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Abstract— We derive, for a binary antipodal input signal, the
optimal uncoded regenerator function when the channels at the
ingress and at the egress of the regenerator are degraded by
AWGN. We show that the optimal function is a Lambert W
function parametrized on the energies of the noises and the input.
For comparison, we derive the performance of systems in which
the regenerator uses a hard limiter or an amplifier.

I. INTRODUCTION

The problem we pose is simple and , we believe, fundamen-
tal. Given a binary antipodal input signal and a channel with
band-limited additive white Gaussian noise (AWGN), what is
the symbol-wise optimum processing that can be performed
in-line to minimize the probability of error at the receiver.
Figure 1 shows the system we consider. We assume perfect
timing, as well as energy constraints at the transmitter and the
processor.
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Fig. 1. System under consideration

Since we consider an uncoded system, degradations caused
by the channel cannot be actually reversed. In this sense, un-
coded regeneration is impossible, since the processing applied
to attempt to remove the deleterious effects of the channel may
itself introduce errors. Fundamentally, unknown random noise
cannot be removed, as sometimes is assumed. The best we may
hope for is to process the signal is such a way as to improve
the bit error rate. Hence, it is more appropriate to speak of
processing rather than regeneration. The term regeneration,
however, is commonly used in the literature to describe in-line
processing to improve end-to-end performance, as we discuss
below. When discussing relevant results in the literature, we
shall therefore adopt the common term of regeneration, but
will prefer to speak of processing when discussing the function
to be performed in the processor of Figure 1.

The problem of uncoded regeneration for binary, generally
OOK, signals has been explored for many years. It was
originally investigated for coaxial systems [1], and is partic-
ularly relevant in optical transmission systems. The problem

of regenerators, sometimes called repeaters, is central to the
issue of creating optical-electronic-optical (OEO) elements
to counter the accumulation of noise in optical systems [2].
In optical transmission systems, the high transmission rates
generally associated with optical transmission may render
decoding/coding at the line rate overly onerous in terms of
delay and processing.

The literature for regeneration of binary signals is rich.
There is no single nomenclature for regeneration, but a fairly
common usage is that of 1R (linear amplification), 2R (am-
plification and repeater) and 3R (amplification, repeater and
retiming) [1], [3], [4]. The repeater is a non-linear function,
most commonly a hard limiter. 2R systems are a common
means of regeneration in optical systems [5]–[7] and many
3R systems have been demonstrated and proposed [8]–[10].
Unlike 3R systems, they do not require retiming and consid-
eration of jitter issues.

The vast majority of the literature on regeneration is con-
cerned with OOK signals, be they non-return to zero (NRZ)
or return to zero (RZ) (solitons and signals of the same kin
we subsume under ). Some authors have considered, either
theoretically or experimentally, systems such as ternary signal-
ing, quadrature phase-shift keying (QPSK) and frequency-shift
keying (FSK).

Almost all of the body of literature dealing with regenera-
tion discussed above assumes that the nonlinear function is a
hard-limiter. The problem of observing through hard limiters
noise [11], [12], noise-contaminated signals [13]–[15] and
various sinusoids [16] is a classic problem in communication
theory. More general non-linearities have been considered for
phase-modulated signals [17], noise-contaminated signals [18]
and Markov processes in general [19].

None of the the above work, however establish whether the
commonly used hard limiter is indeed the best function to
perform regeneration, or what other function may be optimal.
Attempts at comparing the performance of different functions
in regeneration have been limited. In [2], the authors consider
three different non-linear functions in a cascade of repeaters or
regenerators. The three different filters are chosen heuristically
and their optimality is not considered.

In this work, we consider the optimal processing (regener-
ation) function for a binary antipodal signaling system with



band-limited AWGN. We assume perfect synchronicity. Thus,
we do not consider issues of sampling, such as arise in hard-
limited systems [20].

