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ABSTRACT 
As engineering systems grow in complexity, the teams that design them require increasingly 
disparate expertise and must operate in a distributed fashion. At the same time, the teams that 
design subsystems need to compete and compromise with each other for a limited set of 
resources. Thus, it becomes crucial to establish a system-level understanding of the trade-offs 
between subsystems. However, there is little research regarding formal design methods for 
determining rational designs in a decentralized environment. Lewis and others have developed an 
effective Game Theoretic approach based on Decision Theory to locate a Nash Equilibrium 
design with minimum information sharing. This paper presents a design technique to balance 
tradeoffs between subsystem and system performance by minimizing information sharing 
between subsystems, thus converging to a set of Pareto Optimal designs. In this research, 
designers pass a quadratic approximation of each subsystem’s objective functions at each 
iteration. This approach is illustrated by case examples of a pressure vessel and an airplane that 
show how Pareto Optimal Designs may be obtained in a decentralized design environment. 
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1 INTRODUCTION  
In recent years, engineering systems have become steadily more complex, resulting in a rising 
number of disparate subsystems that must be integrated. Each subsystem is usually designed 
separately by experts from different fields who are often geographically dispersed, making 
information sharing and communication between designers of subsystems logistically more 
difficult. Subsystems must further compete with each other for a limited set of resources. Under 
such circumstances, it becomes critical to understand the trade-offs that must be made between 
subsystems in order to reach a final design. An example of such a system is NASA’s Space 
Mission Design which focuses on highly specialized subsystems such as propulsion, power, and 
attitude control systems. One of NASA Jet Propulsion Laboratory’s organizational approaches to 
addressing trade-offs within complex systems is the Advanced Projects Team (Team X). In Team 
X, the entire team is intentionally geographically co-located to facilitate rapid communication 
between the subsystems. This arrangement helps ensure that design trade-offs are understood at 
both the subsystem and system level. Balancing trade-offs is not only an issue for space missions, 
but are applicable to other areas where large systems are involved, such as the design and 
engineering of aircrafts, automobiles, ships, and buildings. 
 
This paper investigates a method to define and effectively balance the tradeoffs between 
subsystem performance and overall system performance. Rather than addressing this problem 
from a primarily organizational point of view as in the Team X project, the way information is 
shared in a distributed design environment is examined, particularly when there is a lack of 
perfect, shared information between each designer of a subsystem. Individual designers may 



 

 

possess the full information necessary to design one subsystem, but only have limited information 
about other subsystems. In practice, it is extremely difficult to achieve perfect information 
sharing among even closely co-located parties; even modest geographical distribution can 
decrease information sharing dramatically [1]. Partly because of this lack of perfect shared 
information, current approaches [2, 3] model distributed group design using decision theory based 
on Game Theory to achieve a rational solution. If it is assumed that each designer possesses all 
the information necessary to design all subsystems, this becomes a group trade-off problem rather 
than one of design in a distributed environment. If the information passed between designers is 
limited, then Game Theory gives the most logical and practical approach to the problem. 
However, in situations in which it is possible to increase the amount of information that can be 
passed along, it can be shown that a designer can find a better performing design if the objective 
functionhas sufficient regularity.1 This paper proposes an approach that allows designers to obtain 
a Pareto Optimal design in a decentralized, distributed design environment. In a Pareto Optimal 
design set, improvement in any design objective requires a sacrifice in at least one of the other 
design objectives. Thus, any design in this set can be considered an optimum assuming the 
priorities for the objectives are appropriate [4, 5]. The goal of this paper is to investigate a design 
method that converges to a set of Pareto Optimal designs while minimizing the required 
information flow. This will provide distributed, decentralized teams who design complex systems 
a process by which to arrive at optimal designs with slightly more information sharing than used 
in traditional approaches. 
 

2 BACKGROUND 
This work draws on several perspectives on design in a distributed environment, including 
decision theory and optimization. 

2.1 Decision Theory  
Decision theory attempts to identify the most rational design under a specific set of conditions by 
considering the information passed between designers. The resulting designs may differ 
depending on the type and quantity of information exchanged. Furthermore, the resulting designs 
will be rational, but not necessarily be optimal. 
 
