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Optimal Control and Nonlinear 
Filtering for Nondegenerate 
Diffusion Processes 

WENDELL H.  FLEMlNGt 
Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, 
Brown University, Providence, Rhode Island 029 12, USA 

and 

Department of Electrical Engineering and Computer Science, and Laboratory 
for Information and Decision Systems, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02 139, USA 

A linear parabolic partial differential equation describing the pathwise filter for a 
nondegenerate diffusion is changed, by an exponential substitution, into the dynamic 
programming equation of an optimal stochastic control problem. This substitution is applied 
to obtain results about the rate of decay as 1x1-cc of solutions p(x,r) to the pathwise filter 
equation, and for solutions of the corresponding Zakai equation. 

1. INTRODUCTION 

We consider an n-dimensional signal process x(t) = (x,(t) ,  . . . , x,(t)) and a 
one-dimensional observation process y(t), obeying the stochastic 
differential equations 
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under Contract No. AF-AFOSR 81-01 16 and in part by the National Science Foundation 
under Contract No. MCS-79-03554. 

JThis research has been supported in part by the Air Force Oflice of Scientific Research 
under Contract No. AF-AFOSR 77-32810 and in part by the Department of Energy under 
Contract No. DOEJET-76-A-012295. 
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with w, standard brownian motions of respective dimensions 1 1 . 1 .  (The 
extensions to vector-valued y(r) need only minor modifications.) The Zakai 
eqt~ation for the unnormali7ed conditional density q(x. t )  is 

where A i s  the generator o i  the signai process .x ( t j .  Sec Davis and Marcus 
[ 3 ]  for example. By formally si;bs:ituting 

one gets instead of the stochastic partial differential equat ion (1.3) a lineal- 
partial differential equation of the form 

with pix, Oj=pU(xj the aens~ty oi xjOj. Here 

Explicit formulas for gy, VY are given in Section 6. Equation (1.5) is the 
basic equation of the pathwise theory of nonlinear filtering. See Davis [2] 

h 1 ; t t o ~  C 1 0 1  T h e  on.- PT I. ; m A ; ~ , ~ t ~ ~ ,  I ~ L I ~ ~ ~ ~ J ~ ~ ~ . ~  .\n I ho ~ \ h ~ . ~ ~ ~ , . , f ; , , . ,  
t V I t L L b 1  !UJ. 1 B I b  >LLk~blSbl L&,L V L t L U L b U L b O  U L p b l t U b t l b b  <Il l  L X L L  \ J < l O b L  V C L L % \ J # #  

:iajectoiy y=y(.) .  of b u ~ l , b ,  -,. ..--a the so!utior, p=pv a!so &per,& or, y. 

We shall impose in ( 1 . 1 )  the nondegeneracy condition that the n x lz 
matrix a(x) has a bounded inverse a l ( x ) .  Other assumptions on b, rr. h. 

will be stated later. Certain unbounded functions h are allowed in  the 
observation equation (1.2). For example, h can be a polynomial in x 
- - (x,, . . . , x,) such that (h(x)l+ m as 1x1 i*; The connection between 
filtering and control is made by considering the function S =  - logp. This 
logarithmic transformation changes (1.5) into a nonlinear partial 
differential equation for S(x, t ) ,  of the form (2.2) below. We introduce a 
certain optimal stochastic control problem for which (2.2) is the dynamic 
programming equation. 

In Section 3 upper estimates for S(x, t )  as lxl+,rn are obtained, by using 
an easy Verification Theorem and suitably chosen comparison controls. 
Note that an upper estimate for S gives a lower estimate for p= l o g s .  A 
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lower es:lmate f ~ r  S(.xr, t )  as (x/-+w is obtained in Section 5 by another 
method from a corresponding upper estimate for p(x,  t).  These results are 
applied to the pathwise nonlinear filter equation in Section 6. 

Related results have been obtained using other methods by Baras, 
Blankenship and Hopkins [I] and hy Sussmann 1121. A connection 
herween control and nonlinear filtering was also made by Hijab 181, in a 
somewhat different context. 

2. THE LOGAFilTHPJliC TRANSFORMAT!ON 

Let us consider a linear parabolic partial differential equation of the form 

-- .* When g=g", i': YY this bp,cc?mes the pathwise biter equation ji.5). tc 
n .  which we ieiuiij in ;CC~:C:: 6. By ~fi1::tinn :;!x. t! to ( 2  1 )  we mean a 

"classical" solution p~ CZ", i.e. with pXi ,  p,,,, pc continuous, i , j =  1 . .  . . , 12. 