In Section II, we present our channel model and the
problem we investigate. In Section III and IV we analyze the
performance of an amplifier and a hard decoder respectively.
In Section V, we design the optimal relay and analyze its
performance. We show that the optimal relay consists of a
Lambert function, whose parameters vary with the channel and
signal characteristics. In particular, for low SNR regimes, the
Lambert function resembles a hard limiter, and for high SNR
regimes it resembles an amplifier. Our result are congruent
with the extensive family of empirical observations in this area,
which indicate that low SNR regimes call for hard limiters,
whereas high SNR regimes are well served by amplifiers.
In Section VI, we provide conclusions and directions for
generalizing our results.

II. CHANNEL MODEL

We consider the following discrete-time model for the relay
channel

Y = f(X + N) + Z,

where X is the channel input, Y the output, and N and Z
are independent Gaussian random variables with mean zero
and variance σ2

1 and σ2
2 respectively. To accommodate for

energy limitations we impose on the input X an average power
constraint: E

[|X|2] ≤ P1(�= 0), as well as on the output
of the relay: E

[|f(X + N)|2] ≤ P2(�= 0). For notational
convenience we define random variables U = X + N , and
V = f(U).

Furthermore, binary phase shift keying is assumed at the
input, i.e. the input random variable X is considered is

X =
{ √

P1, with probability 1/2
−√

P1, with probability 1/2.

Since the system is uncoded, the receiver is assumed to
perform a binary hypothesis test to decide which symbol was
transmitted.

The objective of this study is to quantify the average
probability of error of some of the relays suggested in the
literature and design the optimal relay, that is, the one that
minimizes this average probability of error.

Overall, in addition to designing the optimal relay, we
consider two schemes:

1) Amplifying or scaling, in which case the function f(.)
is linear. We will refer to this case as scheme (1).

2) Hard decision, where the output of the relay is a scaled
hard decision on the input. We will refer to this case as
scheme (2).

III. AMPLIFIER

In this section we conduct the probability of error analysis
when an “amplifier” is used, or more precisely a linear
function f(.) is used.

To guarantee an average power constraint of P2 at the output
of the relay, the function f(.) is equal to

f(t) =

√
P2

P1 + σ2
1

t,

which yields an output

Y =

√
P2

P1 + σ2
1

(X + N) + Z

=

√
P2

P1 + σ2
1

X +

(√
P2

P1 + σ2
1

N + Z

)
.

Therefore, given x was transmitted, the conditional proba-
bility density function of the output Y is equal to

pY |X(y|x) ∼ N
(√

P2

P1 + σ2
1

X;
P2σ

2
1

P1 + σ2
1

+ σ2
2

)
,

and the optimal decision rule is to decide on
√

P1 if y ≥ 0
and on −√

P1 otherwise.
Hence, the average probability of error of this scheme is

Pe(1) =
1
2

∫ 0

−∞
N
(

u;

√
P2P1

P1 + σ2
1

,
P2σ

2
1

P1 + σ2
1

+ σ2
2

)
du

+
1
2

∫ ∞

0

N
(

u;−
√

P2P1

P1 + σ2
1

,
P2σ

2
1

P1 + σ2
1

+ σ2
2

)
du

=
∫ ∞
√

P2P1
P1+σ2

1

N
(

u; 0,
P2σ

2
1

P1 + σ2
1

+ σ2
2

)
du.

IV. HARD DECISION

In this scheme, the relay first performs hard decisions to
decide using binary hypothesis testing on the input, then to
satisfy the relay’s output average energy constraint,

√
P2 and

−√
P2 are transmitted.

pY |X(y|
√

P1) = pY,V |X(y,
√

P2|
√

P1)

+ pY,V |X(y,−
√

P2|
√

P1)

= pV |X(
√

P2|
√

P1)pY |V (y|
√

P2)

+ pV |X(−
√

P2|
√

P1)pY |V (y| −
√

P2)

= pV |X(
√

P2|
√

P1)N
(
y;
√

P2, σ
2
2

)
+ pV |X(−

√
P2|
√

P1)N
(
y;−
√

P2, σ
2
2

)
.

