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ABSTRACT

Consumer preferences can serve as an effective basis for de-
termining key product attributes necessary for market success,
allowing firms to optimally allocate time and resources toward
the development of these critical attributes. However, identifica-
tion of consumer preferences can be challenging, particularly for
technology-push products that are still early on in the technol-
ogy diffusion S-curve, which need an additional push to appeal
to the early majority. This paper presents a method for revealing
preferences from actual market data and technical specifications.
The approach is explored using three machine learning methods:
Artificial Neural Networks, Random Forest decision trees, and
Gradient Boosted regression applied on the residential photo-
voltaic panel industry in California, USA. Residential solar pho-
tovoltaic installation data over a period of 5 years from 2007-
2011 obtained from the California Solar Initiative is analyzed,
and 3 critical attributes are extracted from a pool of 34 techni-
cal attributes obtained from panel specification sheets. The work
shows that machine learning methods, when used carefully, can
be an inexpensive and effective method of revealing consumer
preferences and guiding design priorities.

NOMENCLATURE
k Attribute number from 1-34
MSE Mean Squared Error

* Address all correspondence to this author.

Tomonori Honda
Mechanical Engineering
Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Email: tomonori@mit.edu

Maria C. Yang*
Mechanical Engineering and
Engineering Systems
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Email: mcyang@mit.edu

PTC PV-USA Test Conditions: Air temperature 20°C, 10m
above ground level, 1m/s wind speed, AM1.5 solar spec-
trum, 1000W/m? irradiance.

R Correlation coefficient

R? Coefficient of determination

STC Standard Test Conditions: Cell temperature 25°C, AM1.5
solar spectrum, 1000W/m? irradiance.

oys Standard deviation of market share

INTRODUCTION

Within a firm there is a constant need to rise above the com-
petition and gain market success. In order to achieve this goal,
firms are constantly trying to find ways to appeal to the customer
by determining their changing needs, wants, values and behavior
and designing for them [1]. However, in the fast paced world of
product development, there is a limit on the time and resources
that can be allocated to product development. Hence, the iden-
tification of key product attributes that contribute to a product’s
market success is crucial, especially in the early stages of prod-
uct development where the conceptual design phase can account
for a large percentage of the overall manufacturing cost [2]. It is
in the interest of both designers and stakeholders to know how to
optimally allocate resources in order to increase the likelihood of
market success.

This is especially so for technology-push products that are
still within the early part of the technology diffusion S-curve,
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where there is slow uptake of the technology and product fea-
tures have not fully matured [3]. Since the technology is still
considered new, only early adopters have warmed to the product,
and there is potential for much feature and market expansion.
Knowing what the customer wants at this stage is necessary for
the product to bridge the chasm between the early adopters and
the early majority, allowing the product to flourish in the mar-
ket [4].

This paper proposes an approach to extracting consumer
preferences by determining critical attributes using the estab-
lished revealed preference framework [5—-8], and drawing on ad-
vances in computational intelligence and machine learning to
support the analysis. Revealed preference methods have been
used widely in economics research, but little has been done in
the area of design applications. The main research questions are:

1. Canrevealed consumer preferences be obtained from market
data and engineering specifications using machine learning
methods?

2. Is there agreement among the machine learning methods that
suggest the validity of the data and methods?

We present a case study of residential solar photovoltaic pan-
els in the California market to illustrate our methodology. Engi-
neering specification data obtained from solar panel data sheets
combined with real market data available freely on the Califor-
nia Solar Initiative database is analyzed using 3 machine learn-
ing methods to quickly assess critical technical attributes from
the dataset.

BACKGROUND

Much work has been done within the academic commu-
nity to determine consumer preferences using choice modeling.
These can be broken down into 2 main categories: stated pref-
erence methods which measure consumers’ explicit preferences
over hypothetical alternatives, and revealed preference methods
which extract preferences from actual market data [9].

