
A Doubly Distributed Genetic Algorithm
for Network Coding

Minkyu Kim∗, Varun Aggarwal†, Una-May O’Reilly†, Muriel Médard∗
∗Laboratory for Information and Decision Systems

†Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{minkyu@, varun ag@, unamay@csail., medard@}mit.edu

ABSTRACT
We present a genetic algorithm which is distributed in two
novel ways: along genotype and temporal axes. Our algo-
rithm first distributes, for every member of the population,
a subset of the genotype to each network node, rather than
a subset of the population to each. This genotype distri-
bution is shown to offer a significant gain in running time.
Then, for efficient use of the computational resources in the
network, our algorithm divides the candidate solutions into
pipelined sets and thus the distribution is in the temporal
domain, rather that in the spatial domain. This temporal
distribution may lead to temporal inconsistency in selection
and replacement, however our experiments yield better effi-
ciency in terms of the time to convergence without incurring
significant penalties.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign

General Terms: Algorithms

Keywords: Distributed genetic algorithm, network coding,
optimization

1. INTRODUCTION
We present a GA which is distributed in two novel ways:

along genotype and temporal axes. In contrast to a con-
ventional GA spatially distributed on the population axis,
our doubly distributed algorithm first distributes, for every
member of the population, a subset of the genotype to each
network node rather than a subset of the population to each.
The motivation for this genotype axis of distribution is to
distribute the fitness evaluation steps of the Network Cod-
ing GA (NCGA) [8] which relies on network codes generated
randomly and in a decentralized manner. Self-referentially,
the GA solving the network coding problem must be em-
bedded in the same network for which it is searching for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

optimal coding. With just this axis of distribution, the dis-
tributed NCGA equals the performance of the (centralized)
NCGA in terms of solution quality. However, as experiments
herein suggest, it can lead to a significant gain in running
time.

The motivation for the second axis of distribution is to
maximize the efficient use of the computational nodes in
the network by minimizing their idle duration during the
GA search. Along this second, temporal axis of distribution,
successive sets of candidate solutions are pipelined through
the network, from source to sinks and back. A time lag is
incurred as the selected candidate travels through the net-
work to undergo variation and fitness evaluation before it
is inserted back into the population. This creates an age
gap between the population from which a candidate solu-
tion is selected and the population into which it is inserted
and leads to the question of how selection and replacement
in the doubly distributed GA should proceed. The ap-
proach that is least efficient in terms of time, treats multiple
pipelined sets of candidates as components of a single pop-
ulation that proceeds in an age-synchronized, generational
style for selection and replacement. It sends pipelined sets
of selected candidates through the network but waits un-
til every set has emerged back out before replacing any of
them. We show that this approach, which we term “Gen-
erational/Single Population,” incurs a cost of priming and
flushing the pipeline but is faster than not pipelining at all.

To avoid intermittently flushing the pipeline and then
needing to prime it again, our first approach is to divide the
population into a number of subpopulations and insert se-
lected then genetically varied individuals back into the same
subpopulation they were selected from. Migration between
sub-populations occurs at some specified frequency regard-
less of a slight age difference which maintains close tempo-
ral consistency. We call this approach “Generational/Multi-
population.”

Alternatively, we can be intentionally “sloppy” and forgo
any temporal consistency. Much like a steady state GA,
a single population is steadily updated. However, unlike a
steady state GA, regardless of the time gap (between when
a candidate is selected, genetically varied, then evaluated
for fitness and when an attempt is made to insert it into
the population), insertion simply proceeds with the cur-
rent population as new candidates emerge processed from
the network. In addition to yielding a simple algorithm,
the “temporally sloppy” approach crudely approximates the
asynchronously timed selection, reproduction and replace-

1272

ment events of a naturally evolving population. We dub
this “Non-generational/Single population.”

Pipelining increases the number of evaluations per time
unit. The Generational/Multi-population and Generational/
Single population approaches are constrained to respect age
synchrony between selection and replacement. But the Non-
generational/Single population approach does not and, there-
fore, will have different and as yet unexplored dynamics.
Will it converge with more or less fitness evaluations? Does
the efficiency of pipelining produce a faster time to con-
vergence? Will it find quality solutions? We explore these
questions in the experiments.

Though the proposed algorithm is discussed in the context
of network coding, the contributions of this paper are not
limited within that scope. 1) A genetic algorithm with the
proposed two novel methods of distribution can be readily
applied to a variety of other optimization scenarios arising
in communication networks (e.g., routing, resource alloca-
tion, etc.) or other connected systems where local decision
variables are to be specified for the optimal performance
of the whole system. 2) Furthermore, the proposed frame-
work of temporal axis distribution can be combined with,
not only the pipelining methods considered in this paper,
a fairly general class of state-of-the-art strategies for paral-
lel management of populations and communication between
populations (e.g., [2, 14]), because it imposes essentially no
constraint on the implementation of any such strategies ex-
cept that there is slight temporal inconsistency between pop-
ulations, which as shown in this paper may also have little
effect to other strategies.