The optimal decision rule at the receiver is to decide on√
P1 if y ≥ 0 and on −√

P1 otherwise. Note that an error
event occurs if either an error occurs at the relay and no error
afterward, or no error occurs at the relay and then an error
occurs at the receiver. The average probability of error is, after
manipulation, given by

Pe(2) =
∫ ∞
√

P1

N (u; 0, σ2
1

)
du

∫ ∞

−√
P2

N (u; 0, σ2
2

)
du

+
∫ ∞

−√
P1

N (u; 0, σ2
1

)
du

∫ ∞
√

P2

N (u; 0, σ2
2

)
du.



V. OPTIMAL RELAY

In this section we minimize the average probability of error
over the set of sign-preserving symmetric functions f(.). We
first derive the average probability for any such function f(.).

Lemma 1: If f(.) is a sign preserving function then the
optimal decision rule is to decide on

√
P1 if y ≥ 0 and on

−√
P1 otherwise.
Proof: Note first that the probability law of the output

given the input and a relay function f(.) is given by

pY |X(y|x) =
∫ ∞

−∞
pU |X(u|x)N (y; f(u), σ2

2

)
du

=
∫ ∞

−∞
N (u;x, σ2

1

)N (y − f(u); 0, σ2
2

)
du.

Therefore, the likelihood ratio is

l =

∫∞
−∞ N (u;

√
P1, σ

2
1

)N (y − f(u); 0, σ2
2

)
du∫∞

−∞ N (u;−√
P1, σ2

1

)N (y − f(u); 0, σ2
2) du

.

The difference between the numerator and denominator may
be simplified as follows:∫ ∞

−∞
N
(
u;
√

P1, σ
2
1

)
N (y − f(u); 0, σ2

2

)
du

−
∫ ∞

−∞
N
(
u;−
√

P1, σ
2
1

)
N (y − f(u); 0, σ2

2

)
du

=
∫ ∞

0

[
N
(
u;
√

P1, σ
2
1

)
−N

(
u;−
√

P1, σ
2
1

)]
[N (y − f(u); 0, σ2

2

)−N (y − f(−u); 0, σ2
2

)]
du.

While the first difference is non-negative because u ≥ 0, the
second difference is also non-negative for y ≥ 0 if f(u) is
non-negative in the range of the integration.

The average probability of error is hence given (after
manipulation) by

Pe(f) =
1
2

∞∫
−∞

N
(
u;
√

P1, σ
2
1

)
∞∫

f(u)

N (y; 0, σ2
2

)
dy


 du +

1
2

∞∫
−∞

N
(
u;−
√

P1, σ
2
1

)
∞∫

−f(u)

N (y; 0, σ2
2

)
dy


 du

If furthermore, f(.) is symmetric, i.e. f(−u) = −f(u),
then by changing u to −u in the first term we obtain, after
manipulation,

Pe(f) =

∞∫
−∞

N
(
u;−
√

P1, σ
2
1

)
∞∫

−f(u)

N (y; 0, σ2
2

)
dy


 du.

(1)
Next, we minimize the average probability of error over all

suitable choices of f(.). To prove achievability and existence
of an optimal solution, we first establish the convexity of the
optimization set and then we show that the objective function

is convex. Finally we use functional analysis tools to find an
optimal solution.

Lemma 2: The set Ω of sign-preserving, symmetric real
functions with

∞∫
−∞

[
N
(
u;−
√

P1, σ
2
1

)
+ N

(
u;
√

P1, σ
2
1

)]
f2(u)du ≤ P2

is a convex set.

Proof: Let f and g be two functions in Ω and let λ be a
real non-negative number less or equal to one. Consider now
the function h(x) = λf(x)+(1−λ)g(x). Since λ and (1−λ)
are both non-negative, if x < 0 then f(x) ≤ 0 as well as
g(x) ≤ 0 which implies that h(x) ≤ 0. Similarly for x ≥ 0,
h(x) ≥ 0, which proves that h is sign-preserving.