Over the years, stated preference methods have gained
ground in the marketing community due to their flexibility and
ease of implementation. Popular survey based stated preference
methods include self-explicated methods like Kelly’s repertory
grid [10, 11], Self-Explicated Method (SEM) [12] and the Single
Unit Marketing Model [13] among others, requesting consumers
to rank or rate various product attributes. Another group of stated
preference methods where relative preferences are obtained in-
clude MaxDiff [14], and conjoint analysis [15, 16], which ask
consumers to choose between different products which have
varying attributes. Multiple hybrid models that incorporate
both self-explicated and relative preferences also exist. Non-
survey based methods include focus groups and field observa-
tions, which require considerable time, expertise and resources
to carry out, and may be hard to quantify.

The potential problem with these stated preference methods
is that consumers often exhibit preference inconsistencies, con-
structing their preferences along the way, or changing their pref-
erences due to some shift in the phrasing of the questions [17].
Research on the accuracy of consumers’ predictions show a dis-
connect between preferences obtained during preference elicita-
tion and actual decision making [18]. Stated preference meth-
ods have also come under considerable criticism because of the
belief that consumers react differently under hypothetical exper-
iments compared to when they are faced with the real market
situation [19, 20].

In comparison, revealed preference methods could be a bet-
ter reflection of purchase behavior than stated preference meth-
ods as they take into account external factors like third party in-
fluences that might affect the consumer’s decision. This has been
expressed in the economics and decision making literature to be
especially important if the consumer’s choice is based heavily on
the recommendation of a more experienced expert, as a result of
complexity inherent in the product, or limited personal experi-
ence [21]. However, revealed preference methods have been dif-
ficult to implement due to several factors. These include the high
cost of collecting large sets of relevant data, limited technolog-
ical knowledge, problems with multicollinearity, and the inabil-
ity to test new variables [22]. As technology has improved and
computer processing has become increasingly fast, efficient and
cost effective, it has become feasible to reevaluate these meth-
ods. Furthermore, more companies are keeping digital records
of product sales, making data collection less of a burden than be-
fore. Machine learning methods that are capable of dealing with
multicollinearity involving regression and classification can now
be applied on large sets of marketing data, overcoming the is-
sue with multicollinearity that several academics have identified,
and allowing for the identification of key attributes in an efficient
way. Finally, the inability to test new variables still poses a sig-
nificant challenge, as the new variables may be outside the data
range, and involve extrapolation outside the range used to cre-
ate the model. This can be dealt with by a careful use of stated
preference methods in combination with the revealed preference
framework, which the authors of this paper are working toward.

Similar work that has been done in the joint field of product
design and machine learning include: Agard and Kunsiak’s work
on data mining for the design of product families [23], where
algorithms were used for customer segregation; Ferguson et al’s
work on creating a decision support system for providing infor-
mation from later to earlier stages in the design process [24].
A good overview of other applications of computational intelli-
gence in product design engineering can be found in Kusiak’s
2007 review [25].

This paper sets itself apart in the design community by fo-
cusing on revealed preferences instead of stated preferences as
a means to extract consumer purchasing preferences. Compared
to existing data mining methods, we take data from widely avail-
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able sources instead of from within the company, combining real
market data and engineering specifications from data sheets in
order to determine a set of critical attributes that can be priori-
tized to boost a firm’s competitiveness. Furthermore, the focus is
on finding key attributes that impact the design decision instead
of predicting market share. Lastly, the result of machine learning
algorithms are compared to validate their effectiveness.

CASE STUDY: RESIDENTIAL SOLAR PHOTOVOLTAIC
(PV) SYSTEMS

In recent years, the US government has been encouraging
the development of renewable power, providing the solar indus-
try with increased funding for the development of solar panels
for residential, commercial and utility deployments. Residential
installations in particular have gained attention due to their use
of otherwise ”dead” space, utilizing area on rooftops or facades
for the panels. Generous subsidies and rebates have been put into
place in order to encourage homeowners to adopt the technology.
Despite this, the industry is still considered by many to be in the
early stages of the technology diffusion S-curve, with few home-
owners choosing to purchase PV systems for their properties.