The rest of the paper is organized as follows. Section 2
describes and formulates the network coding problem. Sec-
tion 3 describes the NCGA which serves as a baseline. Sec-
tion 4 motivates and describes distributing the NCGA along
the genotype axis. Section 5 motivates the distribution
along the temporal axis and describes three pipelined ap-
proaches. Section 6 experimentally quantifies the advan-
tage of distribution on the genotype axis and compares the
pipelined approaches. Section 7 concludes.

2. NETWORK CODING
Network coding is a novel technique that generalizes rout-

ing. In traditional routing, each interior network node, which
is not a source or sink node, simply forwards the received
data or sends out multiple copies of it. In contrast, net-
work coding allows interior network nodes to perform arbi-
trary mathematical operations, e.g., summation or subtrac-
tion, to combine the data received from different links. It
is well known that network throughput can be significantly
increased by network coding [1, 12]. While network coding
is assumed to be done at all possible nodes in most of the
network coding literature, it is often the case that network
coding is required only at a subset of nodes to achieve the
desired throughput. Consider Example 1:

Example 1. In the canonical example of network B (Fig-
ure 1(a)) [1], where each link has unit capacity, source s can
send 2 units of data simultaneously to sinks t1 and t2, which
is not possible with routing alone. But only node z needs to
combine its two inputs while all other nodes perform routing
only. If we suppose that link (z, w) in network B has capac-
ity 2, which we represent by two parallel unit-capacity links
in network B′ (Figure 1(b)), a multicast of rate 2 is possible

without network coding. In network C (Figure 1(c)), where
node s is to transmit data at rate 2 to the 3 leaf nodes, net-
work coding is required either at node a or at node b, but not
at both. �

t1

s

t2

x y

z

w

a b

a b

a a b b

a b a b

(a) Network B

t1

s

t2

x y

z

w

a b

a b

a ba b

b a

(b) Network B′

t1

s

t3

x z

a

c

b

d

t2

y

a b

a b

a

a

a b

a b a b

b

b

b b

a

(c) Network C

Figure 1: Sample networks for Example 1

Example 1 leads us to the following question: To achieve
the desired throughput, at which nodes does network coding
need to occur? The problem of determining a minimal set
of nodes where coding is required is NP-hard; its decision
problem, which decides whether the given multicast rate
is achievable without coding, reduces to a multiple Steiner
subgraph problem, which is NP-hard [13]. For a GA, the
problem can be posed as the minimization of coding cost
(in links or nodes) subject to the constraint of feasibility
(achieving the desired throughput).

2.1 Problem Formulation
We assume that a network is given by a directed multi-

graph G = (V, E) as in [10] where each link has a unit
capacity whose unit can be arbitrarily chosen, e.g., P bits
per second for a constant P , or a fixed size packet per unit
time, etc. Links with larger capacities are represented by
multiple links. Only integer flows are allowed, hence there
is either no flow or a unit rate of flow on each link. We con-
sider the single multicast scenario in which a single source
s ∈ V wishes to transmit data at rate R to a set T ⊂ V of
sink nodes. Rate R is said to be achievable if there exists
a transmission scheme that enables all |T | sinks to receive
all of the information sent. We only consider linear coding,
where a node’s output on an outgoing link is a linear combi-
nation of the inputs from its incoming links. Linear coding
is sufficient for multicast [12].

Given an achievable rate R, we wish to determine a mini-
mal set of nodes where coding is required in order to achieve
this rate. However, whether coding is necessary at a node
is determined by whether coding is necessary at at least one
of the node’s outgoing links and thus, as pointed out also
in [11], the number of coding links is in fact a more accurate
estimator of the amount of computation incurred by coding.
We assume hereafter that our objective is to minimize the
number of coding links rather than nodes.

It is clear that no coding is required at a node with only
a single input since these nodes have nothing to combine
with [8]. For a node with multiple incoming links, which
we refer to as a merging node, if the linearly coded output
to a particular outgoing link weights all but one incoming
message by zero, effectively no coding occurs on that link;
even if the only nonzero coefficient is not identity, there is
another coding scheme that replaces the coefficient by iden-
tity [11]. Thus, to determine whether coding is necessary
at an outgoing link of a merging node, we need to verify
whether we can constrain the output of the link to depend

1273

on a single input without destroying the achievability of the
given rate. As in network C of Example 1, the necessity
of coding at a link depends on which other links code and
thus the problem of deciding where to perform network cod-
ing in general involves a selection out of exponentially many
possible choices. Employing a GA-based search method effi-
ciently addresses the large and exponentially scaling size of
the space.

3. NETWORK CODING GA ("A")
In the network research community, [8] and [9] have doc-

umented results that demonstrate the benefit of the NCGA
over other existing approaches in terms of reducing the num-
ber of coding links or nodes and its applicability to a variety
of generalized scenarios. In the GA community, [7] has in-
vestigated two different genotype encodings1 and associated
operators. Reference [7]’s main finding is that the encoding
and the genetic operators that respect the block structure
of the problem, which will be detailed later, substantially
outperforms those do not. It is also claimed that such supe-
rior performance is mainly due to the modularity enforced
by the block-wise genetic operators.