Furthermore,

h(−x) = λf(−x) + (1 − λ)g(−x)
= −λf(x) − (1 − λ)g(x) = −h(x),

and hence h is symmetric. Moreover, since x2 is convex,

∞∫
−∞

[
N
(
u;−
√

P1, σ
2
1

)
+ N

(
u;
√

P1, σ
2
1

)]
h2(u)du ≤ P2

Lemma 3: The objective function (1) is convex.

Proof: Using equation (1), if a relay f is used, the
resulting average probability of error Pe(f) is given by

Pe(f) =
∫ 0

−∞
N
(
u;
√

P1, σ
2
1

)
du

+

0∫
−∞

[
N
(
u;−
√

P1, σ
2
1

)
−N

(
u;
√

P1, σ
2
1

)]



∞∫
−f(u)

N (y; 0, σ2
2

)
dy


 du,

where we have omitted intermediary manipulation steps.

Note first that,

∫ ∞

x

N (y; 0, σ2
2

)
dy, (2)

is a strictly convex function of x over the range x ≥ 0.



Hence, if f & g are in Ω and λ ∈ [0, 1] and γ = 1 − λ,

Pe(λf + γg)

≤ λ

∫ 0

−∞
N
(
u;
√

P1, σ
2
1

)
du

+ λ

∫ 0

−∞

[
N
(
u;−
√

P1, σ
2
1

)
−N

(
u;
√

P1, σ
2
1

)]
[∫ ∞

−f(u)

N (y; 0, σ2
2

)
dy

]
du

+ γ

∫ 0

−∞
N
(
u;
√

P1, σ
2
1

)
du

+ γ

∫ 0

−∞

[
N
(
u;−
√

P1, σ
2
1

)
−N

(
u;
√

P1, σ
2
1

)]
[∫ ∞

−g(u)

N (y; 0, σ2
2

)
dy

]
du

= λPe(f) + γPe(g).

Finally, note that since function (2) is strictly convex, the ob-
jective function is strictly convex (when considering functions
that differ on a set of non-zero measure.) Stated differently, the
minimum probability achieving function f is unique modulo
differences on a set of zero measure.

To accommodate for the average power constraint at the
output of the relay, we use the Lagrangian theorem and
minimize the objective function

ob(f) = Pe(f) + λ(E
[
f2(U)

]− P2)

= Pe(f) +
λ

2

∞∫
−∞

[
N
(
u;−
√

P1, σ
2
1

)
+ N

(
u;
√

P1, σ
2
1

)]

[f2(u) − P2]du,

where λ is the Lagrange multiplier of the average power
constraint E

[
f2(U)

] ≤ P2, and satisfies the equation
λ(E
[
f2

o (U)
]− P2) = 0.

Theorem 5.1: The optimal relay function fo is given by

fo(u) =




√√√√√σ2
2LambertW


2
(

tanh

(
u

√
P1

σ2
1

))2

(λ2σ2
2
√

π)2


 u ≥ 0,

−fo(−u) u < 0
(3)

where λ is such that
∞∫

−∞

[
N
(
u;−
√

P1, σ
2
1

)
+ N

(
u;
√

P1, σ
2
1

)]
f2

o (u)du = 2P2

and LambertW (x) is Lambert’s W function analytic at 0.
Proof: By convexity of the problem, a necessary and

sufficient condition for the optimality of fo is

lim
ε→0+

ob((1 − ε)fo + εg) − ob(fo)
ε

= lim
ε→0+

ob(fo + ε(g − fo)) − ob(fo)
ε

≥ 0,

for all functions g ∈ Ω. First, observe that∫ ∞

−fo−ε(g−fo)

h(x)dx −
∫ ∞

−fo

h(x)dx

=
∫ −fo

−fo−ε(g−fo)

h(x)dx = εh(−fo)(g − fo) + o(ε2)

Also,∫ ∞

−∞
pU (u) [fo(u) + ε(g(u) − fo(u))]2 du − P2

−
(∫ ∞

−∞
pU (u)f2

o (u)du − P2

)

=
∫ ∞

−∞
pU (u)ε[g(u) − fo(u)] [2fo(u) + ε(g(u) − fo(u))] du

=
∫ ∞

−∞
pU (u)fo(u)ε(g(u) − fo(u))du + o(ε2)