This paper proposes the view of considering solar panels as
a product rather than a technology. Products differ from technol-
ogy in that they may be described by both qualitative and quan-
titative characteristics, and are designed to appeal to consumers.
Much of the current academic engineering focus on solar panels
has rightly been on the science and technology behind the appli-
cation, improving the performance of the conversion of sunlight
to electricity and increasing the reliability and durability of the
system. This is critical for spurring increases in the demand for
large scale facilities installations. At the same time, it is im-
portant to convince consumers to purchase a PV system at the
residential level where decision makers are spread out and indi-
vidual households have different requirements. There is limited
academic literature on understanding consumer needs in order to
increase adoption. Existing research is centered on identifying
characteristics of adopters [26], discovering their motives for ac-
quiring a PV system [27], determining barriers to adoption [28],
and understanding the link between attractive factors of PV sys-
tems [29]. However, these studies are limited to stated preference
studies, and do not include real market data or technical specifi-
cations.

At this moment, the industry is also facing an oversupply
condition, a result of an increase in global manufacturing with
little corresponding increase in the demand on the side of the
consumer. Especially now that the survival of companies are at
stake, funding is tight and profits are low, there is a need to fo-
cus available resources on high priority features that will lead to
more consumer purchasing to increase the firm’s market share
and maintain profits. The state of the industry thus lends itself to
our study.

For this paper, we make use of market share as a reflection
of market success, even though the definition of market success
varies widely in literature [30]. Market share was chosen as it
is publicly available, unlike customer satisfaction levels, revenue
or profits which are usually kept within the company and are dif-
ficult or costly to measure. It has also been discovered to be the
most useful customer-based measure for the success of line ex-
tensions of existing products [31]. The aim of this project is to
see if there is a correlation between photovoltaic panel technical
specifications, and their success in the market, measured by mar-
ket share. In this way, designers will be able to better optimize
design priorities that lead to product success.

Technical Features of Residential PV Panels in the Cal-
ifornia Market

The working data set published in September 7, 2011 from
the California Solar Statistics California Solar Initiative incentive
application database [32] served as the paper’s source of mar-
ket data. The data is considered representative of the USA solar
consumption, as California is the current leading producer of so-
lar power in the United States, accounting for 44% of the total
grid-connected PV cumulative installed capacity through quar-
ter 3 of 2011 [33]. The working database includes all incentive
applications from January 2007 to November 2011 made in Cal-
ifornia, hence includes both successful subsidized installations
and unsuccessful incentive applications made by a variety of con-
sumers. It was assumed that unsuccessful incentive applications
did not result in a PV installation.

The data was filtered to include only residential installations
with a completed installation status, excluding applications that
are from the commercial, government or non-profit system owner
sector, as well as those that were canceled or pending. This was
done in order to concentrate on the small scale PV systems that
were actually installed during the 2007-2011 time-frame. Instal-
lations with more than 1 PV module type were filtered out, as the
effective cost calculations cannot be done. Finally, new panels
introduced during the past year were removed, as they are still
too new and the market has not had adequate time to respond.
After filtering, the data set was reduced from 73,514 to 32,896
installed systems with a total of 586 panel types, mostly due to
filtering out non-residential systems. Filtering out systems with
more than 1 PV panel type accounted for less than 0.8% of the
total number of systems, and the effect of neglecting them in the
subsequent calculations was taken to be negligible.

From this dataset, the quantity installed of each panel was
calculated as a proxy for market share, and the panels ranked by
that metric. Since a large portion of the market is controlled by
a small subset of the 586 panels, as shown in Fig. 1, further
analysis was required to find a cutoff point to focus the further
analysis on the panels that are considered the most successful in
the open California market. An established binary linear classi-
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FIGURE 1. CUMULATIVE MARKET SHARE OF PANELS
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FIGURE 2. SVM CLASSIFICATION PERFORMANCE FOR
CHOICE OF CUTOFF POINT

