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PPT: A Probabilistic Approach to Extracting Preferential 

Probabilities from Discussion Transcripts 

This report presents an implicit probabilistic approach for extracting a projection 

of aggregated design team preference information from design team discussion as if 

the team is a single entity. It further takes into consideration how the design preference 

information of a team can evolve over time as the team changes its priorities based on 

new design information. Two initial models are given for representing the most 

probable and preferred design alternative from the transcripts of design team 

discussion, and for predicting how preferences might change from one time interval to 

the next. This section examines three aspects of preferences in design teams: design 

preference extraction, projecting an aggregation and understanding preference 

evolution over the life of a project, and presents a case example to illustrate its 

approaches. For the sake of compactness, the probabilistic approached in this report is 

named with PPT (Preferential Probabilities from Transcripts). 

Figure 1 gives a flowchart for using PPT in studying design team discussion. The 

general process centers around a design team as they discuss possible design choices 

and make trade-offs between the choices. The design discussion is audio recorded, 

transcribed, and time tagged. Text analysis techniques are used to collect the design 

specific information, which is called utterance data in this research, from the 

transcripts. Utterance data is converted to preference data with the employment of two 

models – Preference Transition Model and Utterance-Preference Model. Initially both 
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the models and the preference data are unknown, EM (Expectation Maximum) 

algorithm [1] is applied to seek the parameters of the two models. Finally, the 

evolution of design preferences is represented graphically, illustrated by preference 

strengths at different time intervals. In order to quantitatively evaluate the preferential 

probabilities extracted from the transcripts, questionnaires or surveys are used to elicit 

preferences from individual designers, which are then aggregated and converted to 

group preferential probabilities which are comparable with those from the transcripts. 

The details for extracting preferential probabilities from the surveys can be referred in 

another technical report [2].  
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Figure 1 shows that the preference data are acquired from the utterance data of 

the transcript. But the linkage between them is not as easy as the other steps in Figure 

1 because the models and the parameters of the models linking the utterances and 

preferences are unknown. The basic procedures of this approach to resolve this 

problem are shown as follows:  

 (1) Collect word occurrences of all design alternatives in a transcript of a design 

team’s discussion. The collection of word occurrences is called utterance data. In this 

step, variations of specific terms (synonyms) that represent the same alternative are 

also included as occurrences.  

(2) Build a preference transition model to describe the relationship between 

preferences in two consecutive time intervals, along with an utterance-preference 

model to describe the relationship between what designers say and what designers 

prefer within the same time interval. The parameters of the two models are unknown 

(details in Sections 3 and 4). 

(3) Assign reasonable initial values to the parameters of these two models. 

(4) Apply both models to a transcript to predict preference data. The preference 

data will be used to describe the evolution of preference information over the design 

process (details in Section 5). 

(5) Update the parameters of these two models using a traditional Expectation-

Maximum (EM) algorithm [1] on the predicted preference data and the given utterance 

data (details in Section 6). 
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(6) Repeat steps 4 and 5 until there is convergence on the hidden parameters of 

the models. Parameters converge because the EM algorithm is guaranteed to improve 

the probability of the occurrences of the utterance data at each iteration [3]. 

1 Assumptions 

In this section, five assumptions are made with regard to the preferential 

probabilities extracted from group transcripts.  

Assumption 1: Embedded in group discussion is information sufficient to reflect 

group preference. During the design process, what designers say to each other 

generally corresponds with what they think. This is also an implicit assumption of 

protocol studies of designers . 

Assumption 2: All major design alternatives for a concept selection problem are 

largely known a priori. While this may not be true for novel design problems, it is a 

reasonable assumption for incremental or re-design problems in which many design 

alternatives under consideration are ones that have been examined in the past.  

Assumption 3: An entire discussion can be divided into time intervals during 

which the designers’ preference are assumed to be unchanged. A change in preference 

can only occur between consecutive time intervals. This assumption helps to divide 

the whole design process into intervals, in order to describe the preference change of 

the design team during the design process. The ways of division are described in 

Section 7. 
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Assumption 4: what is most preferred in a time interval is related to what was 

most preferred in the previous time interval. This relationship can be represented 

probabilistically, and describes how likely the design team would change the “most 

preferred” alternative.   

