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Abstract   
All sufficiently-complex engineered systems require oversight by committees of technical experts. Decision-making by these 
expert committees is poorly understood. A number of social dynamics might impact the sharing of information among expert 
specialists. Some of these could be beneficial to the decision process but some could lead to decisions that are not well-informed 
by all of the specialties represented. This research presents a quantitative empirical methodology for the study of technical 
expert committees based upon computational linguistic analysis of meeting transcripts. The Food and Drug Administration 
advisory panels are used as a case study. Output results include meaningful social network data that might potentially be used to 
gain insight into how the social dynamics of expertise interact with technical device attributes, ultimately leading to a committee 
decision.  
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1 Introduction 
The aggregation of information from multiple human 
sources is critical to many disciplines. Large-scale 
engineered systems must successfully pool knowledge and 
expertise from many domains if they are to be effective. 
Furthermore, any large-scale engineered system must 
receive the approval of several stakeholders, many of whom 
have differing requirements, and hence different 
perceptions, of the system and its functionality. Examples 
include design reviews that large-scale engineered systems 
must pass (consider, for example, the PDR and CDR cycles 
within the aerospace domain). These approval activities are 
aimed at bringing in additional expertise, and, ideally, 
improving the ultimate design. In general, committee 
decision making can have a large impact upon a device or 
system of devices, affecting the system’s architecture 
before it enters the market.  
 
In the committees that concern us in this paper, information 
must be aggregated from multiple expert specialists. In such 
situations, we may expect concerns about bias, conflict of 
interest and deep uncertainty. The fact that different experts 
hold different perspectives & values makes it more likely 
that all aspects of a problem will come under consideration. 
Nevertheless, this also makes it difficult to generate 
consensus on the interpretation of data and even the 
meaning of keywords and requirements. Experts’ 
interpretations of data are likely influenced by institutional 
frames (e.g., a particular profession, specialty, or 
organization of which they are a part). This motivates three 
main questions driving the research endeavor of this paper:  
 

1. How can we study, in a quantitative, consistent 
manner, the impact of institutional backgrounds of 
technical experts on committee decisions?  

2. How do technical experts’ decisions change as 
they learn change and interact during the decision-
making process?  

3. How might we design committee processes so as 
to enable desirable behaviour on the part of 
technical expert committees? 

 
In order to answer these questions, this work is aimed at 
developing a deeper understanding of how differential 
perceptions, e.g., due to different training, impact upon 
multi-stakeholder decision-making. Furthermore, the 
question of how to design decision-making processes that 
successfully leverage different perspectives is one that is 
extensible to a range of technology and policy activities 
across both public and private sectors. We differ from 
previous analyses in our use of an empirical quantitative 
methodology based upon a computational linguistic 
analysis of meeting transcripts. Such a methodology can be 
extended to similar studies in other domains of interest to 
engineers.  
 
Dong [1] took the first steps in the direction of quantitative 
empirical analysis of group decision-making by using 
Latent Semantic Analysis [2] to measure cognitive 
convergence in design teams. Earlier versions of this work 
used a version of Dong’s methodology to analyze group 
decision-making within the Food and Drug Administration 
[3]. This paper extends the work begun in [3] through the 
use of the Author-Topic (AT) model [4], a Bayesian 
inference tool commonly used in the field of information 
retrieval.  The resulting output may be used to build social 
networks, whose analysis can provide insight into the 
resulting committee dynamics. 
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2 Why the FDA? 
The empirical analysis mentioned above requires data in the 
form of committee meeting transcripts. These are often not 
recorded in textual form, or are proprietary to the 
organization that commissioned the committee. We 
therefore turn to transcripts of expert committees that are a 
matter of public record. The ideal data source must have the 
following attributes: 
 