fier called Support Vector Machine (SVM) [34], was chosen. 200
panels picked at random were sourced for their technical speci-
fications from manufacturer data sheets to form a specifications
dataset. This dataset included common markers for technical per-
formance, including attributes like efficiency tested at Standard
Test Conditions (STC), rated power, and power warranty. These
22 markers were chosen as initial distinguishing attributes of the
technical performance of each panel, as shown in Tab. 1A.
SVM took the set of PV panel data and categorized the
panels into 2 groups by multiple attributes, including the 22 at-
tributes stated in Table 1A and the panel’s market share. A linear
kernel was applied as it best suited the data spread. Figure 2

shows a noticeable drop-off in SVM classification performance
at the top 140 panels, so that was chosen to be the cutoff point.
This subset was determined to control 88.9% of the California
market.

In the same way as the previous step, the 140 panels with the
highest market share were identified by their model number and
sourced for their technical specifications. From a combination of
panel datasheets and marketing material, an expanded list of 34
attributes was identified (Tab 1B). This expanded list adds distin-
guishing characteristics of the panels, like appearance, packaging
and environmental characteristics to the initial 22 attribute list,
and is a more comprehensive collection of technical attributes.

As expected, the expanded list of attributes exhibited a high
degree of multicollinearity, meaning that the attributes were
highly correlated. This is a problem as it decreases the accu-
racy of the model. To reduce parameter correlation between the
attributes and improve the multiple regression model, the redun-
dant attributes were identified using a variance inflation factor
(VIF) calculation, which quantifies the severity of multicollinear-
ity in an ordinary least squares regression analysis. This method
was chosen because of the ease of comparing multicollinearity
between attributes. The variance inflation factor (VIF) for each
attribute was calculated using Eqn. 1 by holding it as the de-
pendent variable and performing regression with the rest of the
attributes as independent variables.

MSE,
VIFf=——, Ri=1-—3" (1)
Y Oy

where k is the attribute number from 1-34. Attributes with high
VIF values of more than 20 were removed from the specifica-
tions list [35], as shown in Tab. 1C. A total of 8 attributes were
removed, leading to a reduced list of 26 attributes.

METHODOLOGY
Critical Attribute Determination

An overview of the methodology is presented in Fig. 3.
A set of 3 computational machine learning regression methods
were used to determine the important technical attributes that
most influence market share. These methods were chosen over
others as they are known in the machine learning community to
be robust. However, other methods like SVM regression and
Elastic Nets could have been used to achieve the same purpose.

1. Artificial Neural Network (ANN) regression
ANN regression is a non-linear statistical data modeling that
models complex relationships between inputs and outputs in
a network of synapses and neurons. [36].
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TABLE 1.

YSIS (C) FINAL REDUCED SPECS USED FOR 3 REGRESSION METHODS

ATTRBUTE DEFINITION LIST. (A) INITIAL SPECS USED FOR SVM ANALYSIS (B) EXPANDED SPECS USED FOR VIF ANAL-

Properties Specifications A-SVM | B-VIF | C- Reg. | Definition
Rated power (W) X X Power output of panel at STC
Power variance (-%) X X X Negative power output tolerance
Power variance (+%) X X X Positive power output tolerance
Electrical Power at PTC (W) X X Power output of panel at PTC
Power ratio: PTC/STC X X X Power output ratio: PTC/STC
Efficiency at STC (%) X X X Panel efficiency at STC
Fill factor at STC X X Fill factor of panel at STC
Weight (kg) X X Total weight of panel
Weight per W (kg/ W) X X X Weight of panel per Watt of rated power output
Area of panel (m?) X X Area of panel
Cell Number X X X Number of PV cells in panel
Frame color (black/ not black) X X X Color of panel frame
Thickness (mm) X X X Thickness of panel
Physical Length (mm) X X Length of panel
Width (mm) X X Width of panel
Appearance (even/ uneven) X X Visual surface evenness of panel
Cardboard free packaging X Panel packaging contains no cardboard
Optimized packaging X X Panel packaging optimized for least waste
Lead-free X X Solder used in panel is lead-free
Tile X Panel in form of roof tiling
IEC 61215/ IEC 61646 X X X IEC PV design qualifcation and type approval
IEC 61730 X X X IEC PV module safety qualification
UL 1703 X X X UL Standard for safety of flat-plate PV panels
CE Marking X X X Compliance with European conformity requirements
Certifications IS0 9001 X X X ISO Quality management standard
IS0 14001 X X X ISO Environmental management standard
NEC 2008 X X NEC Safe installation of electrical equipment standard
Safety class II @ 1000V X X Double insulated appliance standard
IEC 61701 X IEC PV Salt mist corrosion standard
UL 4703 X UL PV cable standard
Warranty Workmanship Warranty (years) X X X Workmanship warranty
Power warranty (% power war- X X X Power warranty, calculated for comparison by taking
ranted years) area of the % warrented by years warranted curve
Economics Effective Cost/W ($/W) X X X Post subsidy system cost per Watt of rated power output
Time on market (years) X X X Length of time panel has been on the market
5 Copyright © 2012 by ASME
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FIGURE 3. FLOWCHART OF METHODOLOGY