Assumption 5: Designers tend to talk positively more about the design alternative 

they prefer more and negatively about the design alternative they prefer less. Within 

the same time interval, how often an alternative is mentioned positively or negatively 

is linked to how much it is preferred, and this can be represented probabilistically. 

This assumption is an extension of Assumption 1. Probabilities are used here because 

of the stochastic uncertainty in the group discussion. It is possible for designers to 

mention the less-preferred alternative positively interlacing with the negative meaning, 

or mention the most-preferred alternative negatively interlacing with the positive 

meaning. This probabilistic relation considers that occasionally people do not mean 

what they say [4], but people still tend to speak out what they really mean. 

Probabilistic models describe how likely the team talks about the alternative they 

prefer the most.  

2 Notation 

The following explains some symbols which are used in the later mathematic 

formulations. 

N: total number of alternatives in the studied design selection problem 
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T: total number of time intervals over the whole design process 

i, j: the index to represent different time intervals in the design process  

m, n, k: the index to represent different alternatives in the studied design selection 

problem 

r: the index to represent the different iterations of the calculation process 

ma : the mth  alternative of of the studied design selection problem in the design 

process 

A: the set of all alternatives, i.e. A={ 1 2, ,..., Na a a } 

iπ : the alternative which designers prefer to all other alternatives in Time Interval 

i, i.e., the most-preferred alternative in Time Interval i 

iε : the alternative which designers utter at sometime during Time Interval i of the 

design process 

iσ : the sequence of the utterances of design alternatives in Time Interval i. e.g., if 

in Time Interval 2, the design alternatives are uttered as 2 2 1 1 1 2 3 1 1 3, , , , , , , , ,a a a a a a a a a a  in 

the designers’ transcribed discussion , then 2σ  = { 2 2 1 1 1 2 3 1 1 3, , , , , , , , ,a a a a a a a a a a  } 

( )i mP aπ = : the probability that designers prefer Alternative ma  to all other 

alternatives (i.e., Alternative ma  is most preferred) in Time Interval i. If the preference 

value of Alternative ma  in Time Interval i is represented by ( )i maμ  on a scale from 

zero to one, then i maπ =  is equivalent to ( ) ( )   1i m i na a for all n Nμ μ≥ ≤ ≤  
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( | )i m j nP a aπ π= = : the probability that designers prefer Alternative ma  to all 

other alternatives in Time Interval i, given that designers prefer Alternative na  to all 

other alternatives in Time Interval j  

( )i mP aε = : the probability that Alternative ma  is uttered in Time Interval i 

( | )i m j nP a aε π= = : the probability that Alternative ma  is uttered in Time 

Interval i given the condition that Alternative na  is preferred the most in Time Interval 

j 

3 Preference Transition Model 

This model relates the design team’s preference in the current time interval to that 

in the next time interval. Individual designers may have different preferences, but in 

this model, only the accumulative group preferences are considered in a probabilistic 

relation.  

In one time interval, it is assumed that there is an alternative which the team 

prefers the most, called the most-preferred alternative, and the remaining alternatives 

are the less-preferred alternatives. Each alternative has a probability to be the most-

preferred alternative and the less-preferred one. The probability of one alternative to 

be most-preferred is the preferential probability of this alternative, and it describes the 

likelihood that a team prefers this alternative over all others. 

The Preference Transition Model is the mathematical implementation of 

Assumption 4. At each transition, the design team can either 1) keep the most-
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preferred alternative unchanged from the previous time interval or 2) change from the 

most-preferred alternative to another alternative. The transition relationship between 

one interval and the next depends on the preference strengths of the most-preferred 

alternative and the less-preferred alternatives. In this study, a preliminary relationship 

is approximated in which all less-preferred alternatives in the current time interval are 

equally likely to become the most-preferred alternative in the next time interval.  

The preferential probability for one alternative in the next time interval is 

cumulative, and relates both the probability this alternative is most-preferred in two 

consecutive intervals and the probability it transitions from less-preferred to most-

preferred. Two alternatives with different preference strengths have different 

probabilities to be most-preferred and less-preferred, so the accumulated preferential 

probabilities in the next time interval may differ even with this preliminary Preference 

Transition Model.  

