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Abstract

The design of large-scale engineering systems requires design teams to bal-
ance a complex set of considerations. Formal approaches for optimizing complex
system design assume that designers behave in a rational, consistent manner. How-
ever, observation of design practice suggests that there are limits to the rationality
of designer behavior. This paper explores the gap between complex system de-
signs generated via formal design process and those generated by teams of human
designers. Results show that human design teams employed a range of strate-
gies but arrived at suboptimal designs. Analysis of their design histories suggest
three possible causes for the human design teams’ performance: poorly executed
global searches rather than well executed local searches, a focus on optimizing
single design parameters, and sequential implementations rather than concurrent
optimization strategies.

1 INTRODUCTION
The design of large-scale, complex engineering systems demand a diverse set of skills
and expertise. To service this need, interdisciplinary teams are often employed, usually
operating in a geographically distributed fashion. One of the continuing challenges of
such teams is the balancing of conflicting considerations. Formal frameworks for com-
plex system design such as Game Theory and Multidisciplinary Design Optimization
(MDO) offer compelling strategies for arriving at design solutions in these situations.
Such approaches reflect aspects of how design teams behave in practice and, in fact,
hybrid approaches may be particularly effective [1]. This paper examines Game The-
ory more closely under the belief that improvements to it will benefit system design
overall. Game Theory hinges on the assumption that subsystem designers consistently
make rational choices during the design process in order to arrive at Nash Equilib-
rium [2]. In practice, teams that design complex systems are populated by humans
who can be fallible, err in judgment, or make choices that are inconsistent with each
other [3, 4, 5].

In practice, good system design is difficult to accomplish even by experienced prac-
titioners under favorable circumstances. The broader goal of this work is a) to better
understand how design teams behave during complex system design in order to cre-
ate more effective, usable formal tools to support design, and b) enhance our basic
understanding of how human design teams tackle complex engineering problems.

This paper presents a preliminary study assessing the role of human decision-
making behavior in system design. Three human design teams were asked to design
a satellite with three subsystems and their resulting designs, process and performance
was analyzed. This study seeks to explore the following research questions:

1. In what ways will human decision-making differ from computer simulations?

2. How much will human-derived solutions deviate from optimal?

3. If they do deviate from optimal, what is the cause?
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2 RELATED WORK

2.1 Structures for system-level design
The design of complex engineered systems is conducted by interdependent, multidis-
ciplinary subsystems. A key challenge in system design is how to distribute limited
resources among a set of subsystems. This situation is further complicated by the
increasing use of distributed teams to design these systems [6] which presents commu-
nication and team cohesion problems for collaboration [7].

Large engineering systems are traditionally broken down into functional hierar-
chies. For example, an aircraft design can be broken down into structures and propul-
sion subsystems, with overlapping but not identical design parameters [8]. Further-
more, each subsystem can have thousands of input variables. In the classical ap-
proach to problems of this type, each subsystem is designed independently by dis-
cipline with system-level iterations occurring periodically throughout the process [9].
New systems-level approaches have been developed to increase the speed and effec-
tiveness of the design process [10]. Industry has been quick to adopt systems-level
approaches to interdisciplinary design [9, 10, 11, 12].

2.2 Design process models for complex systems
Metamodels are one tool used to quickly explore design spaces and converge to an
optimal set of solutions. The metamodels either evaluate or approximate subsystem
response to design parameter inputs. By generating system-level design outputs, the
models can systematically search the design space and help guide designers towards
an optimal design outcome. Limitations stem from the ability of the metamodel to ac-
curately and quickly approximate the subsystem response to design inputs. In writing
a comprehensive overview of research in the area of design and analysis of computer
experiments, Simpson, et al. [13] present the wide range of problems that can be ad-
dressed through metamodels and associated algorithms. Sobieszczanski- Sobieski and
Haftka’s [14] survey demonstrates the range of applications in the aerospace industry.