1. Analysis or evaluation of a technological artifact 
2. Participation of multiple experts from different 

fields or areas of specialization 
3. A set of expressed preferences per meeting(such as 

a voting record) 
4. Multiple meetings, so as to enable statistical 

significance 
 
These requirements are met by the Food and Drug 
Administration’s medical device advisory panels. The most 
uncertain, and therefore difficult, medical devices are 
reviewed by expert advisory panels prior to their exposure 
to the American market. A device’s approval, and future 
diffusion, often rests upon the panel’s assessment of the 
device’s safety. These panels are aimed at producing a 
recommendation, informed by the expertise and knowledge 
of panel members, which can supplement the FDA’s “in-
house” decision process. Multiple experts are consulted so 
that the group decision’s efficacy can take advantage of 
many different institutional perspectives. Panel members’ 
values and institutional contexts may differ, leading to 
different readings of the evidence, and therefore different 
recommendations [5]. It is difficult to determine whether 
panel recommendations promote FDA’s mission of 
promoting both safety and innovation, particularly since 
there is no alternative against which a panel’s decision may 
be compared. This suggests that, in order to determine the 
FDA’s ability to differentiate between devices, we must be 
able to distinguish how specific innovations are perceived 
by actors at the regulatory level of the health care system. 
 
In health care, Gelijns et al. note  that strictly evidence-
based decisions are often not possible for the following 
reasons [5]: 
 

1. A given data-set may be interpreted differently by 
different experts, especially in the presence of high 
uncertainty. Unless these experts can learn from 
one another, good decision-making might be 
impaired. 

2. Patterns of technological change are difficult to 
predict, particularly when innovations are 
ultimately used for different purposes than 
originally intended. 

3. Even in the case of clear evidence, decision-
makers may disagree on its implications due to 
differing value systems. 

 
This suggests that a device’s determination as safe or 
efficacious depends strongly on factors that are not within 

the purview of strictly “evidence-based” decision-making. 
[6] argues that these are largely shaped by the perceptions, 
and hence, the knowledge and expertise, of risk assessors. 
Institutions that might impact decision-making include 
membership in a particular profession, specialty, or 
bureaucratic organization [5, 7-9].  

3 How to analyze institutional factors? 
The literature on decision-making by groups, as well as by 
expert committees, is vast. Mathematical theories of group 
decision-making abound within the rational choice and 
game-theory literature (see, for example, [10]). Within 
political science, committee decision-making has been 
studied extensively from the perspective of social-choice 
theory. This work often assumes that preferences are fixed 
in advance and that decisions are made on purely strategic 
grounds. Therefore, the differences between actors are 
modelled by different individual preference profiles [11]. 
Similar work in economics has differentiated between 
actors by “type” (i.e., expert or non-expert), with the 
intention of identifying an optimal allocation of experts 
[12]. These models have contributed much to our 
understanding of the rational-choice components of group 
decision processes. Our work examines the institutional 
antecedents of preference formation. If preferences have 
been determined successfully, it is conceivable that the 
considerable machinery developed in the rational-choice 
framework could be brought to bear. 
  
The empirical counterpart to the rational choice analysis of 
group decisions is to be found within the organizational 
psychology literature. Here, the dominant approach is to 
model such groups as information processing mechanisms. 
Therefore, these publications focus on measuring the extent 
to which previously unshared information becomes shared, 
and on the basis of what sorts of information the ultimate 
decision is made [13-15]. It was often found that shared 
information drives decisions, suggesting that sources of 
unshared information (or unique expertise) may be ignored 
by groups [16]. An analysis by Kameda et al. attempts to 
identify members in a group who are “cognitively central” 
– such members are able to translate otherwise unshared 
information into terms that other group members are 
familiar with [17]. These analyses have provided deep 
insights into team dynamics within a laboratory setting and 
outline a number of general interpersonal dynamics that one 
might expect in groups and committees. This research is 
aimed at extending this line of work into real-world 
committees, with the aim of identifying which situations 
best correspond to which laboratory experiments. 
 