Decision-Based Design grows from decision theory and was first proposed by Lewis and Mistree 
[3, 6, 7]. Decision-Based Design has been widely adopted in a broad range of design research [8-
11]. In Decision-Based Design, it is assumed that the main activity of a designer is to make 
decisions and each designer's decisions are determined by optimizing individual objectives within 
a certain group using tools from Game Theory. Because each designer's decisions will be 
influenced by every other designer's decisions, the final design depends on how much 
information is communicated among the designers. Lewis and Mistree represent this information 
sharing using Game Theory [12, 13]. They formulate this design problem for the case involving 
two designers as the game given by:  

                                                           
1Continuity of the second derivative is needed to locally approximate an objective function using a 
quadratic function. Without a quadratic approximation, the information sharing scenario will be similar to a 
cooperative protocol rather than a noncooperative protocol. 



 

 

  (1) 
 
Mathematically, this states that the purpose of this design scenario is to minimize the objective 

functions  for each different subsystem under given constraints where  represents design 

variables controlled by designer  and  describes a non-local variable that is determined by 

other designers (subscript  means constraint). In this game theory representation of distributed 
design, several information-sharing protocols can be used in order to reach an agreement, each 
resulting in a different rational/optimal set of designs. The following are possible protocols of 
information sharing among designers. 

2.1.1  Cooperative protocol 
In a completely cooperative protocol, all information about a subsystem is shared among all 
designers. Each designer has sufficient information about all subsystems to work together with 
others to find a set of Pareto Optimal solutions. Thus, this protocol allows a design team to select 
among the best possible design performances of all the protocols. Lewis mentions that such a 
systems thinking approach allows members in a design team to focus on cooperation through a 
common vision. Even though this protocol is ideal for the organization, it is rarely realistic in a 
distributed environment in part because of communication and logistics challenges. It becomes 
even more impractical to share all information when subsystems are technologically complex or 
disparate. 

2.1.2  Noncooperative protocol 
A noncooperative protocol occurs when there is imperfect information sharing between 
subsystems. This means that different amounts of information are shared between subsystems. By 
formulating a design problem from a Game Theory perspective, the objective of the design of a 
system is to achieve a Nash Equilibrium. A Nash Equilibrium represents a point in design space 
in which every designer cannot improve his design without breaking constraints given by other 
subsystems. The constraints imposed by other subsystems represent the limitation in information 
sharing. As more information is shared between subsystems, there will be fewer constraints 
imposed by one subsystem on the other subsystems. A Nash Equilibrium solution may not be in a 
Pareto Set, but it is the most rational solution given the lack of information between subsystems.2 

2.1.3  Leader/Follower protocol 
In a leader/follower protocol, a system is designed sequentially. The first designer designs his 
subsystem completely, then passes the subsystem design to the next subsystem designer. The 

                                                           
2 This is a rational solution rather than an optimal solution because there could be a design such that it is 
better than a rational solution for every design objective. However, if there is too little information shared 
between one subsystem and another, there will be no deterministic method to find these optimal solutions.  



 

 

final solution of a leader/follower protocol is called a Stackelberg solution and generally differs 
from a Nash solution. This approach is challenging because it requires the first designer to have 
some reasonable assumption about the other subsystem designs which is rare in large, complex 
systems. 

2.2 Optimization Perspective 
Design in a distributed environment can also be addressed from an optimization point of view. 
Mathematically, engineering design may be formalized as a global multi-objective optimization 
problem. In this formulation, the best design found by optimization will not necessarily be one 
particular design, but a set of designs in a Pareto Frontier. Unlike results found using decision 
theory, this set should depend only on the design objectives and design constraints, not the 
information shared or the rationality of the decision-makers. 
 
One common approach to accomplishing this is Multidisciplinary Design Optimizaion (MDO) 
[14-16]. MDO was first formulated by Sobieszczanski-Sobieski as Concurrent Subspace 
Optimization (CSSO) [17]. Other classes of MDO developed later include Collaborative 
Optimization (CO) [18], Bi-Level integrated system synthesis (BLISS) [19], Multiple-Discipline-
Feasible (MDF), Individual-Discipline-Feasible (IDF), All-at-once (AAO), and Multidisciplinary 
Optimization based on Independent Subspaces (MDOIS) [14, 20]. These can be broadly classified 
into hierchical and non-hierchical methods depending on the role of the system and subsystems.  
The main difference between MDO and the approach described in this paper is that this strategy 
does not require a human system designer as a facilitator. It is often the case that subsystems can 
interact with each other without the guidance of a system designer, especially in the case of two 
highly coupled systems. 
 
The main question explored in this paper is: can a decentralized design team share less 
information than required in a cooperative protocol and still obtain a Pareto optimal set of design 
results? If so, this will allow designers of complex systems to find optimal designs with 
affordable and feasible information sharing. 

