretation and viabil-
ity of the data that led the voting members to ultimately choose not to approve the device. Al-
though there was some disagreement regarding the viability of pooling the two clinical trials to-
gether (captured in the Statistical Methods Presentation), most of the discussion focused on the 
interpretation of the data rather than on the methods used to reach that interpretation. 
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Figure 3: Breakdown of sponsor’s presentation by speaker/section. Each curve corresponds 
to a different speaker, each of whom presented a different phase of the sponsor’s talks (in-
troduction, clinical data, statistical method, and physician endorsement).   

Evaluation of Results  

Implications for FDA. One could argue that the panel rightly rejected a device that was not 
demonstrated to be safe. On the other hand, no device is entirely safe or entirely unsafe. The 
question is rather one of the extent to which this device might benefit compared with its un-
known risks to population safety. The coherence analysis seems to indicate that the results were 
presented in such a way as to focus the committee’s attention on the question of whether or not 
the data met the 80% lower confidence bound FDA safety requirement, rather than on interpreta-
tion of the data within the context of the specific disease being treated. 

The analysis seems to indicate that the FDA’s questions regarding clinical trial design had an 
impact on directing the line of questioning that the panel members followed. Given that the de-
vice was neither evaluated as a PMA nor as a 510(k), the ex ante standard of review for the de-
vice was unclear. In the absence of a clear standard, the advisory panel was convened to make a 
recommendation regarding the device’s safety and efficacy based upon their expertise. Rather 
than focusing directly upon the device and whether or not it might fail, they instead discussed the 
validity of the clinical trials. There was comparatively little discussion about the meaning of the 
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data and the actual safety and efficacy of the device. This is understandable given that none of 
the panel members had a direct experience with the device due to conflict of interest rules. 
Rather, the discussion focused on the uncertainty surrounding the data, and the need for a larger 
sample size to meet the ex post facto requirements imposed by the FDA. In the absence of spe-
cific expertise with this device, decisions must be made upon the basis of data. The panel there-
fore ultimately recommended that the device not be approved because of this uncertainty. Never-
theless, each panel member expressed appreciation for the operation of the device and a desire to 
see it on the American market once a clinical trial that was sufficiently powerful to meet the new 
FDA regulations was carried out.  

Advisory committees were initially chartered to draw upon the practical expertise of practi-
tioners and researchers in the field. The non-binding status of their recommendations could fur-
ther enable them to make potentially controversial recommendations. Rather than making a 
value-based policy recommendation – namely, attempting to determine the appropriate balance 
between the probability that the device might fail and the probability that it might save lives, 
based upon the data presented, the advisory panel chose to make its decision upon the basis of an 
exogenously defined lower confidence interval bound that was put in place after the clinical trials 
had already been conducted. The panel’s focus on the analysis was sufficiently powerful to meet 
the FDA’s criteria seems to have sidestepped the larger question of whether the FDA’s new rules 
should necessarily have applied to this device. This is therefore an implicit choice to delegate 
decision-making power to the necessarily risk-averse institutional rule created by the FDA fol-
lowing the failure of the predicate device.  

FDA has, in the past, been described as a “risk-averse” agency. Although the Medical Device 
Amendments of 1976 were designed to simultaneously promote safety and innovation, FDA 
seems to be moving more towards the “drug model” of device approval, requiring statistically 
rigorous clinical trials. This has negative implications for FDA’s ability to promote device inno-
vation as per its legal requirement (Merrill 1994).  

Implications for the Methodology. The results described in this analysis are preliminary, 
and only provide an initial insight into studies of the effects of institutional framing within group 
decision making for system review. Nevertheless, this analysis seems to have captured the main 
concerns of voting members when reviewing the PAS-Port device.  Future work will focus upon 
expanding the methodologies employed above. Although the results are suggestive, other tech-
niques may be employed to gain new insights from the data. 
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