In conclusion,

lim
ε→0+

ob(fo + ε(g − fo)) − ob(fo)
ε

=
∫ 0

−∞

[
N
(
u;−
√

P1, σ
2
1

)
−N

(
u;
√

P1, σ
2
1

)]
[N (−fo(u); 0, σ2

2

)
(g(u) − fo(u))

]
du

+ λ

∫ ∞

−∞

[
N
(
u;−
√

P1, σ
2
1

)
+ N

(
u;
√

P1, σ
2
1

)]
[fo(u)(g(u) − fo(u))] du.

Finally, the last step in the proof is to show that for fo(u)
given in equation (3),[
N
(
u;−
√

P1, σ
2
1

)
−N

(
u;
√

P1, σ
2
1

)]
N (−fo(u); 0, σ2

2

)
+ λ
[
N
(
u;−
√

P1, σ
2
1

)
+ N

(
u;
√

P1, σ
2
1

)]
fo(u) = 0,

for all negative values of u, or equivalently,

N (−fo(u); 0, σ2
2

)
−fo(u)

=
e−(−fo(u)/

√
2σ2

2)2

2
√

πσ2
2(−fo(u)/

√
2σ2

2)

= λ
N (u;−√

P1, σ
2
1

)
+ N (u;

√
P1, σ

2
1

)
N (u;−√

P1, σ2
1

)−N (u;
√

P1, σ2
1

) ,
which can be further simplified to

e−(−fo(u)/
√

2σ2
2)2

(−fo(u)/
√

2σ2
2)

=
λ2

√
πσ2

2

tanh
(

−u
√

P1
σ2
1

) . (4)

Which is satisfied due to the fact that
LambertW (x)eLambertW (x) = x.

Note that the optimal relay is not bounded to
√

P2 like
the hard limiter, and it does not increase linearly with x as
the amplifier. Also, the optimal relay is a function of all four
parameters P1, P2, σ

2
1 and σ2

2 . Figure 2 shows a plot of the
optimal relay for values of P1, P2, σ

2
1 and σ2

2 all equal to 10.
As the value of noise variances decreases, the optimal relay
looks closer like a hard limiter, and in the opposite case, it is
more similar to an amplifier.
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Fig. 2. Optimal Relay (solid line), Amplifier (dashed line) and Hard-Limiter
(dotted)

Numerically, we computed the performance of an amplifier,
a hard limiter, and the optimal relay. Figure 3 shows the
relative difference between the probability of error with the
optimal relay and that achieved when using a hard limiter. The
powers P1 and P2 where taken to be 10 and the variances of
σ2

1 and σ2
2 are represented on the axes.
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Fig. 3. Relative difference with respect to a hard-limiter

VI. CONCLUSIONS

We have derived the general form of the function of
the regenerator for binary antipodal signals in AWGN. The
Lambert function we have derived resembles, in the high and
low SNR cases, to a hard limiter and amplifier, respectively.

Our results may be readily extended to the case of OOK
binary signaling. In optical transmission systems, OOK is
the most common signaling scheme. The high transmission
rates generally associated with optical transmission may render
decoding/coding at the line rate overly onerous in terms of
delay and processing. The receiver noise can be well modeled,
at sufficiently high signal-to-noise ratio (SNR), as AWGN,
without the need to consider Poisson models that are more
relevant in the low-photon regime count. Other noise, such as
amplitude-stimulated emission (ASE) from amplifiers such as
Erbium-Doped Fiber Amplifiers (EDFAs) is also well modeled

as AWGN. The problem we consider is also relevant to other
transmission scenarios, such as low SNR communications in
wireless settings where OOK is generally well-suited.

REFERENCES

[1] H. Marko, R. Weiß, and G. Binkert, “A digital hybrid transmission
system for 280 Mbits/s and 560 Mbits/s,” in European Conference on
Optical Communication (ECOC), vol. 4, 2001, pp. 574 –575.
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