Work within the anthropology and Science, Technology 
and Society (STS) literatures is perhaps most relevant to 
this inquiry. In particular, the penetrating analyses of Mary 
Douglas note that group membership may affect perception 
of data [18]. This is reflected in the fact that each 
institution, and indeed, each specialty, possesses its own 
unique language and jargon. This is particularly true in 
medical and academic disciplines, where conceptual 
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precision is required to communicate within the specialty. 
Nelson notes the importance of written and oral language as 
a means of encapsulating and transferring tacit knowledge 
[19]. On the other hand, an outsider to the institution may 
be unable to understand the discourse. The STS literature 
extends this notion by noting that language is used as a 
cognitive mechanism to delineate professional boundaries. 
This directs the attention of experts within a specialty 
toward a given interpretation of a problem that is consistent 
with that expert’s training, while simultaneously directing 
that attention away from other possible interpretations [20-
24]. Casting “organization [as] the mobilization of bias”, 
[25] recognizes institution-specific symbolism in language, 
noting that the choice of terminology in defining a problem 
may be seen as a means of mobilizing support. 
Furthermore, the linguistic definition of a problem dictates, 
to some extent, its solution. Choosing to use specialized 
technical words serves to narrow the range of subjective 
meaning of otherwise ambiguous terminology (such as 
“safety” or “efficacy” in FDA’s context) thereby implicitly 
redefining the problem according to a given speaker’s 
particular interest. Determining the speaker’s intention in 
using both precise and “symbolic” language can allow 
insight into their institutional frame of reference. Therefore, 
we turn to an analysis of language in order to be able to 
examine institutional factors in group decision-making. 
 
The work cited above suggests that the determination of 
institutional and other interpersonal affinity might be 
identified through the use of common language and jargon.  
This paper utilizes language, and in particular, Bayesian 
modelling, to determine whether stakeholders within a 
committee meeting are discussing similar topics.  
 
An earlier iteration of this work used Latent Semantic 
Analysis, based upon the work of [1], to study the same 
corpus of FDA transcripts. Results of this analysis may be 
found in [3]. In practice, LSA works well for identifying 
and separating major trends within a discourse, as in 
evaluating the divergence between two groups of 
stakeholders over time (e.g., exploring device sponsor 
versus committee-member trajectories within the latent 
semantic space). LSA has some well-known limitations 
inherent in the Singular Value Decomposition (SVD) used 
to reduce the associated term-document matrix. Among 
these is the assumption that words are embedded within a 
Euclidean “concept-space”. This particular assumption 
breaks down when comparing words that are polysemous – 
i.e., having the same spelling but different meanings 
(compare “bat” the animal vs. “bat” in the context of 
baseball). LSA represents the location of these words in the 
Euclidean semantic space as the average over the two 
separate locations – a clearly incorrect representation. 
Furthermore, LSA assumes that the noise around each 
word’s location in the Euclidean space is normally-
distributed, an assumption that introduces increasingly 
more distortion into the analysis as a given speaker uses 
fewer words. These limitations make it difficult to resolve 
the linguistic attributes of individual speakers, particularly 
in the absence of extensive speaker data within a given 

meeting. Furthermore, the latent dimensions of the LSA 
feature space, which nominally correspond to latent 
concepts of a discourse, are often difficult to interpret. 
These limitations motivate the use of a Bayesian model (for 
an excellent comparison of LSA to Bayesian models of text 
analysis, see [26]).  
 
One form of analysis of these transcripts uses a variant of 
Rosen-Zvi et al.’s Author-Topic (AT) Model [4]. Like LSA, 
AT also uses a term-document matrix as input. The AT 
model is implemented as follows: 

3.1 Construction of a word-document matrix 
As with LSA, we must parse a transcript into a word-
document matrix. This method is exactly the same as that 
followed in [3]. Namely, we first consider a corpus of 

documents, D, containing n documents d1…dn. Consider, 

as well, the union of all words over all documents, W. 
Suppose there are m<n words, w1…wm. We may therefore 
construct a “word-document matrix”, X, with dimensions m 
x n, where each element in the matrix, xjk, consists of a 
frequency count of the number of times word j appears in 
document k. For the analyses reported in this paper, a word-
document matrix was constructed using the Python 2.5 
programming language. Non-content-bearing “function 
words”, such as “is”, “a”, “the”, etc., were pre-identified 
and removed automatically. In addition, words were 
reduced to their roots using the PyStemmer, a Python 
implementation of Porter’s Snowball algorithm [27]. 