2. Random Forest regression
Random Forest regression is an ensemble of unpruned re-
gression trees created by bootstrap samples of the data with
random feature selection in tree induction. It makes predic-
tions by aggregating the predictions of the ensemble [37].
3. Gradient Boosting Machine (GBM)
The Gradient Boosting Machine is an algorithm that gener-
alizes the decision tree prediction model by allowing opti-
mization of an arbitrary differentiable loss function [38,39].

The common set of important attributes found using these
models is then taken to be the set of critical technical attributes.
The rationale behind taking the intersection of the important at-
tributes is that the different approaches have different assump-
tions, weaknesses and strengths. Random Forest and GBM are
decision tree based algorithms, which are robust to outliers in
data points and deal well with irrelevant predictor attributes.
ANN does not perform as well on the above characteristics, but
is better at capturing non-linear and complex combinations of
predictor attributes. For example, attributes A and B may not be
important when taken alone, but may be significant when a com-
bination of both is present. Random Forest and GBM may not
consider A and B to be important attributes, but ANN will. Addi-
tionally, ANN and GBM may have some issues with over fitting,
but Random Forests is more robust and will not over fit easily.
All the algorithms picked can naturally handle both continuous
and categorical predictor attributes, which is essential because
the attribute list contains both binary and continuous data. They
are also able to deal with incomplete data sets with some missing
entries.
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FIGURE 4. MSE AND R FITTING OVER 10 ATTRIBUTES US-
ING 1-8 NEURONS

Artificial Neural Network Regression

A supervised feed forward Artificial Neural Network (ANN)
fit was done in the MATLAB environment [40]. In order to deter-
mine the neural network architecture with an optimal number of
neurons which gives the best fit without over fitting, the variance
in the performance of fit with increasing neurons was tested. The
number of neurons used for fitting was increased systematically
from 1 to 8, using the top 10 attributes that mapped the best to
market share. Each test was done with 300 trials to ensure that
the global optimum was obtained, as MATLAB’s neural network
toolbox uses random initialization, which could affect the final
result.

For each neuron number, the corresponding mean squared
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TABLE 2. CORRELATION TABLE FOR IMPORTANT AT-
TRIBUTES FOUND BY ANN

R 1 2 3 4 5 6

Power Warranty 1.00
Efficiency at STC | -0.38  1.00
Time on Market -0.19  -0.19 1.00

NEC 2008 0.05 -0.04 -026 1.00
ISO 9001 0.14 -0.02 -020 -0.12 1.00
Weight per W 025 -086 0.17 0.00 0.00 1.00

error (MSE) and correlation coefficient R fits were obtained, and
these were aggregated to form a graph of MSE and R fits using
varying numbers of neurons as shown in Fig. 4. The optimal
number of 2 neurons was selected, as it has a comparable MSE
and R value to other neural networks with a higher number of
neurons.