We first describe the elements of the NCGA that uses a
standard generation-based GA control loop with centralized
operations. This centralized NCGA, which we refer to as
“Algorithm A,” serves as a baseline approach in compar-
ison with the distributed versions of the algorithm, which
share the GA elements introduced in this section.

3.1 Genotype Encoding
Suppose a merging node with k(≥ 2) incoming links. To

consider the transmission to each of its outgoing links, we as-
sign a binary variable to each of its k incoming links, whose
being 1 indicates that the link state is active (the input from
the associated incoming link is transmitted to the outgoing
link) and 0 indicates it is inactive. Given that network cod-
ing is required for the transmission only if two or more link
states are active, we may need to consider those k variables
together. We refer to the set of the k variables as a block of
length k (see Figure 2 for an example).

v

x1 x2 x3

y1 y2

(a) Merging node v

v’

x1 x2 x3

y1

v”

x1 x2 x3

y2

1 0 1 0 1 1

block for y1 block for y2

(b) Two blocks for outgoing links of v

Figure 2: Node v with 3 incoming and 2 outgoing
links results in 2 blocks, each with 3 variables in-
dicating the states of incoming links (x1, x2, x3) onto
the associated outgoing link.

We notice that once a block has at least two 1’s, coding is
already required on the outgoing link associated with that
block, and thus replacing all the remaining 0’s with 1’s has

1To minimize confusion, throughout the paper, the term
“encoding” refers to “genotype encoding” only, while the
term “coding” means “network coding.”

no effect on whether coding is done. Moreover, it can be
shown that substituting 0 with 1, as opposed to substitut-
ing 1 with 0, does not hurt the feasibility. Therefore, for a
feasible genotype (which is defined below), any block with
two or more 1’s can be treated the same as the block with
all 1’s. Thus we could group all the states with two or more
active links into a single state, coded transmission. This
state is rounded out by k states for the uncoded transmis-
sions of the input received from one of the k single incom-
ing links and one state indicating no transmission. Thus,
each block of length k can only take one of the following
(k + 2) strings: “111...1”, “100...0”, “010...0”, “001...0”, ...,
“000...1”, “000...0”. If we denote by dv

in and dv
out the in-

degree and the out-degree of node v, node v has dv
out blocks

of length dv
in, and thus we have the search space of size

m =
Q

v∈V(dv
in + 2)dv

out , where V is the set of all merging
nodes.

3.2 Constraint and Fitness Function
A genotype is called feasible if there exists a network cod-

ing scheme that achieves the given rate R with the link states
determined by the genotype. For the feasibility test of a
genotype, we rely on the algebraic method described in [9],
which later enables a distributed feasibility test. Given the
feasibility of genotype y, its fitness value F is assigned as

F (y) =

(
number of coding links, if y is feasible,

∞, if y is infeasible,

where the number of coding links can be easily calculated
by counting the number of blocks in the genotype with at
least two 1’s.

3.3 Genetic Operators
To preserve the above encoding structure, we need to de-

fine a new set of genetic operators, which we refer to as block-
wise genetic operators. For block-wise uniform crossover, we
let two genotypes subject to crossover exchange each block,
rather than bit, independently with the given crossover prob-
ability. For block-wise mutation, we let each block under
mutation take another string chosen uniformly at random
out of (k + 1) other strings for a length-k block.

3.4 Other Elements
The NCGA evaluates fitness in a multi-step way: 1) each

merging node consults the corresponding genotype blocks
to compute random linear combinations of the inputs2, 2)
alternately routed messages reach the sinks, 3) the feasibility
of the genotype is assessed at the sinks, 4) if feasible, the
coding links are counted.

The NCGA uses tournament selection and terminates at
some maximum number of generations. Afterward, the best
solution of the run is optimized with greedy sweep: each of
the remaining 1’s is switched to 0 if it can be done without
violating feasibility. This procedure can only improve the
solution, and sometimes the improvement can be substantial
[9].

4. GENOTYPE AXIS DISTRIBUTION ("B")
Decentralizing the NCGA enables a network coding proto-

col where the resources used for coding are optimized on the

2See [6] for an explanation of why this is sufficient.

1274

fly in a setup phase. Plus, distribution reduces the computa-
tional efficiency of the algebraic feasibility test (see Section
4.4 for details). We refer to this genotype(only)-distributed
NCGA as “Algorithm B.”

4.1 Overview
Because of the way network coding depends on each merg-

ing node contributing to the coding, and because each merg-
ing node references its corresponding block on a genotype,
the appropriate way to distribute the NCGA is to have each
node handle only the blocks it needs from every member
of the population. So, instead of dividing up the popula-
tion and giving each island a subset of genotypes, we divide
up the genotype of every population member and give each
merging node a population wide set of that genotype sub-
set. Thus, in contrast to a conventional distributed GA,
the axis of distribution is genotype rather than population
as illustrated in Figure 3. The previously centralized fitness
evaluation steps are transformed into: 1) forward evaluation
stage from merging nodes to each sink 2) backward evalua-
tion stage from sinks to source and 3) fitness calculation at
the source. With some amount of additional message infor-
mation and coordination, all genetic operations can be done
locally at each merging node. See Figure 4 for the overall
structure.