Game Theory is an approach for modeling the multidisciplinary design process
and was first proposed by Vincent [15] and further developed by Lewis and others [16,
17]. These traditional game theoretic approaches have further been combined with
Decision-Based Design [18] and adopted in a broad range of design research [19, 20,
21, 22] to become a prominent framework for the study of multidisciplinary design
problems [23]. Game Theoretic design attempts to identify a rational design given
limits to the amount and form of information being passed between designers. The
resulting designs may differ depending on the type and quantity of information ex-
changed. Thus, the resulting designs will be rational given limited information, but
will not necessarily result in an optimal design.

2.3 Team structure and metamodels
Key components common to all of the metamodels are 1) the team structure or roles
(i.e. the “direction” and ”order” in which information is passed), 2) the form of the in-
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formation passed between subsystems (such as point design and local sensitivities) and
3) how each subsystem makes decisions and trade-offs. We explore the last of these
elements in this paper. Simulations have allowed researchers to observe the effect of
changes in team structure, information passed and individual decision-making on per-
formance metrics such as the speed and accuracy of the optimization. For example, Yi,
et al. [24] compare seven MDO approaches with different hierarchical team structures.
MDO models rely on the existence of a system facilitator who will make optimal trade-
offs that will benefit the overall system. Honda et al. [1] also compared different team
structures, comparing Game Theoretic and MDO approaches. Lewis and Mistree pre-
sented a Game Theoretic approach where each agent is involved in the optimizing task.
In their model, agents made decisions using a compromise decision support problem
[8]. In doing this meta-analysis, researchers have suggested best practices for design
processes. Collopy outlines a strategy for reaching an optimal design based on passing
of gradient information [25].

2.3.1 Bounded rationality decision-making in teams

Metamodels such as those presented above often assume designers are homogeneous
agents who optimize their objective functions effectively. This assumption uses a def-
inition of objective rationality, where the decision-maker will make the ”optimal” or
correct choice in every decision [26]. Research in the area of bounded rationality
explores the consequences of limited resources found in real-world situations [27].
Models employing bounded rationality assume that since designers may have limited
information and problem-solving capabilities they cannot evaluate and therefore can-
not optimize their objective functions perfectly [3]. Satisficing and fast and frugal
heuristics such as take the best or take the last algorithms are among the examples of
bounded rationality models [28]. Computer experiments such as Gurnani and Lewis’
study of collaborative decentralized design, can use randomness to simulate this uncer-
tainty [22]. In these situations, bounded rationality is distinct from irrationality, which
is defined as making a clearly inferior or sub-optimal choice [26].

2.3.2 Communication in teams

There is a rich body of literature on factors that affect team performance from organi-
zational behavior, psychology and sociology. Because this type of design is commonly
done in teams, the most relevant research in this area tests factors which affect team
success across an array of interdisciplinary problems. Supporting similar research in
metamodels, communication is a key factor in many of these studies. Nardi and Whit-
taker [29] emphasize the need for a shared team understanding for social communi-
cation. They investigated the importance of face-to-face communication in distributed
design situations. Similarly, networking in the physical space of collocated teams has
been shown to be an important determinant for design quality [30]. Team commu-
nication is also addressed in the area of team cognition. Cooke and Gorman [31]
demonstrate several measures using communications as a method for understanding
the team decision-making process and its ability to accomplish high-level processing
of information and reach an optimal decision.
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2.4 Research Gap
This case study seeks to integrate the lessons from both the social science research
and formal models for complex system design. Metamodels define teams using three
components: communication structure, type of information passed and the subsystem
decision-making process. By testing different combinations of these three parameters,
metamodels offer insight into the design process for a given problem. If a particular
combination of team structure, information passing method and decision-making pro-
cess work well together, then that design process can be considered ”optimal.” This
study implements the communication structure and information passing methods used
in Game Theoretic approaches with human subjects representing each subsystem. In
using human subjects to make decisions, the study builds upon complex system design
by identifying factors which affect the sub-system decision-making process and their
relative importance to the overall system optimization process. The factors identified in
this case study could be used in future studies refining metamodels. In this way, the au-
thors hope to better understand factors affecting implementation of strategies suggested
by computer experiments.