3 MATHEMATICAL FORMULATION OF A DISTRIBUTED DESIGN 
PROBLEM 

This paper focuses on an adapted version of a well known distributed design problem first posed 
by Lewis [13].  This problem was chosen because the original formulation is well scoped and 
illustrative. The analysis of the design problem will be limited to two players who are optimizing 

two different objective functions  and , depending upon the variables . These objectives 
represent different design goals given by performance, utility, or preference variables. 

Furthermore, each player is constrained to be in some set . Because each player passes sets of 
constraints, this approach is also similar to A. C. Ward's Set Based Concurrent Engineering [21, 
22] in which sets of intervals for feasible designs are passed iteratively between design groups to 
converge on a ''good'' design. In this case, quadratic constraints are exchanged rather than feasible 
intervals. 
The problem is formally given by: 
 

  (2) 



 

 

 
The procedure necessary to solve the above optimization problem will be determined by 
modifying the algorithm that the following equation is based on the -constraint method [23, 24] 
and the method of equality constraints [25]. 

Designer 1 starts from a point in  in design space and minimizes his objective 

function  is constrained to the intersection of the sets  and  where 

. He will chose a minimization point  and 

pass it to the Designer 2 along with the . Designer 2 will 

then minimize the objective function  constrained to the intersection of the sets  

and . Designer 2 will chose a minimization point  and pass it to the Designer 2 

along with the . Designer 1 and 2 will then iterate until they reach a convergent design. 
 

3.1 Approximation of the Isosurface 
The goal of this paper is to formulate a design method that minimizes information flow between 
subsystems, but still converges to a set of Pareto Optimal designs. Thus, an important issue is the 
form of the information that is passed. In principle, passing a manifold3 requires less information 
sharing between subsystems than in a cooperative protocol, but it may still require significant 
time and effort to exchange a complete manifold atlas between subsystems due to design 
environment and/or complexity of the manifold. To simplify the algorithm, the manifold 

 is approximated quadratically as:  
 

  (3) 
 
Both the gradient and Hessian can be numerically computed and passed between subsystems 
much more efficiently than a complete manifold for most cases. Because the algorithm is 
iterative, the error due to approximation diminishes as a design converges. Therefore, the 
manifold constraint will be satisfied in a convergent design. 
 
Because a quadratic approximation is used for the manifold, this approach is similar to sequential 
quadratic constrained quadratic programming (SQCQP) [26] for each optimization step. In a 
mathematically rigorous way, SQCQP shows that quadratic approximation of the nonlinear 
constraint can still achieve global optimality as long as the constraints and objectives have 
enough regularity. Here, unlike SQCQP, the objective function does not need to be approximated 
as a quadratic function. Each designer considers the objective functions of other designers as 
quadratic constraints. 
 
One characteristic of Lewis and Mistree’s formulation is that the convergence and stability of the 
underlying algorithm is not guaranteed [8]. In this paper’s approach, convergence criteria are 
expressed more rigorously. A bounded, monotonic sequence (a contraction) always has a unique 
point of convergence, thus when designers pass a complete manifold to one another as an epsilon 
constraint, each subsystem’s set of objectives will always be contracted, guaranteeing the 
convergence in the full manifold case. If the information each designer passes is approximated by 

                                                           
3In this case, a manifold represents a contour of the desired objective value in design variable space. 



 

 

a constraining manifold, an approximation error will be introduced. It is clear that if the erroneous 
increase in the objective value caused by this approximation error is smaller compared to each 
objective’s improvement for every iteration, then the sequence will also be monotonically 
decreasing. Thus, the key to guaranteeing convergence lies in the accuracy of the approximation.  
This also implies that if oscillation occurs, the designer can reduce the “step” size by bounding 
the amount that a design variable can change.   

4  CASE EXAMPLES 

4.1  Case Study 1: Pressure Vessel 
This first example examines the distributed design of the pressured vessel from Lewis and et al. 
[12]. It assumes that one designer is responsible for deciding the weight of the vessel and another 
designer is responsible for selecting its volume. Each designer's design objective and constraints 
are given as follows 

  
 Design Problem for Volume 

 Maximize:  
 Design Variables:  and  

 Stress Constraints:  
 Geometric Constraints:  

  
 Size Constraints:  

  
 

  Design Problem for Weight 

 Minimize:  
 Design Variable: , ,  4 

 Stress Constraints:  
 Geometric Constraints:  

  
         Size Constraints: 5  
                                                           
4For a Game Theoretic Approach, T is the only design variable for Weight 



 