1 1 1 0 0 0 1...
0 1 0 1 1 0 1...
0 0 1 1 1 1 0...

1 1 1 1 1 0 1...
: : : : : : ::

N
Genotypes

Each block indicates transmission state of an outgoing link

0 1

1 1

0 0

0 0

: :

0 1

1 1

1 0

0 0

: :

1 0

0 0

0 1

1 1

: :

1

0

1

1

:

...

Each set of blocks determines local operations at a node,
thus can be managed locally at that node

...

Figure 3: Structure of Population

[P1] preliminary processing; (all nodes)
[P2] initialize population; (merging nodes)
[P3] run forward evaluation phase; (all nodes)
[P4] run backward evaluation phase; (all nodes)
[P5] calculate fitness; (source)
[P6] while termination criterion not reached (source)
 {
[P7] calculate coordination vector; (source)
[P8] run forward evaluation phase; (all nodes)
[P9] perform selection, crossover, mutation; (merging nodes)
[P10] run backward evaluation phase; (all nodes)
[P11] calculate fitness; (source)
 }
[P12] perform greedy sweep; (all nodes)

Figure 4: Flow of Genotype-Distributed NCGA

4.2 Assumptions
While we assume that each link can transmit one packet

with the fixed size, say P bits, per time unit in the given
direction, each link is also assumed to be able to send some
amount of feedback data, typically much smaller than the
packet size, in the reverse direction. Also, we assume that
each interior node operates in a burst-oriented mode; i.e., for
the forward (backward) evaluation phase, each node starts

updating its output only after an updated input has been
received from all incoming (outgoing) links.

4.3 Details of Genotype-Distributed Algorithm

4.3.1 Preliminary Processing [P1]

The source initiates the algorithm by transmitting the
“optimize” signal containing the following predetermined
parameters: target multicast rate R, population size N , the
size q of the finite field to be used, crossover probability, and
mutation rate. Each participating node that has received
the signal passes the signal to its downstream nodes.

4.3.2 Population Initialization [P2]

Each merging node with din(≥ 2) incoming links will man-
age a coding vector indicating the link states per population
member. To initialize its subset of the population, each
merging node generates N · din · dout binary numbers ran-
domly. Then, for the coding vectors corresponding to the
first of the N chromosomes, all the components are set to
1 [8].

4.3.3 Forward Evaluation Phase [P3, P8]

For the feasibility test of a chromosome, each node trans-
mits a vector consisting of R components, which we refer
to as a pilot vector. Each of its the components is from the
finite field Fq and the i-th component represents the coeffi-
cient used to encode the i-th source data. We assume that
a set of N pilot vectors is transmitted together by a single
packet.

The source initiates the forward evaluation phase by send-
ing out on each of its outgoing links a set of N random pilot
vectors. Each non-merging node simply forwards all the pi-
lot vectors received from its incoming link to all its outgoing
links.

Each merging node transmits on each of its outgoing links
a random linear combination of the received pilot vectors,
computed based on the node’s coding vectors as follows.
Let us consider a particular outgoing link and denote the
associated din coding vectors by v1, v2, ..., vdin . For the
i-th (1 ≤ i ≤ N) output pilot vector ui, we denote the i-th
input pilot vectors received form the incoming links by w1,
w2, ..., wdin . Define the set J of indices as

J = {1 ≤ j ≤ din| the i-th component of vj is 1}.
Then,

ui =
X
j∈J

wj · rand(Fq),

where rand(Fq) denotes a random element from Fq. If the
set J is empty, ui is assumed to be zero.

4.3.4 Backward Evaluation Phase [P4, P10]

To calculate a chromosome’s fitness value, two kinds of
information need to be gathered: 1) whether each sink can
decode data of rate R and 2) how many links are used for
coding at each merging node.

Each sink can determine whether data of rate R is de-
codable for each of the N chromosomes by computing the
rank of the collection of received pilot vectors. It is worth to
point out that this is the same algebraic evaluation method
described in [8], but the difference is that, rather than com-
puting the system matrix with randomized elements cen-
trally, now we actually construct random linear codes over

1275

the network in a decentralized fashion. Hence, this feasi-
bility test also bears the same, but uncritical, possibility of
errors as in the centralized case. Regarding the number of
coding links, each merging node can simply count the num-
ber links where coding is required by inspecting its coding
vectors used in the forward evaluation phase.

For the feedback of this information, each node transmits
a vector consisting of N components, which is referred to as
a fitness vector. The backward evaluation phase proceeds as
follows:

• After the feasibility tests of the N chromosomes are
done, each sink generates a fitness vector whose i-th
(1 ≤ i ≤ N) component is zero if the i-th chromosome
is feasible at the sink, and infinity otherwise. Each
sink then initiates the backward evaluation phase by
transmitting its fitness vector to all of its parents.

• Each interior node calculates its own fitness vector
whose i-th (1 ≤ i ≤ N) component is the number
of coding links at the node for the i-th chromosome
plus the sum of all the i-th components of the received
fitness vectors. Each node then transmits the calcu-
lated fitness vector to only one of its parents, and an
all-zero fitness vector (for just signaling) to the other
parent nodes.