3 METHODS
In this study, three three-person teams performed a design task using a Game Theoretic
approach. The resulting designs were compared with a baseline Pareto optimal design.

3.1 Teams
The population used in this case study was composed of graduate students in mechan-
ical and aeronautical engineering. This population was chosen because their skill sets
closely matched those required for satellite design. Each team included one member
who had completed a semester-length graduate course on MDO, but as a whole, the
teams should be considered “novices” with respect to satellite design. Team members
were randomly assigned to a role in charge of a subsystem. All students were offered a
$10 gift certificate to Amazon.com or a local restaurant as an incentive for participating
in the study. A flip video camera was awarded to each member of the team with the
best performance in the study.

3.2 Procedure
Each team was given a short (10 minute) introduction to the design task. The pre-
sentation consisted of an overview of the task, communication tools to be used in the
experiment, a walk-through of one iteration of the design cycle, a demonstration of the
local sensitivity vector and an explanation of the performance objectives of both the
satellite and of the team. The subjects then provided informed consent. A custom-built
spreadsheet and other communication tools were provided to support and capture the
team design activity, and are described in further detail in Section 3.4. The team was
then moved to computer workstations in separate rooms and given printouts of the pre-
sentation as reference. Teams were separated because it: 1) more closely mimicked a

4



realistic distributed team scenario and 2) allowed the electronic capture of all commu-
nication between the subsystems [32]. The subjects were given several minutes to fa-
miliarize themselves with the computational and communication software and ask any
questions regarding the experimental setup. The team had up to one hour to complete
the design task. A researcher was available throughout the sessions to answer questions
and assist with technical difficulties. At the end of the hour, the team selected their best
iteration and the message logs and design histories were archived.

3.3 Design Task
The Firesat satellite example from Wertz and Larson’s Space Mission Analysis and
Design was chosen as the design task [34] because similar problems have been studied
in other complex systems optimization research [8, 35, 36]. The design problem was
broken down into three subsystems: Payload & Orbital, Power and Propulsion. Fig-
ure 1 shows the linked system of input and output variables. The highly coupled nature
of the system is manifested by the effect of input variables such as Mass of Payload
(Mpl),Total Amount of Change in Velocities (DeltaV ) and Payload Power (Ppl) on
multiple output variables. An adapted formulation from Honda et al was used because
its relatively low number of design variables made it tractable within the short time
period of the controlled laboratory experiment [1]. The aim of this optimization is
to minimize both Ground Resolution (GR) and Total System Mass (Mtot) by varying
Mpl, ∆V , and Ppl. The quality of a given solution was measured by its closeness to
the Pareto Optimal Frontier and its compatibility error. To convert the optimization
from a sequential formulation to a concurrent formulation, “slack” variables similar
to those used in Linear Programming were introduced. These “slack” variables rep-
resent the expected output from subsystems that are required by other subsystems. In
this case, the “slack” variables are expected height (hexp) and expected mass of power
subsystems(Mpow,exp). Ideally the expected input values (hexp and Mpow,exp) must
match the calculated values from other subsystems(hcalc and Mpow,calc) at the final
design stages.

The compatibility error at a given iteration was defined as the percentage error
between either hexp and hcalc or Mpow,exp and Mpow,calc, whichever is higher. Com-
patibility error was calculated using the following equation:

%err = max

„
||hexp − hcalc||

(hexp + hcalc)/2
,
||Mpow,exp − Mpow,calc||

(Mpow,exp + Mpow,calc)/2

«
∗ 100% (1)

Ideally the ”slack” variables would be equal at the final design state and the com-
patibility error would be zero. However an allowable discrepancy of 10% was set for
the final iteration to avoid forcing teams to “polish” their result during the short time
frame of the experiment.