3.2 AT Model Structure and Implementation 
The Author-Topic model provides an analysis that is guided 
by the authorship data of the documents in the corpus, in 
addition to the word co-occurrence data used by LSA. Each 
author (in this case, a speaker in the discourse) is modelled 
as a multinomial distribution over a fixed number of topics 
that is pre-set by the modeller. Each topic is, in turn 
modelled as a distribution over words. A plate-notation 
representation of the generative process underlying the 
Author-Topic model is found in Figure 1. The Author-
Topic model is populated using a Markov-Chain Monte 
Carlo Algorithm that is designed to converge to the 
distribution of words over topics and authors that best 
matches the data. Information about individuals authors is 
included in the Bayesian inference mechanism, such that 
each word is assigned to a topic in proportion to the number 
of words by that author already in that topic, and in 
proportion to the number of times that specific word 
appears in that topic. Thus, if two authors use the same 
word in two different senses, AT will account for this 
polysemy. Details of the MCMC algorithm implementation 
are given in [4]. The AT model was implemented in 
MATLAB using the Topic Modelling Toolbox algorithm 
[28].  
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3.3 Model Parameters 
The AT model requires the selection of two parameters. 
Each author’s topic distribution is modelled as having been 
drawn from a uniform Dirichlet distribution, with parameter 
α. A Dirichlet distribution is used because it is the 
conjugate prior of the multinomial distribution. One may 
think of α as a smoothing parameter. Values of α that are 
smaller than unity will tend to more closely fit the author-
specific topic distribution to observed data. If α is too 
small, one runs the risk of overfitting. Similarly, values of 
α  greater than unity tend to bring author-specific topic 
distributions closer to uniformity. A value of α=50/(# 
topics) was used for the results presented in this paper. This 
is the values suggested by the creators of the Topic 
Modelling Toolbox after extensive empirical testing. 
Similar to α is the second Dirichlet parameter, β, from 
which the topic-specific word distributions are drawn. 
β values that are large tend to induce very broad topics with 
much overlap, whereas smaller values of β induce topics 
which are specific to small numbers of words. Following 
the empirical guidelines set forth by Griffiths and Steyvers 
[28], and empirical testing performed by the authors, we set 
the value of β = 2000/(10 ∗ # words).  
 

 
Figure 1 - A plate notation representation of the Author-
Topic model from [4]. Authors are represented by a 
multinomial distribution over topics, which are in turn 
represented by a multinomial distribution over all words in 
the corpus. 

3.4 Committee Filtering 
As demonstrated in [3], it is often difficult to differentiate 
between panel members. This is partially because they 
share procedural language in common. Therefore, a large 
proportion of the words spoken by each committee member 
would all be assigned to the same topic. This problem is 
solved using the AT model by creating a “false author” 
named “committee”. Prior to running the AT model’s 
algorithm, all committee voting members’ statements are 
labeled with two possible authors – the actual speaker and 
“committee”. Since the AT model’s MCMC algorithm 
randomizes over all possible authors, words that are held in 
common to all committee members are assigned to 
“committee”, whereas words that are unique to each 
speaker are assigned to that speaker. In practice, this allows 

individual committee members’ unique topic profiles to be 
identified, as demonstrated below. 

3.5 Sample Output 
Figure 2 shows sample output of the Author-Topic model 
applied to the FDA Meeting held on March 4th, 2002.  

 
Figure 2 - Sample output from the Author-Topic model run 
on the FDA Circulatory Systems Devices Advisory Panel 
Meeting for March 4th, 2002. This chart is the per-speaker 
topic distribution for Dr. Konstam, one of the panel 
members. 
 
Each topic in Figure 2 may be identified by its most 
probable words.  
Table 1 displays the top five most probable word stems for 
each topic:  
 
Table 1 - The top five word-stems for one run of the AT 
model on the corpus for the Circulatory Systems Devices 
Panel Meeting of March 4, 2002. 
Topic 
Number 

Top Five Word-Stems 

1 'clinic endpoint efficaci comment base' 
2 'trial insync icd studi was' 
3 'was were sponsor just question' 
4 'patient heart group were failur' 
5 'devic panel pleas approv recommend' 
6 'think would patient question don' 
7 'dr condit vote data panel' 
8 'effect just trial look would' 
9 'lead implant complic ventricular event' 
10 'patient pace lead were devic' 
 