Note that, since the network is assumed to be acyclic, each
coding link of a chromosome contributes exactly once to
the corresponding component of the source node’s fitness
vector, and thus the above update procedure provides the
source with the correct total number of coding links.

4.3.5 Fitness Calculation [P5, P11]

The source calculates the fitness values of N chromosomes
simply by component-wise summation of the received fitness
vectors. Note that if an infinity were generated by any of
the sinks, it should dominate the summations all the way up
to the source, and thus the source can calculate the correct
fitness value for the infeasible chromosome.

4.3.6 Termination Criterion [P6]

The source can determine when to terminate the optimiza-
tion by counting the number of generations iterated thus far.

4.3.7 Coordination Vector Calculation [P7]

Since the population is divided into subsets that are man-
aged at the merging nodes, genetic operations also need
to be done locally at the merging nodes. However, some
amount of coordination is required for consistent genetic
operations throughout all the merging nodes, more specif-
ically, for 1) selection of chromosomes, 2) paring of chro-
mosomes for crossover, and 3) whether each pair is subject
to crossover. This information is carried by a coordination
vector, calculated at the source, consisting of the indices of
selected chromosomes that are randomly paired and 1-bit
data for each pair indicating whether the pair needs to be
crossed over. The coordination vector is transmitted together
with the pilot vectors in the next forward evaluation phase.

4.3.8 Genetic Operations [P8]

Based on the received coordination vector, each merging
node can locally perform genetic operations and renew its
portion of the population as follows:

• For selection, each node only retains the coding vec-
tors that correspond to the indices of selected chromo-
somes.

• For block-wise crossover, each node independently de-
termines whether each block is crossed over. Since no
block is shared by multiple merging nodes, this can be
done independently at each merging node.

• For block-wise mutation, each node independently de-
termines whether each block is mutated without any
coordination with other nodes either.

4.3.9 Greedy Sweep [P12]

Greedy sweep requires an additional protocol where, after
the iteration terminates, the source is notified of the merg-
ing nodes with at least one coding link, for each of which the
source sends out a packet to test if uncoded transmission is
possible on the link(s) where currently coding is required.
Since this additional protocol requires more extensive coor-
dination between nodes, we may leave this procedure op-
tional, whose detailed description is omitted owing to space
limitations.

4.4 Complexity
The computational complexity required for evaluation of

a single chromosome is O(
P

v∈V dv
indv

outR +
P

w∈V \V dw
out +P

t∈T dt
in

2
R), which can be substantially less than that for

the centralized version of the algorithm, i.e., O(|T |·(|E|2.376+

R3)) or O(|T | · (|E′|2p|V ′|)) [9].

5. TEMPORAL AXIS DISTRIBUTION
A unique characteristic of the genotype-distributed NCGA

is that once each generation is initiated at the source (pro-
cedure [P7] in Figure 4), the fitness values of N genotypes
become only available after the forward and backward eval-
uation phases are done, i.e., when the last fitness vector
arrives at the source. Let us assume that the time required
for each node to calculate its outgoing pilot vectors based
on the received ones is negligible compared with the time
required for packet transmissions. Then, if we denote by l
the length of the longest path from the source to any of the
sinks, the time lag between the initiation of the generation
and the termination of the backward evaluation phase is 2l
time units (see Figure 5(a)).

Let us now define the evaluation efficiency, which we de-
note by εv, as the number of fitness evaluations performed
per unit time throughout the iteration of the GA. Then, for
Algorithm B(genotype(only)-distributed NCGA), εv is only
N/2l.

For better efficiency, we may still utilize the network re-
sources, while waiting for the fitness vectors to return to
the source, to evaluate more genotypes. Suppose that, after
initiating the forward evaluation phase of the n-th genera-
tion at time t, we initiate additional k−1 forward evaluation
phases at times t+1, ..., t+k−1. When k = 2l, the network
resources become fully utilized by the time when the fitness
values of the first set of N genotypes are available. Note
that in fact k may even exceed 2l, but then the evaluation
of the (n + 1)-th generation starts delayed at time t + k,
rather than t + 2l. For simplicity, we assume k ≤ 2l in the
following.

1276

Network

...0 1 2 2l 2l+1 2l+2 2l+k-1 4l 4l+1 4l+2k-1

2
1

1
1

1
1

2
1

...

3
1

Time

Set #

Gen.

Pilot Vectors

Fitness
Vector

Coordination
Vector

Pilot Vectors

... 4l+k-1 ...

(a) Timing Diagram of Algorithm B: Genotype(only)-distributed NCGA.

...0 1 2 2l 2l+1 2l+2 2l+k-1 4l 4l+1 4l+2k-1

2
1

1
1

1
1

2
1

...

3
1

Time

1
2

1
3

1
k

2
2

1
2

2
3

1
3

2

1
k

2
2

3
2

2
3

3
3k

... ...

...
Set #

Gen.

Network

... 4l+k-1 ...

3

2
k

k

...

...