In mathematical terms, the model can be expressed as in Equation (1) 

 

1( | ) 1
1

i n i m

p when n m
P a a p when n m

N

π π+

=⎧⎪⎪⎪= = = ⎨ −⎪ ≠⎪⎪⎩ −
               (1) 

 

where 0 1p≤ ≤  is an hidden parameter, which means the probability that the most-

preferred alternative is kept unchanged from one time interval to the next consecutive 
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one. The bigger p is, the more consistent the preferences are over the design process; 

and the smaller p is, the more frequently the preferences are changed. 

4 Utterance-Preference Model 

This model relates the team’s preference to the utterances of the alternatives in 

the same time interval. In other words, it tries to approximate what designers think 

with what designers say. This model is the mathematical implementation of 

Assumption 5. In this model, a Vygotskian view [5] is adopted. This view differs 

between two lines of speech, including inner speech and the external speech. The inner 

speech reflects one’s meditation and can be regarded as a self-discussion process, 

while external speech is used for social communications with others. Regarding the 

study of relationship between psychological language and thought, Vygotysky [5] said, 

“the area of inner speech is one of the most difficult to investigate”. In engineering 

design, protocol analysis  is widely used to investigate the inner speech for studying 

design activities and design decision making process. In this study, both the inner 

speech from individual “think aloud” and the outer speech from team conversation are 

considered. In the collection of verbal report data [6], it is assumed that not all 

thoughts which pass through attention are verbalized and some thoughts may be 

verbalized in variety of ways. Therefore, in the design selection process, the concept 

regarding design alternatives may not be uttered in deterministic patterns. Designers 

may utter the most-preferred alternatives in negative ways and the less-preferred 

alternatives in positive ways due to the possible uncertainty in the process, including 
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the situations that designers do not know what they say, that designers do not have 

deterministic preferences, that designers express their thoughts wrongly, and that team 

dynamics influence the team work differently. Therefore, a probabilistic model can be 

applied to explain this random relationship. 

A design alternative can be uttered in a transcript in either a positive or negative 

sense. When an utterance of an alternative has no negative words (e.g. “no,” “not,” 

“hardly”) nearby in the transcript, this utterance is regarded as positive, otherwise it is 

negative. The negative utterance of an alternative is counted as a positive utterance for 

all the other alternatives. Another strategy would be to subtract the negative utterance 

from the count of positive utterances, but this could lead to negative sums. Since the 

model is probabilistic, it inherently considers the cases when an alternative is 

mentioned that is not preferred the most. The model establishes the general pattern of 

how often a design team mentions the alternative they prefer the most and how often 

they mention the less-preferred alternatives. Similarly, a preliminary model is 

approximated in which less-preferred alternatives are equally likely to be uttered by 

designers in the same time interval. 

The probability for one alternative is uttered is also a cumulative probability. It 

relates both the probability this alternative is uttered when it is most-preferred and the 

probability it is uttered while it is not most-preferred. For two alternatives with 

different preference strengths, they have different probabilities to be most-preferred 
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and less-preferred, so the accumulated probabilities to be uttered may differ even with 

this preliminary Utterance-Preference Model. In equation form: 

 

( | ) 1
1

i n i m

q when n m
P a a q when n m

N

ε π
=⎧⎪⎪⎪⎪= = = ⎨ −⎪ ≠⎪⎪⎪⎩ −

              (2) 

 

where 0 1q≤ ≤  is an hidden parameter, which means the probability that the most-

preferred alternative is uttered in the discussion. In protocol studies of designers [7], it 

is assumed that what designers say generally corresponds with what they think. In this 

study, it is assumed that designers say what they prefer in most cases. i.e., 1
1
qq

N
−>
−

 . 

The reasonable value range for q is 1 1q
N
< ≤ . 

5 Preference Calculation 

The preferences of the design alternatives in the design process may change over 

time during the discussion of the design team. One of the objectives in this research is 

to extract the preference evolution over the whole process. Although the preference 

value of each alternative cannot be acquired from the method proposed in this research, 

the probability of each design alternative to be most-preferred can be calculated.  
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The challenge: given the utterance data about the design alternatives and the 

preferential probabilities of the design alternatives in the current time interval, what 

are the preferential probabilities of the design alternatives in the next time interval? 