Within a clinical trial administered by the FDA, a device 
manufacturer must meet a certain set of clinical 
“endpoints”, often manifested as a proportion of a 
population that is free from disease or adverse events (e.g., 
device failure). Such trials typically have different 
endpoints for device safety and efficacy, both of which 
must be met. From this table, we can see that Dr. 
Konstam’s major topic of interest involved questions of 
what was the appropriate clinical endpoint for the study in 
question (often a common debate on these panel meetings). 
It seems that he was particularly interested in the efficacy 
endpoints (as opposed to the safety endpoints).  
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4 Generation of social networks 
The above methodology can give us insight into the topics 
of interest for each speaker. Nevertheless, topics, on their 
own, provide little direct information about how individual 
speakers might relate to one another. Instead, we would like 
to use the topic information provided by the AT model to 
generate a social network.  

4.1 Network construction 
We would like to link together speakers who commonly use 
the same topics of discourse. In particular, we would like to 
be able to construct an Author-Topic matrix, A, with entries 
equal to 1 if that author uses that topic, and entries equal to 
0 otherwise. This matrix, when multiplied by its transpose 
(A * A’) yields a linkage patterns among speakers. This 
may be interpreted as a social network [29]. 

4.2 Author-topic matrix determination 
The AT model outputs an Author-Topic matrix that gives 
the total number of words assigned for each author to each 
topic. This information must be reduced to the A matrix 
identified above. Given no prior information about a given 
author’s topic distribution, we might assume that that such a 
distribution is uniform over all topics. Therefore, we might 
expect a priori that the total number of words assigned by 
that author to each topic would be equal to the total number 
of words spoken by that author divided by the total number 
of topics. For example, if there are ten topics and a given 
author uses 200 words, we would expect there to be 20 
words in each topic a priori. We consider an author to have 
a meaningful component within a given topic if that author 
uses significantly more words than would be expected 
under the a priori assumption outlined above. Early 
versions of this scheme used a threshold value of 2/(# 
topics) – thus, given ten topics, if more than 20% of an 
individual author’s words were assigned to a given topic, 
that topic was assigned to that author. A resulting social 
network from this scheme is shown in Figure 3.  
 

 
Figure 3 – Social network of the FDA Circulatory Systems 
Devices Advisory Panel Meeting held on March 5, 2002. 
Threshold value is constant for each of 10 topics. Node size 
is proportional to the number of words spoken by the 

corresponding speaker. Dr. Simmons is a panel member 
who left the meeting before the vote occurred. Random seed 
= 3.14. Graphs were generated using UCINET. This 
iteration shows a potential clean cut between voters. 
 
Current work is ongoing using the binomial statistical test 
as a more principled way of determining topic membership. 
The binomial statistical test operates by examining the 
cumulative distribution of the binomial probability mass 
function, given by  

 

Figure 4 - Equation for the binomial probability mass 
function. Using this approach, n is the total number of 
words spoken by a given author, k is the total number of 
words spoken by that author within the topic under 
investigation, and p is 1/(# topics).  
 
Under this scheme, an author is assigned to a topic if the 
cumulative probability that that author used k out of n 
words in a given topic is less than 0.05/b, where b is the 
Bonferroni significance level correction factor. Given a 
authors, b = a * (a-1) / 2, since one comparison is being 
made for each pair of authors. A sample social network 
from this scheme is shown in Figure 5. 

 
Figure 5 - Social network of the FDA Circulatory Systems 
Devices Advisory Panel Meeting held on March 5, 2002. 
Threshold value is determined using the binomial test 
described above. Node size is proportional to the number of 
words spoken by the corresponding speaker. Dr. Simmons 
is a panel member who left the meeting before the vote 
occurred. Random seed = 201.657. 2100th draw from 
MCMC algorithm Graphs were generated using UCINET. 
This iteration shows the presence of two separate 
discussion groups. Note that Drs. Ossorio and Aziz, both 
bridging members in Figure 3, are disconnected. This is 
due to their small number of words contributed. 
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Each social network generated using this scheme is the 
result of one MCMC iteration. Multiple iterations, when 
taken together, form a probability distribution over a set of 
possible Author-Topic assignments, and therefore, 
connectivity patterns. We can expect that different 
iterations of the MCMC algorithm will yield drastically 
different graphs. For example, the results a second draw 
from the same MCMC chain that yielded Figure 3 is shown 
in Figure 6, whereas the results of a second draw from the 
MCMC chain that yielded Figure 5 is shown in Figure 7. 