Pilot Vectors

Fitness
Vector

Coordination
Vector

Pilot Vectors

(b) Timing Diagram of Algorithm D: This doubly distributed algorithm (Generational/
Multi-population) exploits pipelining, does not require intermittent flushing, respects age
consistency between selected and replecement, and respects close age consistency in mi-
gration.

Figure 5: Comparison of Algorithms B and D via Timing Diagrams.

5.1 Generational / Single Population ("C")
If we consider the k sets of N genotypes as a single popu-

lation, we have to wait additional k−1 time units, after the
first backward evaluation phase ends (at time t+2l), to pro-
ceed to the next generation. In other words, we must flush
the pipeline (and prime it again). Hence, the evaluation
efficiency is given by

εv =
kN

2l + k − 1
,

whose maximum is obtained when k = 2l such that εv =
2lN
4l−1

≈ N
2

. For later comparison, we refer to this algorithm
with k = 2l as “Algorithm C.”

Avoiding the inefficiency of flushing the pipeline would
generate a better εv and consequently faster convergence,
provided that the algorithm requires a similar number of
evaluations for the solutions of the same quality. Depending
on how to manage those k sets of N genotypes, we may
consider two different approaches as follows.

5.2 Generational / Multi-Population ("D")
In this approach, referred to as “Algorithm D,” we re-

gard each of those k sets of N genotypes as a subpopulation
which occasionally exchanges individuals with other sub-
populations. It is worth to point out that, unlike typical
island parallel GAs [3] where subpopulations are spatially
distributed over different locations of computation, we have
subpopulations that are temporally distributed over differ-
ent times of evaluation.

We assume that migration is done at every f generations
such that, before selection, each subpopulation replaces its
worst k−1 individuals with the collection of k−1 individuals,
one from each of the other k − 1 subpopulations. Since we
have no constraint on the (spatial) connections between the
subpopulations, we can freely choose to assume and exploit
the complete connectivity between subpopulations.

On the other hand, our algorithm imposes a different kind
of constraint on migration, which is regarding the time syn-
chronization between subpopulations. Let us assume that

there is no delay in the network, so the backward evalua-
tion phase of a particular subpopulation ends exactly after
2l time units its forward evaluation phase started. Suppose
now that migration is about to happen at time t + 1 while
constructing the first subpopulation for the (n + 1)-th gen-
eration. At that time, only the first subpopulation has the
fitness values for the n-th generation, while all other k − 1
subpopulations still wait for their fitness values for the n-
th generation to become available. Similarly, at time t + j
(1 ≤ j ≤ k), only the first j subpopulations have their fit-
ness values for the n-th generation, while the remaining k−j
subpopulations do not. If we choose to perform migration in
a age-synchronized, i.e., temporally consistent manner such
that all the subpopulations exchange the best individuals
of the same generation, we have to wait until time t + k
without being able to renew any subpopulation. Hence, we
alternatively perform the age-mixed, i.e., temporally closely
consistent, migration, where we collect the best individu-
als from the other k − 1 subpopulations of the most recent
generation for which the fitness values are available. For
instance, when we renew the j-th (2 ≤ j ≤ k − 1) subpopu-
lation at time t + j, we take the best individual from each
of the 1, ..., (j − 1)-th subpopulations at generation n, and
from each of the (j+1), ..., k-th subpopulations at generation
n − 1.

Algorithm D proceeds in a completely pipelined manner
(see Figure 5(b)), yielding the evaluation efficiency

εv =
gkN

(g + 1)2l + k − 1
,

where g is the number of generations at the termination of
the iteration. Note that, when k = 2l and g 	 1, εv ≈ N .

Note that most changes in Algorithm D, compared with
the genotype-distributed NCGA in Section 4, are regard-
ing the computational aspects at the source. Hence, Algo-
rithm D can be implemented within the same framework
the genotype-distributed NCGA, with slight changes in the
structure of the coordination vector and the increased num-
ber of coding vectors that each merging node keeps. Owing

1277

to space limits, further implementational details are omit-
ted.

5.3 Non-Generational / Single Population ("E")
Rather than managing k separate subpopulations, this ap-

proach, referred to as “Algorithm E,” operates on a sin-
gle population of size M = kN . The population is up-
dated when the fitness values of each of the k sets of N
genotypes, referred to as offspring, become available (i.e.,
“just-in-time”). This is a temporally “sloppy“ approach.
From time 1 to k, the forward evaluation phases for the
initial (random) k offspring are initiated. At time 2l + j
(1 ≤ j ≤ k), the fitness values for the j-th offspring can be
calculated at the source and all those N genotypes are just
added to the population. We then calculate the coordina-
tion vector for the j-th offspring, by performing tournament
selection out of the current population, which is partially
filled until time 2l + k, and initiate the forward evaluation
phase for the second generation. At time 4l + j (1 ≤ j ≤ k)
and on, we update the population as follows: First combine
the j-th offspring, whose fitness values are just calculated,
with the existing population, and then pick the best kN
individuals, out of those (k + 1)N individuals, to form the
updated population.