By Law of total probability,  

 

1 2 1( | , , ,..., )i k i i iP aπ σ σ σ σ− −=  = 

1 1 1 1 1 2 1
1

( | , ,..., ,  ) ( | , ,..., )i k i i i m i m i i
m N
P a a P aπ σ σ σ π π σ σ σ− − − − −

≤ ≤
= = =∑  (3)   

 

By Bayes Theorem,  

 

1 1 1( | , ,..., ,  )i k i i i mP a aπ σ σ σ π− −= =  = 

1 1 1 1 1 1

1 1 1 1 1 1
1

( | , ,..., , ) ( | ,..., , )
( | , ,..., ,  ) ( | ,..., , )
i i K i i m i K i i m

i i n i i m i n i i m
n N

P a a P a a
P a a P a a
σ π σ σ π π σ σ π

σ π σ σ π π σ σ π
− − − −

− − − −
≤ ≤

= = = =
= = = =∑  (4)   

 

Equation (4) can be simplified into Equation (5) because the utterance data in the 

current time interval are independent of the utterances in the historical time intervals 

while given the preference in the current time interval, and the preference in the 

current time interval is independent of the utterance data in the historical time intervals 

while given the preference in the latest previous time interval. 
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1 1 1( | , ,..., ,  )i k i i i mP a aπ σ σ σ π− −= =  = 

1

1
1

( | ) ( | )
( | ) ( | )
i i k i k i m

i i n i n i m
n N

P a P a a
P a P a a
σ π π π

σ π π π
−

−
≤ ≤

= = =
= = =∑                  (5) 

 

Substituting Equation (5) back into Equation (3) gives the following two 

equations ((6) and (7)).  

 

When 2i ≥ , 

1 2 1( | , , ,..., )i k i i iP aπ σ σ σ σ− −=  = 

1
1 1 2 1

11
1

( | ) ( | )
( | , ,..., )

( | ) ( | )
i i k i k i m

i m i i
i i n i n i mm N

n N

P a P a a
P a

P a P a a
σ π π π π σ σ σ

σ π π π
−

− − −
−≤ ≤

≤ ≤

= = = =
= = =∑ ∑      (6) 

 

When 1i = ,  

1 1( | )kP aπ σ=  = 

1 1 1 0
0

1 1 01
1

( | ) ( | )
( )

( | ) ( | )
k k m

m
n i n mm N

n N

P a P a a
P a

P a P a a
σ π π π π

σ π π π≤ ≤
≤ ≤

= = = =
= = =∑ ∑                (7) 

 

Suppose the design alternatives are uttered iw  times in the ith time interval, as 

(1) (2) (3) ( ), , ,..., iw
i i i ia a a a , which are all in Alternative Set A. Assume that the utterances of 

alternatives in one time interval strongly depend on the designers’ preference, and the 
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utterances of design alternatives are indifferent of each other given the strong 

dependence on preferences, then 

 

( | )i i kP aσ π =  = ( )

1
( | )

iw
u

i i ki
u
P a aε π

=
= =∏             (8) 

 

Equations (6), (7) and (8) recursively calculate the preference in the next time 

interval from the preference in the current time interval. In order to make the recursion 

work, two pieces of information should be given. 

• The initial preferential probabilities of all alternatives before the first time 

interval.  

• The parameters of Preference Transition Model and Utterance-Preference 

Model. i.e. Parameters p and q. 

 

The first one can be resolved by several ways:  

(1) Conducting surveys of designers before the start of the design process; 

(2) Collecting preference information from an earlier design process; 

(3) Analyzing preferences from the design of similar products; 

(4) Establishing an unbiased starting point which assumes a uniform alternative 

distribution.  
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In the case example in this study, because of the unknown initial preferences, all 

alternatives are initiated with uniform alternative distribution, which gives an unbiased 

starting point. i.e., 

 

0
1( ) ,  1,2,...,kP a k N
N

π = = =
 (9) 

   

Equation (9) means that before the discussion of the design process, all 

alternatives have equal probability of being most preferred.  

The parameters of two key models are not as easy to acquire as the initial 

preferential probabilities of alternatives. In this research, an EM (Expectation-

Maximization) algorithm [1] is applied to searching the parameters of Preference 

Transition Model and Utterance-Preference Model. 