 
Figure 6 - A second iteration of the meeting of the FDA 
Circulatory Systems Devices Advisory Panel Meeting held 
on March 5, 2002. Threshold value is determined using the 
binomial test. A Node size is proportional to the number of 
words spoken by the corresponding speaker. Random seed 
= 201.657, 2200th draw from MCMC algorithm. Graphs 
were generated using UCINET.  

 
Figure 7 - A second iteration of the meeting of the FDA 
Circulatory Systems Devices Advisory Panel Meeting held 
on March 5, 2002. Threshold value is constant for each of 
10 topics. A Node size is proportional to the number of 
words spoken by the corresponding speaker. Random seed 
= 613. Graphs were generated using UCINET 
 
The high variability among draws from the MCMC 
algorithm suggests that links should be differentially 
weighted – some links appear in virtually all iterations, 
whereas other links appear in relatively few iterations. 
Averaging over multiple MCMC iterations enables a social 

network to be created with weighted links, where the 
weight of each link is proportional to its frequency of 
occurrence among iterations. Examples of this may be 
found in Figure 8 and Figure 9, corresponding to constant 
and binomial threshold conditions, respectively.  

 
Figure 8 - Average of 200 iterations for the meeting of the 
FDA Circulatory Systems Devices Advisory Panel Meeting 
held on March 5, 2002. Iterations use a constant threshold 
value for each of ten topics.  A heavy line indicates a strong 
link (linked in >100 iterations). A light line indicates that 
the speakers are linked more than the global average of all 
speakers. Remaining links have been deleted. 
 

 
Figure 9 – Average of 200 iterations for the meeting of the 
FDA Circulatory Systems Devices Advisory Panel Meeting 
held on March 5, 2002. Iterations use a binomial threshold 
value for each of ten topics.  Heavier lines indicate stronger 
links, whereas lighter lines indicate weaker links. All links 
shown are stronger than the global average of all speakers. 
Remaining links have been deleted. 
 
The above two figures show a common structure that 
evolves for this meeting. For example, both figures display 
a structure that tends to group together those speakers who 
voted similarly. This is encouraging for our hypothesis that 
voters who speak the same way tend to vote the same way. 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  

Copyright © 2009 by D. A. Broniatowski, C.L. Magee, J. Coughlin, and M.C. Yang       Loughborough University – 20th - 23rd April 2009 

Furthermore, it seems that those cardiologists who voted 
against the device’s approval might have done so for 
statistical reasons (both are linked to the panel’s 
statistician).  
The difference the two figures highlights the differences 
between the two threshold conditions. The constant 
threshold condition tends to overly favour speakers who 
talk infrequently, such as Dr. Aziz and Dr. Ossorio. 
Because of their relatively small numbers of words, it is 
harder for these speakers to achieve statistical significance 
using the binomial test, and so they are less likely to be 
linked. On the other hand, the constant threshold condition 
requires more words to establish a link to a frequent 
speaker, compared to a binomial threshold.   

5 Comparison of multiple cases 
The previous case demonstrated how social networks can 
be built. The following cases begin a preliminary analysis 
of the capabilities of the methodology outlined in this 
paper. 

5.1 Grouping by medical specialty? 
Some meetings display voting along institutional lines more 
clearly than do others. For example, Figure 10 and Figure 
11 show a strong grouping by medical specialty. In 
particular, surgeons and internal medicine experts 
(cardiologist and pharmacologists) seem to form two 
different parts of the same graph. It is noteworthy that the 
statistician on the panel voted with the cardiologists, 
perhaps indicating that surgical decision-making might 
have been dr iven by clinical assessment, as compared to 
internal medicine decision-making, which may have been 
driven more by statistical reasoning. This is consistent with 
the observation that the device under analysis in this 
meeting was associated with a minimally-invasive surgical 
procedure. 