3.4 Communication Tools
Figure 2 shows the team structure and communication links between team members.
In the Game Theoretic approach, the subsystems can communicate freely directly with
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Figure 1: Input and Output Variables for Satellite Design Task

each other and try to improve system design rationally by fully utilizing shared infor-
mation.

An Excel spreadsheet inspired by NASA’s Jet Propulsion Laboratory ICEMaker
tool [37] was customized to facilitate the exploration of the design space. The spread-
sheet included an associated Visual Basic macro for each subsystem. This spreadsheet
allowed the subsystem designer to calculate the output parameters for any given input
vector.

The macro also calculated the local sensitivity vectors (gradient) to provide a de-
sign indicator to help the designer optimize the objective. A fundamental challenge
of system design is a lack of visibility on how one design decision affects the overall
system. The gradient gives the designer information on the local effect of the input
variables on each output variable. The dot product of the change in the input variables
and the gradient vector should be negative in order to minimize the output variable.
In this way, the gradient indicates both the desired magnitude and direction of change
in the input parameters for minimizing a given output. However, because there are
multiple objective outputs, the designer must balance the information provided by the
gradient for each objective and decide on a final direction and magnitude.

Table 1 contains gradient information as it might appear to a team during one iter-
ation. In this case, the designer has to compromise on a direction (whether to increase
or decrease) with respect to Mpl, Ppl, and ∆V . Note that a good choice might be to
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Table 1: Sample gradient information

∂GR
∂Mpl

∂GR
∂Ppl

∂GR
∂∆V

∂Mtot

∂Mpl

∂Mtot

∂Ppl

∂Mtot

∂∆V

-0.15 -0.12 -0.04 3.47 0.08 0.04

keep ∆V the same since the directions are opposite and the magnitudes are the same.
The magnitude indicates that decreasing Mpl has a large effect on Mtot when com-
pared to Ppl and the largest effect overall. Therefore it make sense to decrease Mpl.
However, the direction of the gradient with respect to GR shows that decreasing Mpl

increases GR. To compensate for this increase, Ppl must be increased by factor of at
least 1.25 times more than the decrease in Mpl to reduce GR simultaneously. This can
be seen by comparing the relative magnitudes of ∂GR

∂Mpl
and ∂GR

∂Ppl
. One solution is for

the designer to decrease Mpl and increase Ppl with a ratio of 1 : 1.5 respectively. Thus,
the gradient provides a way for the designer to understand the ideal direction for each
input parameter in order to minimize both Mtot and GR.

A shared Google documents spreadsheet was also created to allow for communica-
tion of these vectors between team members. The Google document also combined the
gradient information from each subsystem into an overall sensitivity vector for output
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parameters GR and Mtot with respect to system input variables. The Google document
was accessible to multiple team members in near-real-time. The Skype messaging sys-
tem was also used to allow for real-time communication between team members. The
team structure was reflected in both the Google document and Skype programs with
each subsystem able to see and edit all of the group documents. To accommodate the
different spreadsheets and messaging windows used in this study, each workstation was
equipped with two monitors.

4 RESULTS
The following results and observations were drawn from the archived design histories
and message logs. The three teams tested were numbered and will be consistently
referred to as Teams 1 through 3.

4.1 Optimization Results
The history of design choices of the three teams were analyzed to ascertain the optimal-
ity of the final solutions and compared to a baseline of the Pareto Frontier. The Pareto
Frontier was generated via simulated annealing and provides a set of global optima.
All teams opted to use the full hour to generate designs. At the end of the hour, they
were asked to select the design they felt was their ”best” design. These self-selected
”best” designs are plotted in Figure 3 along with the Pareto Frontier. Beside each ”best”
design is a percentage value that indicates the error as calculated by the compatibility
constraint (Eq. 1). Overall, none of the design teams generated a feasible solution that
was close to the Pareto Frontier. Only Team 1 was able to keep the compatibility con-
straint to within 10% (Figure 3). Team 2 appears to achieve Pareto Optimality, but the
compatibility error is unacceptable (125%) causing it to be an infeasible solution.