Considering each window of 2l time units from the begin-
ning, we notice that except for the first and the last windows,
kN genotypes are evaluated in each window (see Figure 6).
Hence, if we assume that the total number of elapsed time
units is large (1), we have εv ≈ kN

2l
, and when k = 2l, we

obtain the maximum εv ≈ N .
Algorithm E can also be implemented similarly to the

genotype-distributed NCGA with some changes in the coor-
dination and coding vectors, whose details are omitted.

6. EXPERIMENTS

6.1 Effect of Genotype Axis Distribution
Since the genotype-distributed NCGA (Algorithm B) shares

the same computational part of GA with the centralized one
(Algorithm A), the two algorithms show the same perfor-
mance in terms of solution quality. However, as described
in Section 4.4, the computational complexity required by
Algorithm B depends only on local topological parameters,
which can often lead to a significant gain in terms of the
running time. To compare the elapsed running time of the
two algorithms, we run a test on a created set of topologies
with high connectivity such that there exists a link between
each pair of numbered nodes i and j (i < j), where the
source is node 1 and the sinks are the last 10 nodes. The
test is done by a simulation on a single machine while each
node’s function is performed by a separate thread, thus it is
pessimistic since it cannot benefit from the multi-processing
gain whereas it only suffers from additional computational
burdens for managing a number of threads. Table 1 shows
that, nevertheless, Algorithm B exhibits an advantage in
running time as the size of the network grows.

Number of nodes 15 20 25 30 35 40
Algorithm A 0.3 1.5 4.3 13.5 29.5 65.6
Algorithm B 1.8 2.7 4.4 6.3 10.8 15.4

Table 1: Running Time Per Generation (seconds)

6.2 Effect of Temporal Axis Distribution
To compare the doubly distributed approaches, we con-

struct network G by cascading 15 copies of network B′ in
Example 1(Figure 1(b)) in the form of a depth-4 binary
tree such that the source of each subsequent copy of B′ is
replaced by an earlier copy’s sink. The source is the tree’s
root node and the sinks are the 16 leaf nodes. Setting P , the
unit packet size, to 1500 bytes as a typical ethernet packet,
we can calculate that N , the number of genotypes handled
by a single packet, is around 200. Since l = 16 in network
G, k = 2l = 32.

Parameters on Population
B Pop. size: 200
C Pop. size: 6400

D10 Subpops. (size, #): (200,32), Migration freq.: 10
D1 Subpops. (size, #): (200,32), Migration freq.: 1
E Pop. size: 6400, Offspring size: 200

Table 2: Population Parameters for Algorithms

Table 2 summarizes the parameters for five algorithms we
experiment with. Migration frequency (f) is changed from
10 to 1 from Algorithm D10 to D1. We set the tournament
size to the half of the (sub)population size in each algo-
rithm, i.e., 100, 3200, 100, 3200 for Algorithms B, C, D,
E, respectively. The mixing ratio and the crossover prob-
ability are both 0.8 and the mutation rate is 0.015 for all
algorithms. We perform 30 runs for each algorithm until
the algorithm converges to the optimal solution, which for
network G is known to be zero. Table 3 shows the elapsed
time units with the time efficiency εt, which we define as the
algorithm’s speedup with respect to Algorithm B, and the
total number of evaluations with the evaluation efficiency
εv obtained from the experiments, which indeed matches
the theoretical values almost exactly. For elapsed time and
number of evaluations, p-value resulting from paired t-test
with the next best (i,e., smallest) one is reported.

Time p-value εt #Eval p-value εv

B 13,907 - 1.00 86,920 1.38e-14 6.25
C 5,427 1.66e-08 2.56 542,720 2.10e-03 100.00

D10 2,497 1.58e-04 5.57 492,920 0.307 197.44
D1 4,157 7.55e-03 3.35 824,980 - 198.46
E 3,968 0.691 3.50 781,100 0.691 198.39

Table 3: Result of Experiments

Pipelining is intended to be efficient by reducing the idle
time of network nodes, hence Algorithm B, which does not
pipeline, has the lowest εv. Though Algorithm C, which
pipelines but stop to flush and re-prime, has much increased
εv, Algorithms D10, D1, and E, which operate fully pipelined,
offer the highest εv. Note, however, that the different dy-
namics of these algorithms may impact the number of fitness
evaluations required to reach the optimal solution, hence as
can be observed in Table 3, the number of evaluations (and
consequently, the realized εt) do not reveal εv in propor-
tion. Figure 7 shows that evaluation efficiency comes at the
cost of additional fitness evaluations. Algorithms D10 and B
dominate all others yet not each other; Algorithm B is less
efficient (it does not pipeline) but requires less fitness eval-
uations, while D10 is more efficient but requires more eval-
uations. Algorithm D10 gives a speedup (εt) of more than
5 times over algorithm B. Algorithms C, D1 and E, though

1278

...0 1 2 2l 2l+1 2l+2 2l+k-1 4l 4l+1 4l+2k-1

1

...Time

Offspring #

2 3 k...

...
Single Pop.

1 2 3 k

Fill Population

1 2 3 k...

1 2 3

1 2 3

Network

... 4l+k-1 ...

...