 
Figure 10 - Average of 200 iterations for the meeting of the 
FDA Circulatory Systems Devices Advisory Panel Meeting 
held on January 13, 2005. Iterations use a constant 
threshold value for each of ten topics.  A heavy line 
indicates a strong link (linked in >100 iterations). A light 
line indicates that the speakers are linked more than the 

global average of all speakers. Remaining links have been 
deleted. 

 
Figure 11 - Average of 200 iterations for the meeting of the 
FDA Circulatory Systems Devices Advisory Panel Meeting 
held on January 13, 2005. Iterations use a binomial 
threshold value for each of ten topics.  Heavier lines 
indicate stronger links, whereas lighter lines indicate 
weaker links. All links shown are stronger than the global 
average of all speakers. Remaining links have been deleted. 
 
Both of these figures place Dr. Lindenfeld in the most 
central position on the graph of committee voting members. 
Furthermore, Figure 11 recognizes strong links between 
Drs. Yancy and Normand to Dr. Lindenfeld. This is 
consistent with a reading of the meeting transcript that 
indicates that Dr. Lindenfeld shared many of the concerns 
of her colleagues, despite ultimately voting with the 
surgeon majority. Dr. Krucoff, who abstained from voting, 
is strongly linked to Dr. Normand, consistent with his 
background as a clinical trial designer who would be 
interested in both the clinical and the statistical elements of 
the analysis. It is interesting to note that both figures also 
display long “tails” of surgeons, who seem to have voted as 
a bloc.  
 
The above results indicate that, at least in some cases, 
medical specialty might have some predictive value for 
voting outcomes. Further analysis will be aimed at 
attempting to confirm or deny this hypothesis.  

5.2 Comparison across time 
Each FDA meeting is may be divided into sections that 
coincide with natural breaks in the meeting. Examples of 
such include lunch, and coffee breaks. These breaks provide 
natural stopping points for an analysis. In addition, it is 
precisely during these breaks that committee members may 
share information off-the-record that would otherwise 
remain unshared. Thus comparing pre- and post-break 
graphs might provide insight into the evolution of 
committee decisions. Figure 12, Figure 13, and Figure 14 
show the social networks of the January 13, 2005 meeting 
for the amount of time between each break: 
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Figure 12 - First segment of the January 13, 2005 
Circulatory Systems Devices Panel Meeting. This graph 
shows that, at this point in the meeting, voting members had 
not yet expressed any preferences regarding voting. Rather, 
committee members were listening to the open public 
hearing and sponsor presentations. Data include utterances 
1-377 of 1671 total utterances. 
 

 
Figure 13 - Second segment of the January 13, 2005 
Circulatory Systems Devices Panel Meeting. This graph 
shows that, at this point in the meeting, Drs. Lindenfeld, 
Somberg, Bridges, Weinberger, Normand and Krucoff had 
begun discussing the statistical elements of the clinical trial 
design. Five of the six surgeons present have not yet 
expressed opinions. Data include utterances 378-589 of 
1671 total utterances. 

 
Figure 14 –Third, and final, segment of the January 13, 
2005 Circulatory Systems Device Panel Meeting. This 
graph shows that, after lunch, the surgeons in the room, 
who were previous silent, seemed to align in favour of 
device approval. Drs. Lindenfeld, Normand,  Krucoff, and 
Somberg seemed to maintain their relative positions 
between the second and third segments. Data include 
eutterances 590-1671.  
 
The above figures show a small group of voters engaging in 
a discussion of interest – forming a coalition, as it were, 
while those who remain silent eventually come to dominate 
the voting dynamics through strength of numbers. It is 
particularly interesting that these two groups may be 
roughly divided by medical specialty. 
 
We may perform a similar analysis on the meeting analyzed 
previously – i.e., the meeting of the Circulatory Systems 
Devices Panel of March, 5th, 2002. This meeting is divided 
into “before lunch” and “after lunch” segments, as shown in 
Figure 15 and Figure 16. 