Figure 4 shows the history of the designs that each team explored over the hour.
Teams 1 and 2 generated 8 designs each, and Team 3 generated 7 designs in total. None
of teams managed to improve both GR and Mtot simultaneously in any iteration.

Figure 5 shows the high variability of compatibility error among the teams at each
design iteration. Team 1 hand consistently low compatibility error. Team 2’s initial
design had low compatibility error but this increased as they generated new designs.
Compatibility dropped back down after they returned to their initial designs. Finally,
Team 3 had high compatibility error throughout the hour.

4.2 Types of decision-making strategies
An analysis of the design histories and instant messenger logs showed that all three
groups arrived at sub-optimal solutions when compared to computer simulations. The
sub-optimal choices can be classified into three types of decision-making errors: 1)
performing a global search poorly rather than focusing on executing a local search effi-
ciently, 2) optimizing a single input parameter at a time rather than exploiting coupling
information between input parameters represented by the gradient and 3) optimizing
the subsystems sequentially instead of concurrently. Table 2 shows the number of
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Figure 3: Comparison of 3 ”best” design results selected by the teams. The Pareto
frontier serves as a baseline. The percentage next to each point is the compatibility
error of that solution.

Skype messages that each team sent in each category. Since the total number of mes-
sages was different for all groups and this tally is only for messages concerning each
type of decision, absolute numbers are not significant. Rather, the prevalence of the
messages indicates what type of error each group was committing.

In analyzing each team individually, the errors can be broadly labeled as optimiz-
ing from a local instead of a system perspective. In essence, the teams preferred a
trial-and-error strategy instead of other common optimization techniques used in the
computer simulations such as sequential linear programming [38] and sequential con-
jugate gradient-restoration method [39]. For example, Team 1 optimized a single pa-
rameter at a time. Since the subsystems are highly coupled, this method converges to
an artificial local optima. In other words, fixing design parameters will provide addi-

Table 2: Errors mentioned in real-time messaging system
Problem Type Team 1 Team 2 Team 3

Non-local search 2 16 0
Optimizing single input 22 9 12
Optimizing sequentially 3 4 1
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Figure 4: Design History for each team. Each path shows the design points explored
by individual teams.

tional constraints that create local optima that do not exist without these constraints.
Thus, optimizing input values independently tends to converge to suboptimal solutions
in coupled systems. Team 1 also performed subsystem iterations sequentially instead
of concurrently. This choice increased the iteration time, slowing the down the overall
process. Given the short time frame of the experiment, concurrent iterations by each
subsystem would have allowed for more iterations and possibly a more optimal solu-
tion. This issue is less critical for this particular case study because computational time
for the Payload & Orbital subsystem is substantially slower than the other subsystems.
Thus, average time per iteration for a sequential approach is about 1.5 times (rather than
3 times) slower than a concurrent approach. However, the sequential iterations avoided
compatibility issues as the outputs hcalc and Mpowcalc were used as the inputs for the
next subsystem. This choice of a sequential strategy can be thought of as an example
of bounded rationality. Although the sequential strategy is slower than the concurrent
approach and therefore objectively inferior, it could be considered the ”best” decision
for this team given a limited understanding of how to enforce compatibility between
the subsystems. Overall, Team 1 performed the best of the 3 teams in terms of opti-
mality and compatibility error. It must be noted that they chose as their ”best” solution
an iteration which favored minimizing GR over their final iteration which was actually
closer to Pareto Optimality. This may be due to the team’s limited information regard-
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Figure 5: Compatibility Error between Subsystems as Function of Design Iteration

ing the location of the Pareto Optimal Frontier. Their decision may indicate that the
group was not using gradient information to evaluate how close the solutions were to
the Pareto Frontier.