Using this optimal number of neurons for fitting, a new neu-
ral network model that maps each of the attributes to market
share was built. Each optimization was run over 500 trials to en-
sure accurate optimization on the global minimum. MATLAB’s
parallel processing toolbox was used to run 3 processes simulta-
neously to speed up the analysis. The best model with the lowest
MSE and highest corresponding R was picked to be the first ele-
ment for the set of important attributes.

The second important attribute was chosen by creating new
neural network models that map each attribute plus the first im-
portant attribute to market share. This was repeated until adding
a new attribute did not reduce the MSE, resulting in a total of
6 important attributes. Further testing was conducted to ensure
that the model is robust using correlation tables and bootstrap-
ping methods. The corresponding bootstrapping values of MSE
and R are displayed in Fig. 5. The correlation table of the impor-
tant attributes is shown in Tab. 2.

Random Forest Regression

The Random Forest regression was performed using the
randomForest statistical package created by Liaw and
Wiener for the R Project environment based on the original For-
tran code by Breiman and Cutler [41]. Since the Random For-
est algorithm is robust to over fitting, very little tuning was re-
quired. The built in variable importance permutation calculation
was used to identify critical attributes. 10,000 trees were grown
and 3 variables were randomly sampled as candidates at each
split. A lot of trees were necessary to get stable MSE and stable
estimates of variable importance, as each input row needed to be
predicted many times. The choice of 3 variables sampled at each
split was decided by trying alternatives from 2-16 and choosing
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FIGURE 5. ANN BOOTSTRAPING ERROR VALIDATION

the best result with the lowest MSE.

100 regressions were done and an average of the importance
values was taken, shown in Tab. 3. It was observed that although
the variable importance measures varied slightly from run to run,
the ranking of the importances was stable. Due to the nature of
the method, cross validation was unnecessary as it generates an
internal unbiased estimate of he generalization error as the forest
building progresses. The importance threshold was chosen to be
the absolute of the lowest importance value, resulting in a total
of 13 important attributes.

Gradient Boosting Machine (GBM)

The gradient boosting machine was similarly performed in
the R statistical environment using the gbm package written by
Ridgeway based on extensions to Friedman’s gradient boosting
machine [42]. The learning rate, shrinkage, was set to 0.001,
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TABLE 3. TOP ATTRIBUTES’ RANDOM FOREST VARIABLE
IMPORTANCE VALUES OVER 100 RUNS

Attributes Mean  Std Dev
Time on market 19.72 0.78
Power variance (-%) 18.79 0.84
Weight per W 17.14 0.93
Power warranty 15.96 0.95

IEC 61215 (crystalline) or IEC 61646 (thin | 11.28 0.80
film)

Power ratio: PTC/STC 10.28 1.05
Safety class IT @ 1000V 10.05 0.67
Efficiency at STC 9.62 1.05
Fill factor at STC 8.45 0.94
Power variance (+%) 7.77 0.91
Cell Number 7.20 1.00
IS0 9001 7.10 0.81
Workmanship Warranty 6.33 0.95

TABLE 4. TOP ATTRIBUTES’ GBM RELATIVE INFLUENCE
VALUES OVER 100 RUNS

Attributes Mean Std Dev
Weight per W 22.49 1.24
Power Variance (-) 18.74 1.06
Fill factor at STC 14.23 0.61
Efficiency at STC 12.21 1.00
Power ratio: PTC/STC 9.79 0.64
Effective Cost 6.29 0.56
Power warranty 2.28 0.22
Width 2.04 0.31

for the slowest rate but the highest accuracy. Other variables
affecting the optimization, the maximum depth of variable inter-
actions interaction.depth, the minimum number of ob-
servations in the trees’ terminal nodes n.minobsinnode and
the fraction of the training set observations randomly selected to
propose the next tree in the expansion bag. fraction, were
also varied systematically to obtain the optimum result with the
lowest fitted MSE.

At each run, 4000 trees were grown with ten fold cross vali-
dation. The number of trees grown was chosen to be very high to

be sure that the optimal number lies within the tested range. Af-
ter each run, the function gbm. perf was used, which estimates
the optimal number of trees using the data from the cross vali-
dation performed. The result at this number of trees is extracted
and used.