!f p is a positive solution to @I) ,  then S =  -logp satisfies the nonlinear 
parabolic equation 

Conversely, if S(x ,  t )  is a solution to (2.2), then p = exp ( - S )  is a solution to 
(2.1). 

This logarithmic transformation is well known. For example, if g= 
V=O, then it changes the heat equation into Burgers' equation (Hopf [9]). 

We consider Ostst,, with t ,  fixed but arbitrary Let Q=Rn x [0, t , ] .  
We say that a function 4 with domain Q is of class 9 if q5 is continuous 
and, for every compact K E R " ,  4(., t )  satisfies a uniform Lipschit7 
condition on K for Ostst,. We say that 4 satisfies a polynomial growth 
condition of degree r, and write @EP,, if there exists M such that 

Throughout this section and Section 3 the following assumptions arc. 
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66 W. H .  FLEMiNG A N D  S .  K. MITI-EK 

made. Somewhat different assumptions are made in Sections 4 and 5 as 
needed. We assume: 

o, o ' are bounded, Lipschitz functions on Rn. (2.3) 

For some m 2 I 

For some 12 0 

For some M,,  

-We introduce the following stochastic control problem. for which (2.2) is 
the dynamlc programming equation. The process € ( t )  being controlled is n- 
dimensional and satisfies 

d5 = u(<(~),  2) dt + a[<(r)] dw, 0 5 T 5 t. (2.7) 

The control is feedback, R"-valued: 

Thus, the control u is just the drift coefficient in (2.7). We admit any u of 
class Yn9,.  Note that ~ € 9 ,  implies at most linear growth of lu(x,f)l as 
(x(+m. For every admissible u, Eq. (2.7) has a pathwise unique solution 5 
such that ~ l l # <  co for every r>O. Here ) I  ( I ,  is the sup norm on 10. t ] .  

Let 

For (x, t ) ~  Q and u admissible, let 
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OPTIMAL CONTROL AND FILTERING 67 

7-1- I ~ l e  ..-I pv J l  .,qG- .,.,d! ;, g:~vd?  endi it ions in (2.4), (2.5) imply finiteness of J .  The 
stochastic control problem is to find u " ~  minimizing J(.u, t ,  u). Under the 
above assumptions. we cannot claim that an admissible ugP exists 
minimizing J(x , t ,u) .  However, we recall from Fleming-Rishel r71, 
Thm. VI 4.1, the following rcsult, which is a rather easy consequence 
nf the  Ito differential rule. 

Verification Theorem 

Lct S he a solution to (2.2)  ofclass  C2,' n b,, with S(x, O)=SO(x).  Thrn 

a) S(x, t )  5 J(x ,  t ;  u)  Jur ull adrnissiblr u. 
b) IS uoP =p - as, is admissible, then S(x, r) = J(x ,  r :  uoP). 

In Section 3 we use (a) to get upper estimates for S(x, I), by choosing 
judiciously comparison controls. For u"P tc be admissible, in the sense we 
have dcfined admissibility, IS,/ can grow a? most linearly with 1x1; hence . . 
Six, r j  can grow at Ilifist quadra:ica!!j'. 9 y  ~r?lx-gin,o the class of admisslblt: 
conrrois lo r l d u f ~  ~ i i t a i ~ i  ii -;;it!: ! h e r  a- nrrlwth - - --- 3q !rl P Y  ont: could 

I I 

generalize (b). However, we shall not do so here, since only part (a) will be 
used in Section 3 to get an estimate for S. 

In Section 4 we consider the existence of a solution S with the 
polynomial growth condition required in the Verification Theorem. 

As in Fleming [6] we call a control problem with dynamics (2.7) a 
problem of stochastic calculus of variations. The control u(((T), T )  is a kind 
of "average" time-derivative of l ( ~ ) ,  replacing the nonexistent derivative 
( ( T )  which would appear in the corresponding calculus of variations 
problem with o = 0 .  

Other control problems 

There are other stochastic control problems for which (2.2) is also the 
dynamic programming equation. One choice, which is appealing 
conceptually. is to require instead of (2.7) that ((5)  satisfy 

with t (O)=?c .  We then take 

4 x ,  t. U )  = f u'a ' (x)u  - V(x,  r).  (3.12) 

The feedback control u changes the drift in (2.1 1) from g to g + u .  When 
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68 W. H. FLEMING A N D  S. K. MlTTER 

u = identity, ~ = f  (u12 - V(.Y, r )  corresponds to an action integral in classical 
mechanics with time-dependent potential V(x ,  t) .  