Team 2’s message logs show that they also preferred a trial and error strategy. The
team searched the design space by doubling or halving input parameters and evaluating
the effect on the objective variables. It is possible that this team aimed to look for global
minima, rather than local minima. However, this strategy also led the team to arrive at
a suboptimal solution. Given a highly-coupled complex system, small local searches
are important in order to take advantage of information gained from the current design
state. The nonlinear response to input vectors means that a general “downhill” direction
can not be established from global searches. The large changes in input parameters also
led the team to several infeasible solutions during their exploration of the design space.
This strategy also caused large compatibility errors. At two points in their search, the
team was close to a Pareto optimal solution, though with large discrepancies between
hexp and hcalc. At these two times, the team should have used the gradient information
to correct the compatibility error. They instead moved the input parameters again and
arrived at a final solution very close to the original starting point.

Like Team 1, Team 3 also optimized input variables independently on some itera-
tions, mentioning this a total of 12 times in their message logs. Their searches were
more local in nature and they did not explore the breadth of the design space well.
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Although the group did reference local sensitivity vectors when discussing design de-
cisions, they did not record the gradient information in their design history. They also
had a largest compatibility error of over 100%. The group did not mention this large
discrepancy or compatibility error in their message logs, even though they had been
instructed to keep the compatibility error of at least the final solution to less than 10%.
It is not possible from the given message logs and design histories to state whether the
team simply focused on other objectives and ignored the compatibility error or did not
correctly compute the compatibility error.

Notably, none of the three teams recorded the gradient information in their design
history for several of the iterations. In the message logs, Teams 1 and 3 mentioned the
gradient 11 and 8 times respectively, Team 2 only mentioned local sensitivities once.
This coupled with the teams’ failure to minimize both objective variables simultane-
ously in one iteration indicates that teams were using the gradient information sparingly
in their decisions. Since only the systems-level design histories were archived, it can-
not be determined if individual subsystems were using the gradient. However, given
the coupled nature of the problem, a systems-level use of the gradient information is
more critical.

5 DISCUSSION
In this preliminary study, the three main components of metamodels were implemented
in the context of a human design team. The study used a Game Theoretic team struc-
ture with each subsystem being represented by one designer. Gradient information
in the form of a local sensitivity vector was available and freely passed between the
sub-systems. The individual subsystem decision process was controlled by the human
designers.

It was expected that teams would look to the local sensitivities vector for guidance
in generating their designs. In fact, teams used the gradient information very little.
Because of this, the influence of the type of decision-making strategy became much
more important. However, these results show that teams had a difficult time choosing
an effective strategy.

Two major components of the decision-making process are the choice of optimiza-
tion strategy and the convergence criteria. Common optimization techniques utilized
by computer simulations are gradient-based strategies such as conjugate gradient tech-
niques and constrained linear programming. These techniques are also widely used by
in industry due to their step-by-step procedure and ease of implementation. Further-
more, the objective variables can be optimized either simultaneously or sequentially
as in the case of constrained linear programming. These techniques contrast with the
trial-and-error strategy chosen by the designers in this study. Convergence criteria are
not applicable to the results in this study as all of the groups used the full amount of
time without converging to a Pareto Optimal solution.

In this study, a lack of systems perspective in the decision-making process dom-
inated team performance. The results in this case study may be due to a variety of
factors including novice strategy choices, limited human problem-solving capability or
bounded rationality, irrationality and team dynamics. The novice strategy choice may
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be due to a lack of training or knowledge about system level optimization. This would
considered bounded rationality as the students could have been making rational choices
given their limited human resources. However, each team did have a member who had
taken a semester-length graduate course on MDO and so was at least familiar with the
basic strategies and principles of formal design optimization. Irrationality, such as the
decision by Team 3 which resulted in an increase in both objective variables, may have
also played a role in the sub-optimal results. It is difficult in this study to differentiate
this from bounded rationality. The results could also be explained by a combination of
both irrationality and bounded rationality.