6 Estimation of Hidden Parameters 

If the Preference Transition Model and the Utterance-Preference Model are given, 

starting from the initial preferential probabilities at the beginning of the design 

discussion, it is feasible to calculate the preferential probabilities for each design 

alternative in each time interval and then to plot the preference evolution over the 

whole design process. But the problem is that initially the parameters of these two 

models are unknown. In this situation, utterance data are observable but preference 

data are unobservable, and the models are incomplete because of the hidden 
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parameters. An EM (Expectation-Maximization) algorithm [1] is often used in 

statistics for finding maximum likelihood estimates of parameters in probabilistic 

models, where the model depends on unobserved hidden variables. In this study, it can 

be applied to seek the values of the two hidden parameters of the two models. 

An EM algorithm has two steps, the E-step and the M-step. The E-step estimates 

the unobservable data. It can be accomplished by Equations (6) and (7). The M-Step 

computes the maximum likelihood estimates of the parameters by maximizing the 

expected likelihood found on the E-step. In this study, it corresponds to estimating the 

values of p and q which make the utterance sample of the design alternatives occur in 

the discussion with the maximal likelihood.  

From Equation (1), it is known that 1( | )i k i kP a aπ π+ = =  is independent of k and i. 

It means that no matter what time interval it is in, no matter which alternative 

designers prefer the most in the previous time interval, designers have a fixed 

probability to keep the most-preferred alternative unchanged.  

By the maximum likelihood [8], 1( | )i k i kP a aπ π+ = =  can be estimated as 

 

1( | )i k i kP a aπ π+ = =  =
1

1 1 1

1
1 1 1 1

( , )

( , )

i m i m
i T m N

i n i m
i T n N m N

C a a

C a a

π π

π π

+
≤ ≤ − ≤ ≤

+
≤ ≤ − ≤ ≤ ≤ ≤

= =

= =

∑ ∑
∑ ∑ ∑

  (10) 
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where 1( , )i n i mC a aπ π+ = =  is a fractional count that counts the cases that na  is most-

preferred in the current time interval while ma  is most-preferred in the previous time 

interval. 1( , )i n i mC a aπ π+ = =  can be calculated as follows. 

 

1( , )i n i mC a aπ π+ = =  = 1 1 1 1 1( | , ,..., ) ( | , ,..., )i n i i i m i iP a P aπ σ σ σ π σ σ σ+ + −= =   (11)  

 

The fractional counts are fractional numbers, and they are not the same as the 

normal counting numbers, which are integers. But the values of fractional counts have 

the proportional relationship with the integral numbers which count the cases when 

1i naπ + =  and i maπ = , so fractional counts can be used in Equation (10) to estimate of 

Parameter p. 

Similarly, from Equation (2), ( | )i k i kP a aε π= =  is independent of i and k. It 

means that in a certain time interval, designers have a fixed probability to utter the 

same alternative as the one they prefer the most. 

By the maximum likelihood, ( | )i k i kP a aε π= =  can be estimated as 

 

( | )i k i kP a aε π= =  = 1 1

1 1 1

( , )

( , )

i m i m
i T m N

i n i m
i T n N m N

C a a

C a a

ε π

ε π
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

= =

= =

∑ ∑
∑ ∑ ∑

  (12)  
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where ( , )i n i mC a aε π= =  is also a fractional count, which counts the number of cases 

that na  is uttered while ma  is most-preferred in the same time interval. It can be 

calculated as follows. 

 

1 1( , ) ( ) ( | , ,..., )i n i m i n i m i iC a a C a P aε π ε π σ σ σ−= = = = =  (13) 

 

where ( )i nC aε =  is the number of utterances of Alternative na  in the time interval i.  

Equations (12) and (13) calculate q based on the samples of alternative utterances 

and preferences. When using the above procedure to calculate q, it should be noted 

that the value of q should be more than 1/N. 

Because the EM algorithm is guaranteed to improve the probability of the sample 

of alternative occurrences at each iteration, p and q will converge to values which try 

to maximize this probability [3]. These converged values can be regarded as the 

parameters for Preference Transition Model and Utterance-Preference Model. The 

shortcoming of EM algorithm is that it may converge to a local optimum. Multiple 

initial estimates can be used to avoid being trapped in a local optimum. Simulated 

annealing can be combine with EM algorithm to overcome the local optima problem 

[9, 10]. 
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7 Time Intervals  

In this research, it is assumed that designers do not change their preferences on 

design alternatives in one time interval. Preferences can only be changed at the 

transitions between time intervals. Based on the designers’ transcribed discussion, 

there are several ways to determine time intervals.  