3. UPPER ESTIMATES FOR S ( x , t )  

In this section we obtain the fnllnwin_g upper estimate< for !he gmwth of . 
S(x ,  1 )  as Ixl+ ;x; in terms of the constants m 2 1, 12 0 in (2.4), (2.5). 

T H ~ O R E M  3.1 Let S be u solufion of (2.2) of cluss C2.' n PI, with S (X ,  0 )  
=SO(x).  Then there exist positive M ,, M, such that: 

i) F o r ( x , t ) ~ Q , S ( x , t ) ~ M , ( 1 + ( ~ ( ~ ) w i t h p = m a ~ ( m + 1 , 1 ) ,  
ii) Let Oct,<tl,m>l.For(x,t)~R"x[t0,t,],S(x,t)jM2(l+(~lm+~). 

The constant M ,  depends on t , ,  and M, depends on both t ,  and t , .  In 
the hypotheses of this theorem, S(x , t )  is assumed to have polynomial 
growth as J.ul-7- wi!h some degree r. The theorem states that r ca:: be 
replaced by p, or indeed by m+ 1 provlded t 2 t o > 0 .  Purely formal 
arguments suggest that m+ i 1s best possible, and this is confirmed by the 
lower estimate for S(x,  r )  made in Section 5. 

Proof of Theorem 3.1 We first consider m >  1. By (2.3H2.6) and (2.9), 

for some B,. Given .YE R" we choose the following open loop control u(z), 
0 5 T 5 t. Let U ( T )  = tj(z), where the components qi(r), satisfy the differential 
equation 

with q(0) = x .  From (2.7) 

Since a is bounded, EJJ[((:< m for each r. By explicitly integrating (3.2) we 
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find, since m >  I ,  

OPTIMAL CONTROL AND FILTERING 

that 

for some M,. 
Since uF = t j ;  = I$", 

for some K. From (2.10). (3.1) we get 

for some M,. By part (a) of the Verification Theorem, S(x, t ) s  J(x, t, u), 
which implies (i) when m> I. 

For t > to >O, lq(t)l is bounded by a constant not depending on x =q(O). 
Since ( i t )  = i f ( ; )  + [ ( t ) ,  and ~.$(!)l' is bounded, this bounds E,So[((t)] by a 
constant not depending on x. The estimates above and part (a) of the 
Verification Theorem then give (ii). 

It remains to prove (i) when m =  1. Consider the "trivial" control 
u(s)rO. When m =  1, g grows at most linearly and V at most quadratically 
as I x ~ + c o .  Moreover, E I I < I I ~ ~ K ( ~  +Ix12) for some K. Using again (a) of 
the Verification Theorem, we get again (i) with p=max(2,1). [When m =  1, 
this is a known result, obtained without using stochastic control 
arguments.] 

4. A N  EXISTENCE THEOREM 

In this section we give a stochastic control proof of a theorem asserting 
that the dynamic programming equation (2.2) with the initial data So has 
a solution S. The argument is essentially taken from Fleming [4, p. 222 
and top p. 2231. Since (2.2) is equivalent to the linear equation (2.1). with 
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70 W. H. FLEMING AND S. K .  MITTER 

positive initial data pO, one could get existence of S from other recu!!s 
which give existence of positive solutions to (2.1). cee Sheu [ I  I]. However, 
the stochastic control provf gives a polynomial growth condition on S 
used in the Verification Theorem (Section 2). 

Let O < r s  I .  We cay that a function 4 with domain Q is of class C, if 
the following holds. For any compact = Q, there exists XI such that (s, r ) ,  
(.x , t ) E  F mply 

We say that 4 is of class C2.l if 4, @xi, 4x,,1, 4, are of class C,, i , j= 1,. ... n. 
In this section the following assumptions are made. The matrix d x )  is 

assumed constant. By a change of variables in R" we may take 

fi = identity. 14.2) 

with y 2  small enough that (4.8) below holds. (If ~ E . P ~  with p < m ,  then 
we can take 7, arbitrarily small.) We assume that 

for some positive N, ,  ( i2,  A and that 

We assume that So E C 3  n .YJPI for some 120,  and 

for some positive C , .  C,. 

lim Sv(x) = + co 
1111 ' 7  

Exumple Suppose that V(x. !)= - kV0(x) + V,(.u, t )  with I/;,(.Y) a positive, 
homogeneous polynomial of degree 2m, k>0, and V,(x ,  t )  a polynomial in 
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O P T I M A L  CONTROL A N D  FILTERING 7 1 

r of degree 52 i i i -  1 wi th  coc!Ticients Holder continuous functions of r .  
Suppose that g(x, t )  is a polynomial of degree Sn- 1 in r, with 
coefficients Holder continuous in t .  and Syiuj is a polynomial of degree 1 
satisfying (4.6). Then all of the above assumptions hold. 