Based on the Skype instant messages exchanged within the teams, team dynamics
also played a role in the strategy choice. In accordance with the rational model of
group decision-making [40], all of the groups discussed what they should do before
they began. However, suboptimal strategic choices were made during this initial stages
for all three groups. For example, Team 2 decided to double and halve input parameters
to explore the design space in a basic trail-and-error strategy. In the particular case of
Team 2, one member suggested the doubling strategy and the other team members may
have accepted it because of pluralistic ignorance. This is likely example of Abilene
Paradox [41], in which one team member’s suggestion is not refuted because the others
perceive that the particular team member has expertise and/or information that they do
not possess. The distributed nature of the teams in this study meant individual members
did not have information on the relative expertise of other members.

Optimization skills and systems-level perspectives may be more apparent in design
teams with more experience in complex system design. An expert design team may also
be more likely to use gradient information. This case study suggests that metamodels
could incorporate more information about the human aspects of the decision-making
process. In this study, the skill level of the designers with respect to optimization and
their inability to think from a systems-level perspective dominated the overall opti-
mization and led to sub-optimal solutions. A metamodel of these groups would have to
include bounded rationality with a high level of uncertainty. Also, the teams preferred
to not use the gradient information. Since gradient-based optimization approaches are
often more efficient, this suggests the need for either alternative methods of presenting
the gradient information for effective use or a design protocol which is robust to novice
mistakes.

Limitations to this preliminary study include the size and makeup of the popula-
tion, usability of the software and the distributed nature of the team. First, the small
sample size and student status of the teams means conclusions drawn from this study
are not generalizable to all designer populations, though it serves as a useful starting
point for future studies. Second, Team trust and cohesion has been shown to be im-
portant to team success [7]. Subjects were assigned to teams randomly, but teams who
have worked together before or have a stake in working together in the future may have
performed better in this study. Third, the communication tool was unfamiliar to the sub-
jects and the Excel spreadsheet computation time for each subsystem varied. Slower
than real-time communication certainly influenced the number of iterations possible
and may have also confused the designers. Fourth, the choice of team structure may
have also affected the results. In MDO structures, teams have a dedicated systems
facilitator charged with thinking from a systems perspective. In Game Theoretic ap-
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proaches, however, there is not centralized facilitator, and decision strategies rely on
the expertise of individual subsystem designers. Finally, although the team members
were separated to mimic the work environments of real-life distributed teams, a body
of research suggests that co-located teams often perform better than virtual teams [10].

6 CONCLUSIONS AND FUTUREWORK
Results showed that a number of possible human factors, such as bounded rationality,
irrationality and simple errors, dictated the outcome of the decision making process.
Each designer preferred utilizing a trial-and- error strategy or drawing on design history
rather than using more accurate gradient information that indicated how to best change
a design parameter. When individual designers attempted to optimize their subsystems
via trial and error, each assumed that his or her subsystem functions were separable
with respect to input variables and so optimized each input independently. In reality, the
subsystem functions were highly coupled, and this strategy led to suboptimal solutions.
It was also found that designers focused on their individual subsystems rather than on
the overall system perspective. This case study demonstrates the necessity of a design
protocol that is robust to these types of mistakes.

1. In what ways will human decision-making differ from computer simulations?

Human designers differed from computer simulations in their choice of design
strategy and in the rationality of their behavior. It was expected that the designers
would utilize the gradient information provided to guide their choices, but they
did not. Without the aid of gradient information, designers relied on various
decision-making strategies to generate designs.

2. How much will human-derived solutions deviate from optimal?

The solutions that resulted from the above strategies deviated substantially from
optimal with several teams searching infeasible design spaces.

3. If they do deviate from optimal, what is the cause?

This study identified several possible causes such as a lack of system-level op-
timization knowledge or training, irrational or bounded rational behavior by the
designers and team dynamics.

Future work should involve studying teams with more experience in designing en-
gineering systems to assess their behavior in this type of system design scenario. In
particular, it would be useful to understand what strategies such designers employ. Fu-
ture work should also include testing team structures such as MDO on human decision-
making. The work presented in this paper also has ramifications for how we train and
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educate engineering students. Most engineering systems, whether simple or complex,
require some understanding of how decisions for one subsystem affect those for an-
other subsystem. The results of this study suggest that students could benefit from
more training in system level thinking.
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