 
Figure 15 – Before-lunch segment of the March 5th, 2002 
Circulatory Systems Devices Panel Meeting. This graph 
shows that, at this point in the meeting, voting members had 
largely aligned themselves into blocs that would later vote 
similarly. Data include utterances 1-703 of 1250 total 
utterances. 
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Figure 16 – After-lunch segment of the March 5th, 2002 
Circulatory Systems Devices Panel Meeting. This graph 
shows that, by the second half of the meeting, those who 
would later vote against device approval had become more 
strongly linked to those who would later support device 
approval. This pattern perhaps reflects attempts by the 
approval voters to convince the non-approval voters to 
voter differently. Data include utterances 704-1250 of 1250 
total utterances. 
 
Finally, we examine a meeting held on April 24, 2004. This 
meeting was originally divided into four parts. Given that 
the voting members did not speak during the first two 
quarters of the meeting (leading to a fully disconnected 
graph), we present only the last two parts of the meeting, 
displayed in Figure 17 and Figure 18.  

 
Figure 17 – Before-lunch segment of the April 21st, 2004 
Circulatory Systems Devices Panel Meeting. This graph 
shows well-defined coalitions having been formed relatively 
early in the meeting. It is interesting that voting  patterns 
seem to largely respect the boundaries of particular 
medical specialties (i.e., surgeons vs. cardiologists). Data 
include utterances 399-876 of 1822  total utterances. 
 

 
 
Figure 18 - After-lunch segment of the April 21st, 2004 
Circulatory Systems Devices Panel Meeting. This graph 
shows that the well-defined coalitions of the before-lunch 
segment have broken down – particularly the anti-device 
coalition. This may well be due to attemtps by members of 
one coalition to influence the other, leading to cross-
coalition dialogue.. Data include utterances 877-1822 of 
1822  total utterances. 
 
The first meeting segment shows the formation of two 
coalitions that ultimately voted oppositely. It is interesting 
that the pro-approval coalition is composed largely of 
cardiologists, whereas the anti-approval coalition is 
composed largely of non-cardiologists. Furthermore, the 
bridging members, Drs. Tracy, an electro-physiologist, and 
Maisel, a cardiologist with a public health background were 
outliers within their own group. Both Drs. Tracy and Maisel 
have served as chairs of previous meetings, and are 
therefore perhaps more driven to achieve consensus among 
panel members. 
 
The second meeting segment shows the breakdown and 
fragmentation of the anti-approval coalition and the 
consolidation of the pro-approval coalition prior to voting. 

6 Conclusions –Methodological Limitations and 
Future Work 

The method outlined in this paper relies on meeting 
transcripts to generate empirical findings regarding 
committee decision-making. It is therefore sensitive to the 
limitation that not all committee members might express 
their views truthfully. Although this is a major concern in 
the political sciences, it is less likely to be a problem when 
one considers that technical expert committees are aiming 
to construct a mutual understanding of a technical device; a 
situation in which misrepresentation of one’s expertise 
would likely not be consistent with individual or group 
goals. Furthermore, even though political actors may 
strategically misrepresent their ultimate aims, it is very 
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difficult for individuals to avoid using jargon that they are 
familiar with.   
 
Perhaps a larger concern is the inability to differentiate 
between agreement and argument.  Two actors are linked if 
they discuss the same topics. They may do so because they 
agree on some aspect of the device review, or because they 
are debating over interpretation of a given element of the 
debate. This is evident in the figures shown above, where 
linkage does not always indicate voting similarity. 
Therefore, a major area for future research is the 
determination of valence on each of the links in the graph. 
Determining signs for these graph links will enable a more 
direct comparison of the voting record to the graphical 
structure. This, in turn, would enable the analysis of 
reputation effects – e.g., why don’t people vote the way 
they say they will? Existing work on sentiment 
classification (e.g., [30]) might potentially be applicable to 
this problem. 
 
This research is aimed at the development of a quantitative 
methodology that may be applied to analyze multi-
stakeholder decisions made by technical expert. These 
decisions are of the sort that one might expect to encounter 
frequently during design processes for large-scale 
engineered systems. The methodology presented in this 
paper, although still preliminary, has been used to generate 
meaningful social networks from transcripts of FDA 
medical device advisory panel meetings. Future work will 
focus on applying this method to a larger number of cases 
with the intention of producing generalizable findings and 
developing theory.  
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