The relative influence was then calculated by permuting one
predictor variable at a time and computing the associated reduc-
tion in predictive performance. The computed relative influence
was normalized to sum to 100. The mean of these relative in-
fluences over 100 regressions was then taken, shown in Tab. 4.
The importance threshold was chosen to be a relative influence
of 2, after which the relative influence values for the rest of the
attributes holds steady around 1. This resulted in a total of 8
important attributes.

CRITICAL ATTRIBUTES

The summary of important attributes found from each
method is shown in Tab. 5. The critical attributes are taken to be
the important attributes that are common to all 3 methods, and
form the feature set of concern. The rank ordering of the feature
set is not considered to be important, as variations in the machine
learning methods will cause differences in the rank ordering of
the attributes.

The critical attributes found across all 3 methods are:

1. Power warranty
Measure of power output performance guaranteed by the
manufacturer over a period of time

2. Efficiency at Standard Testing Conditions (STC)
Measure of performance of a panel

3. Weight per W
Weight of panel per Watt of electricity produced, relates to
ease of installation

At first glance, the critical attributes found are reasonable.
Power warranty is linked to consumer confidence, as well as the
reliability of the solar panel. Efficiency is a reflection of the per-
formance of the technology, in this case the panel’s ability to
convert sunlight into electricity. Weight per Watt is a measure
of the ease of installation of the panel, and hence points toward
the influence of the installer on the purchase decision of the con-
sumer.

It is important to note that the relationships between the crit-
ical attributes and market share derived from the machine learn-
ing algorithms do not imply causation. For example, the power
warranty might not be the direct reason why customers prefer a
certain panel over another, it might instead be a reflection of in-
creased consumer confidence in the manufacturer’s quality that
results in increased market share. On the other hand, if there
is no relationship, the attribute is not an important factor in the
purchase decision.
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TABLE 5.

IMPORTANT ATTRIBUTES ACROSS 3 METHODS

Rank| ANN RandomForest | GBM
1 Power Time on market | Weight per W
warranty (years)
2 Efficiency at | Power variance | Power variance
STC (%) (-%) (-%)
3 Time on market | Weight per W | Fill factor at
(years) STC
4 NEC 2008 Power Efficiency at
warranty STC (%)
5 1S0 9001 IEC 61215 / | Power ratio:
IEC 61646 PTC/STC
6 Weight per W | Power  ratio: | Effective
PTC/STC Cost/W ($)
7 Safety class II | Power
@ 1000V warranty
8 Efficiency at | Width (mm)
STC (%)
9 Fill factor at
STC
10 Power variance
(+%)
11 Cell Number
12 IS0 9001
13 ‘Workmanship
Warranty
(years)

Furthermore, the presence of all 3 critical attributes found
does not guarantee market success for the product. The panel
might have a good power warranty, high efficiency, and low
weight per Watt, and still perform poorly on the market. Other
non-technical factors like service quality, country-of-origin, and
manufacturer reputation may play important roles in the purchase
decision that are not reflected in this study. They will be taken
into account in future work. What the analysis does show is that
the panels need to have competitive levels of these critical at-
tributes in order to have a chance at succeeding in the market.
Hence, the list of critical attributes can be seen as “must-have”
attributes that designers should not neglect in the product devel-
opment phase.

It is of value to note the factors that do not show up as impor-
tant attributes in any of the methods. Interestingly, reduced waste
in packaging, lead-free solder and the ISO 14001 environmental
management standard fail to appear as important. The possibility

TABLE 6. R? VALUES FOR 3 METHODS

‘ ANN RF GBM
R? ‘0.791 0.801  0.923

that a consumer might miss these factors is low, because manu-
facturers heavily promote them as differentiating features, and
they are displayed in large font at prominent places on the panel
datasheets and advertising material. Since these are the only 3
factors in our analysis that reflect additional design thought on
the eco-friendliness of the product, it can be inferred that con-
sumers do not consider the environmental impact of non-core
aspects of solar panels to be important when making their pur-
chase decision. This is the opposite result of what is expected
from using a stated preference method. This is a common prob-
lem in stated preference methods, with consumers responding
differently in hypothetical situations than in actual market condi-
tions. Homeowners who purchase PV systems frequently think
of themselves as more environmentally conscious than the av-
erage population. However, previous research findings support
our finding, showing that inconsistencies exist within “green”
consumption areas, where environmentally conscious consumers
will not necessarily buy more “green” energy products [43].