...

k

k

Update Population

Pilot Vectors
Fitness
Vector

Pilot Vectors

Coord.
Vector

Figure 6: Timing Diagram of Algorithm E: This doubly distributed algorithm (Non-generational/Single pop-
ulation) exploits pipelining and does not require intermittent flushing. It is “sloppy” with respect to temporal
consistency between selection and replacement by using a single population with just-in-time updating.

dominated by D10, still offer higher εt than B. These algo-
rithms thus merit additional investigation because they may
give better performance for different network topologies or
other problems.

Algorithms D1 and D10, though distributed temporally,
resemble a spatially distributed GA (referred to as multiple-
deme GA in [3]) in that they incur no communication over-
head and can assume a fully-connected processor topology.
The only difference in algorithm dynamics is that migration
takes place between sub-populations that differ in age by
one generation (see Section 5.2). Thus the performances of
D1 and D10 as compared to B are in fact foreseeable from
the observation that, in general, multiple-deme GAs require
a greater number of evaluations than a standard GA while
offering speedups due to parallelism, which is equivalent to
higher εv. However, in our experiments, the size and the
number of subpopulations are determined to maximize εv

rather than the performance of GA. Determining the mi-
gration strategy for multiple-GAs is an open question and
probably problem dependent [4].

Algorithm E is a completely new algorithm, where the
selection from the population and the replacement of off-
springs are temporally inconsistent. A (slightly) similar
property can be found in the second prototype for paral-
lel GA in [5], where the algorithm sends out individuals to
processors to be evaluated, and inserts and re-selects them
opportunistically, i.e., when their fitness becomes available.
Such, rather radical, changes in algorithm dynamics may
raise a question whether Algorithm E would even work,
which is verified by our experiments. The performance of
E is similar to that of D1, hence surpassed by D10, which
can be explained by the observation that the temporal mix-
ing of E is similar to D1’s frequent mixing. Together, these
two results suggest that the doubly distributed GA is robust
to age mixing (i.e., temporal sloppiness), which deserves fur-
ther in-depth analysis in the future.

Evaluation efficiency

N
um

be
r o

f e
va

lu
at

io
ns

B

C D10

E

D1

2001000

0.5

1×106

Dominated
Non-dominated

Figure 7: Tradeoff Plot

7. CONCLUSIONS
We have presented a GA which is distributed in two novel

ways: along genotype and temporal axes. In order to dis-
tribute the fitness evaluation for the network coding prob-
lem, our doubly distributed algorithm first distributes, for
every member of the population, a subset of the genotype
to each network node rather than a subset of the population
to each. To maximize the efficient use of the computational
nodes in the network, the second axis divides the candidate
solutions into pipelined sets and thus the distribution is in
the temporal domain, rather that in the spatial domain. We
have found that this temporal distribution may lead to tem-
poral inconsistency in selection and replacement, however
our experiments have yielded better efficiency in terms of
the time to convergence without incurring significant penal-
ties.

8. REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network

information flow. IEEE Trans. Inform. Theory,
46(4):1204–1216, 2000.

[2] E. Alba, F. Luna, and A. J. Nebro. Parallel heterogeneous
genetic algorithms for continuous optimization. In Proc.
IPDPS, 2003.

[3] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs Parallèles, Réseaux et Systèms Répartis,
10(2):141–171, 1998.

[4] E. Cantú-Paz and D. E. Goldberg. Efficient parallel genetic
algorithms: Theory and practice. Comput. Methods Appl.
Mech. Engrg., 186:211–238, 2000.

[5] J. J. Grefenstette. Parallel adaptive algorithms for function
optimization. Technical Report CS-81-19, Vanderbilt Univ.
Computer Science Dept., 1981.

[6] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros.
The benefits of coding over routing in a randomized setting. In
Proc. IEEE ISIT, 2003.

[7] M. Kim, V. Aggarwal, U.-M. O’Reilly, and M. Médard.
Genetic representations for evolutionary minimization of
network coding resources. In Proc. EvoComnet, 2007.

[8] M. Kim, C. W. Ahn, M. Médard, and M. Effros. On
minimizing network coding resources: An evolutionary
approach. In Proc. NetCod, 2006.

[9] M. Kim, M. Médard, V. Aggarwal, U.-M. O’Reilly, W. Kim,
C. W. Ahn, and M. Effros. Evolutionary approaches to
minimizing network coding resources. In Proc. IEEE Infocom,
2007.

[10] R. Koetter and M. Médard. An algebraic approach to network
coding. IEEE/ACM Trans. Networking, 11(5):782–795, 2003.

[11] M. Langberg, A. Sprintson, and J. Bruck. The encoding
complexity of network coding. IEEE Trans. Inform. Theory,
52(6):2386–2397, 2006.

[12] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding.
IEEE Trans. Inform. Theory, 49(2):371–381, 2003.

[13] M. B. Richey and R. G. Parker. On multiple Steiner subgraph
problems. Networks, 16(4):423–438, 1986.

[14] E.-G. Talbi and H. Meunier. Hierarchical parallel approach for
GSM mobile network design. J. Parallel Distrib. Comput.,
66:274–290, 2006.

1279

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