1. Collect all transitional words (e.g., “but”, “however,” “while”) in the transcript, 

and divide the transcript into varying time intervals with these transition words. 

2. Collect all key design alternative occurrences from the transcript of designers’ 

discussion, and time-stamp all collected words. Big time gaps between the key 

alternative words mark the separations of time intervals. 

3. Set up a fixed word frequency. The process is divided into time intervals in 

which there are equal numbers of word utterances of key alternatives.  

4. Make a fixed time interval. The length of each interval depends on the desired 

granularity of preference evolution.  

Although Methods 3 and 4 are not as accurate as Methods 1 and 2, they are more 

direct to implement. In this research, Method 4 is chosen and modified to specify the 

time intervals in the design process. The time intervals are nearly of the same lengths 

but not exactly equal because the divisions occurred only after one finished his/her 

conversations and there was no immediate following-ups. If another designer was 

ready to talk while one was still talking, divisions of time intervals would wait until 

both finished. Even in this way, the real preference of the team may change inside the 
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interval as well. For the sake of simplicity, it is assumed that designers do not change 

their preferences for design alternatives within a time interval in this study. The 

preferences are considered accumulatively for each interval and the preference 

changes are only considered between the intervals. The precise granularity of the 

changes inside the time interval could be studied in future research. 

8 Case Study 

8.1 Case Background 

The case used for PPT in this report is a real-world design team working on the 

design of a large-scale space system architecture. This design team was composed of 

17 experienced scientists and engineers of different disciplines working together in a 

co-located, highly concurrent setting. The team had collaborated on several similar 

projects in the past. The project took place over three 3-hour sessions spaced out over 

several weeks. This research focuses on the audio-recorded utterances of one member 

of the team as he explained his design decision-making process in detail to a novice 

member of his team. This recording was transcribed into a text document of 

approximately 28,000 words. All data was time coded. In the transcript, the primary 

team member talked nearly 85% of the time, and four other members made up the 

remainder. The case study in this section is focused on the first session of the second 

component selection problem.  
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8.2 Data Collection and Method Implementation 

The transcript in the first session was input as the raw data in this case study. The 

utterances of the three alternatives (represented by a1, a2, and a3) for the second 

selection problem were collected in intervals of 10 minutes, as shown in Table 1. 

 

Table 1 Sample Data: Utterances of Alternatives 

        Alternative 
 

 Interval      
a1 a2 a3 

1 9 0 3 
2 9 2 7 
3 1 0 0 
4 4 0 9 
5 0 0 6 
6 3 1 0 
7 1 0 2 
8 0 1 2 
9 1 0 8 
10 0 0 1 
11 0 1 2 
12 0 0 5 

 

Initially, we can give any values to p and q if 0<p<1 and 1/3<q<1 are met. And 

the values will be updated in the later iterations. To distinguish p and q in different 

iterations, let pr, qr be the variables of p and q in the rth iteration. In this example, 

initial values are randomly chosen as p1=0.5 and q1=0.4. And the initial preferential 

probabilities of the alternatives all equal 1/3:  
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0 1 0 2 0 3
1( ) ( ) ( )
3

P a P a P aπ π π= = = = = =
 (14) 

 

In the first time interval of the transcript, there were no utterances of a2, while 9 

times of a1, and 3 times of a3. By Equation  (8) 

 

1 1 1( | )P aσ π = =
1 10 9 3

1
1 1

( ) ( ) ( )
2 2
q q
q

− −
=7.0779-06 (15) 

 

1 1 2( | )P aσ π = = 1 10 9 3
1

1 1( ) ( ) ( )
2 2
q qq − − =5.3144-07 (16) 

 

1 1 3( | )P aσ π = =
1 10 9 3

1
1 1( ) ( ) ( )

2 2
q q q− −

=1.2597-06 (17) 

 

These three values are not the normalized probabilities. Every value only has 

meanings when comparing with each other. 

Substituting values from Equations (15), (16) and (17) into Equation (7) gives 

 

1 1 1( | )P aπ σ= =0.7798 

 

1 2 1( | )P aπ σ= =0. 0663 

 

1 3 1( | )P aπ σ= =0. 1539 

 



24 

The preferential probabilities in later time intervals can be calculated recursively 

by Equations (6) and (8). The probability values in different time intervals are listed in 

Table 2, in the first iteration with p1=0.5 and q1=0.4. 