Unexpectedly, effective cost per Watt only appears in the
GBM list of important attributes, although cost is frequently con-
sidered by many to highly influence the purchase decision. This
result is a limitation of our study, as due to constraints in collect-
ing data, we used the total cost of the PV system, which includes
not only the panels, but also the inverter, labor, and installation
costs, minus the state subsidy that was applied. This effective
cost might not have been a factor of consideration when choosing
between different panels. For a more accurate reflection of how
cost influences this decision process, the panel price per Watt
should have been used, but this data was unavailable in the Cal-
ifornia Solar Statistics database, and thus was not considered in
this study.

Comparison of Methods

Some agreement between the various machine learning al-
gorithms can be seen in Table 5. Only 3 attributes are common,
5 attributes occur twice, and 8 attributes only occur once. The
different predictions are likely due to the noise in the data, which
is an inherent problem when dealing with real data. The inter-
nal structure of the methods also differ, meaning the methods
perform regression in differing ways. Although Random For-
est and GBM are both decision tree based methods, because the
learning approach differs, the important attributes found could
be inconsistent. ANN has a completely distinct internal structure
from the decision tree based methods, causing the important at-
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tributes found to be different. The combination of noisy real data
and differing internal structures of the methods results in limited
agreement.

A comparison of the accuracy of the models in predicting
market share using the important attributes is shown in the R?
goodness-of-fit values reflected in Tab. 6, where R? is calculated
by Eq. 2.

RP=1-—- )

Table 6 indicates that all the models perform relatively well,
with GBM being the most accurate. Ideally, Random Forest and
GBM should have similar performance, because they are both
decision tree based algorithms. The difference lies in how they
optimize decision trees using ensemble approaches. Random
Forest is usually more robust to internal parameter choice and
performs well for wider varieties of parameters. Meanwhile,
GBM tends to do better than Random Forest when the internal
parameters are optimized carefully, as in this case. This high-
lights the need to carefully tune and test the parameters of ma-
chine learning methods before using the results.

With regard to computation time, GBM and Random Forest
took a similar amount of time to run. ANN took a much longer
time to train properly, although this might have been partly due
to the difference in platform, with MATLAB running slower than
R.

CONCLUSIONS

In this paper, we proposed a machine learning approach for
revealing consumer preferences for technology products that are
characterized by their technical attributes. We demonstrated this
method with a case study on homeowner preferences regarding
solar PV panels, and found 3 critical attributes that designers can
prioritize for the optimization of time and resource allocation for
the product development cycle.

Our main research questions can be answered in the follow-
ing way:

1. Can revealed consumer preferences be obtained from
market data and engineering specifications using machine
learning methods?

It appears that consumer preferences can be extracted
successfully from marketing data and engineering spec-
ifications using the methods we attempted in this paper.
However, as pointed out by prior work in the field, revealed
preferences has the limitation in that only the set of at-
tributes that are present in the data can be tested. There is
a possibility that there are other critical attributes that are
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not present within this data set which are an important part
of the homeowner purchasing decision process. Further
work will include surveys as a data collection method for
non-technical attributes, and will make use of stated pref-
erence methods to boost the existing revealed preference
model [44—46].

2. Is there agreement among the machine learning methods
that suggest the validity of the data and methods?

There appears to be partial agreement among the methods,
with noisy real data and differences in the internal structure
of the methods causing this disparity. There is a need to
look deeper into the machine learning methods we have
explored in order to determine the differences in which the
methods handle the data.
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