 

  
 

 
Figure  1: Pareto Frontier in Design Space for Pressure Vessel 

   

The results of the new algorithm applied to this example are shown in Figures 1 and 2. The circle-
shaped points on the figures represent the Nash solution using a Game Theoretic approach. There 
is only one Nash solution for this example, which means that the Nash solution is independent of 
the starting point as long as it starts from the attractor set. In this algorithm, if the Pareto Set 
contains more than one point, each starting point could end up being any point in the Pareto Set. 
In order to determine most of the points in the Pareto Set, the two extrema are located by 
optimizing each objective separately. Then the process starts from the affine combination points 
of these two extrema in design variable space. The result shows that these points converge along 
the Pareto Set ranging from one extrema to the other. Thus, the whole the Pareto Set can be 
estimated from this approach. Finally, this result shows that passing the quadratic approximation 
for each designer's objective function is sufficient to obtain Pareto Optimal design solutions. Note 
that the accuracy of a Pareto Frontier must be balanced with information transfer burden.  

 

                                                                                                                                                                             
5For a Game Theoretic Approach, a constraint for R and L won’t be needed. 



 

 

 
Figure  2: Pareto Frontier in Performance Space for Pressure Vessel 

4.2  Case Study 2: Aircraft Design 
In this second example, the method is applied to the aircraft example given in Lewis, et al.'s work 
[3] and Mistree, et al.'s NASA report [27]. As before, there are two designers. One designer 
optimizes the weight of the aircraft and the other optimizes its aerodynamics. The mathematical 
details of the design scenarios are not included here due to space considerations, and may be 
downloaded from [28]. The key equations are the same as described in Lewis' previous work, but 

one constant  and weighting for objectives are different from their choices. 
 

 
The results of new algorithm applied to this example are shown in Figure 3. The figure includes a 
set of Nash Equilibria, Pareto Optimal points, and convergence points from this new algorithm. In 
this example, there is set of Nash Equilibrium points rather than a single equilibrium point. Note 
that sections of the Nash solution are close to the Pareto Optimal solution, but other sections of it 
are not. The Pareto Optimal designs are obtained using Simulated Annealing. Using this new 
algorithm, the Pareto Optimal Set can be obtained. Thus, even for this complex example, if each 
designer can pass a quadratic approximation of his or her objective function, it is sufficient for a 
system to reach Pareto Optimality. 
 



 

 

 
Figure  3: Pareto Frontier in Performance Space for Aircraft Design 

 

5  CONCLUSIONS 
In a decentralized environment, there are few formal design techniques for obtaining rational 
solutions. Lewis and others have developed an effective, widely used Game Theoretic approach 
based on Decision Theory. When there is limited information sharing between subsystems, this 
approach is very reliable as it will find a Nash Equilibrium design using minimum information 
sharing. The main question explored in this paper is: if a subsystem is able to share more 
information than in a non-cooperative environment, but less than in a fully cooperative 
environment, is there an approach that can obtain a Pareto Optimal set in a decentralized 
environment? In this paper, designers were permitted to share a quadratic approximation to the 
each subsystem's objective function at each iteration. In two examples, one for a Pressure Vessel 
design and the other for Airplane Design, Pareto sets were obtained by passing along quadratic 
approximations. Thus, this paper demonstrates two cases in which the Pareto Optimal Set of 
design points can be found in decentralized design environment by sharing a quadratic 
approximation to the objective functions as long as each subsystem's objective function is well 
behaved.  

6  FUTURE WORK 
As engineering systems become increasingly complex, the design process will likely become 
more decentralized as more varied and specialized expertise will be needed to develop these 
subsystems. Thus, it is important to explore and understand different design techniques that may 
be applied in such environments. This paper demonstrates a method for obtaining Pareto Sets in a 
distributed design scenario with limited information sharing when an objective function is smooth 
enough. Some possible extensions of this work include:   
•  Multiple subsystems.The cases presented in this paper assume only two designers must 

interact. Increasing the number of subsystems can lead to a drastic increase in the amount of 



 

 

information sharing required. How does this technique scale with an increasing number of 
subsystems?  

• Sequences of designs. Future work should consider the whole sequence of designs rather than 
only the design from the previous iteration. In real world design, teams usually consider all 
previous designs they explored.  

• Subsystem specific constraints. For the sake of simplicity, examples shown in this paper have 
the same constraints for all subsystems. Future work will examine more realistic ways to 
represent constraints as they are passed between subsystems.  
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