 

Table 2 Preferential Probabilities of Design Alternatives (the First Iteration) 

             Alternative 
 
 Interval  

a1 a2 a3 

1 0.7798 0.0663 0.1539 
2 0.6829 0.0574 0.2597 
3 0.4878 0.2328 0.2795 
4 0.2179 0.0579 0.7242 
5 0.112 0.0934 0.7946 
6 0.4419 0.2481 0.3099 
7 0.3514 0.2309 0.4177 
8 0.2508 0.2993 0.4498 
9 0.1058 0.0835 0.8107 
10 0.2418 0.2367 0.5215 
11 0.2267 0.2971 0.4763 
12 0.1497 0.1595 0.6909 

 

Parameters pr and qr would be updated by Equations (10) and (12) with the 

fractional counts calculated from Equations (11) and (13) in the previous iteration.  

After updating the parameters, the new preferential probabilities of alternatives 

are re-calculated according to Equations (6),   (7) and (8).  The above procure is 

iterated until converged.  
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8.3 Results 

Table 3 shows the iterative results of pr and qr. It shows that pr converges to 0.716 

after 5 iterations, while qr converges to 0.672 after 7 iterations. In the experiment, 

several initial estimates for p and q are tried, and all of them are converged to the same 

values.  

 

Table 3 Iterative Values of Parameters 

         Parameter 
Iteration 

pr qr 

1 0.4 0.5 
2 0.564 0.418 
3 0.694 0.546 
4 0.714 0.644 
5 0.716 0.668 
6 0.716 0.671 
7 0.716 0.672 
8 0.716 0.672 

 

Figure 2 shows the preferential probability evolution of three alternatives when 

the converged parameters are applied to the Preference Transition Model and the 

Utterance-Preference Model. The solid line with square dots stands for the evolution 

of probabilities that Alternative a1 is most preferred, the broken line with circle dots 

stands for the evolution of probabilities that Alternative a2 is most preferred, and the 

dotted line with triangle dots stands for the evolution of probabilities that Alternative 

a3 is most preferred. In terms of preferences, Figure 2 suggests that Alternative a1 and 

a3 dominate and that these two alternatives alternate with each other during the design 
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process. This conjecture from the chart is validated by a qualitative reading of the 

original transcript.   
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Figure 2  Design Process Evolution: Preferential Probabilities of the Three 

Alternatives 

 

Design sensitivity. Since the converged values of p and q are estimated with EM 

algorithm, they might vary from the true values. Let p ,q  be the converged values of p 

and q, and suppose p, q  are in the range with p ,q  shifting 10%. The evolutions of the 

preferential probabilities for the cases when p or/and q are underestimated or 

overestimated are plotted as shown in Figures 3-5. The gaps between the uppermost 

lines and the lowermost lines give the true value ranges that alternatives are most 
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preferred. In this example, qualitatively speaking, the true values of p and q are in 

close ranges of the converged p and q. Therefore, the preferential probabilities of 

design alternatives calculated based on p , q   can approximately describe the 

preferences over the design process. 
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Figure 3  Preferential Probability Ranges of Alternatives a1 
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Figure 4 Preferential Probability Ranges of Alternatives a2 
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Figure 5 Preferential Probability Ranges of Alternatives a3 
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9 Remarks and Discussions 

The methodology presented suggests a probabilistic way to describe the 

preference information in the design process and model the design selection process 

through the evolution of preferential probabilities. The results of applying the 

methodology to the case study are consistent with the qualitative reading of the design 

transcript. It was expected that design alternative choices would oscillate in a large-

scale system design problem, and this was true for the component selection problem 

which was chosen for the case study in this section.  

This methodology can also work as a way to implicitly extract the preference 

information which may be used in the further engineering decision making process. 

Comparing with the traditional preference elicitation method, this method is simply 

based on what designers say in the design discussion. It does not depend on the 

questionnaires or surveys of all team designers after finishing the design project.  

This study models the preference evolution using probabilistic approaches. The 

methodology in this section shows the main idea of modeling the relationship between 

the preferences of two consecutive time intervals and the relationship between the 

utterances and the preferences. The work developed in this report may lead to a novel 

way to understand the evolving nature of a team’s preferences over the life of a project. 
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