From (2.9), (4.2), L = + / U - ~ / ~  - I': If 7 ,  in (4.7) is small enough, then 

for su~table positive f l , ,  B2, B. Moreover, 

where igxl denotes the operator norm of g, regarded as a i inea~~ 
trafisfommation on R". Fruii~ (4.31, !4.5), (4.8) 

for some positive C,, C ,  (which we may take the same as in (4.71.) 

THEOKEM 4.1 Let r = mas (2m, 1). Then Eq. (2.2) with initial datu S(x, 0) 
= SO(x) has a unique solution S(x, r) of' class Cz, n such that S(x, t )+  cc 
LES 1x14 co uniformly jor 0 t 5 t , . 

Proof We follow Fleming [4, Section 51. For k =  l ,2 , .  . . , let us impose 
I I the constraint plsk oii the feedback cnntrols admitted as drifts in (2.7). 

Let 

S,jx, r )  = min J ( x ,  t; u). (4.10) 
/ui s h 

Then S, is a C:,' solution to the corresponding dynamic programming 
equation 

The initial data are again S,(x,O)=Sojxj. The minimum in (4.10) is 
attained by an admissible uEP. See Fleming and Rishel [7, p. 1721. 

Now S, ZS, 2 . . .; and S, is bounded below since L and So are bounded 
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below by (4.6), (4.9). Let S=lim,,, S,. Let us show that (S,), is bounded 
independent of k uniformly for (x, t )  in any compact set. Once this is 
established standard arguments in the theory of parabolic partial 
differential equations imply that S E  C$' and S satisfies (2.2). For (S,), 
there is the probabilistic representation 

where 5, is the solution to (2.7) with u = uiP, <,(O) = x, and 

This can be proved exactly as in Fleming [4, Lemma 31. Another proof, 
based on differentiating (4.10) with respect to xi, i = 1 , .  . . , n, is given in 
Fleming 15, Lemma 5.31. From (4.7i, (4.9:). (4.12) 

or since n;P is cptima! 

Since S,(x.r) is bounded uniformly on compact sets, (4.12) gives the 
required bound for I(s,),( uniformly on compact sets. 

For the "trivial" control 0, we have by (4.8) and So€.??, 

for suitable B, . When u(r) - 0, rr = I, we have ar) = x + w(T). For suitable M 
we have 

Hence S(.u, t )  satisfies the same inequality. Since S is bounded below, this 
implies S E b,. 

Let us show that S(x, t)+m as Ixl-+co, uniformly for O,<tSr,. Since 
S,(x, t )  = J(.u, I ;  uiP), (4.8) implies 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
6
:
2
7
 
2
7
 
O
c
t
o
b
e
r
 
2
0
1
0



OPTIMAL CONTROL AND FILTERING 73 

Given i. > 0 there exists R ,  such that 1x1 2 R ,  implies So(x) 2 1,. by (4.6). Let 
R2 > R ,  and consider the events 

with 11 11, the supnorm on [O, t ] .  Since 

A', c A ,  u A,. For R2 - R ,  large enough, P(A, )  <a and hence P(AJ 
+ P ( A  2)  22. From Cauchy-Schwarz 

with p, a lower bound for SO(x) on Rn. Since the right side does not 
depend on k. S satisfies the same inequaiity. Tiiis iinplies thzt S(u, t)+m 
as 1x1- a, uniformly for 0 5  r i t , .  

To obtain uniqueness, p=exp(-S) is a C2.l solution of (2.1), with 
p(x, r)+O as 1x1 -+ co uniformly for 0 5 t 5 t,. Since V(x, t )  is bounded above, 
the maximum principle for linear parabolic equations implies that p(x, t )  is 
unique among solutions to (2.1) with these properties, and with initial data 
p(x, 0) = pO(x) = exp [ - SO(x)]. Hence, S is also unique, proving Theorem 
4.1. 

It would be interesting to remove the restriction that a=constant made 
in this section. 

5. A LOWER ESTIMATE FOR S(x, t) 
To complement the upper estimates in Theorem 3.1, let us give conditions 
under which S(x, t ) +  + CL as Ixl+co at least as fast as Ixlm+'. rnz 1. This 
is done by establishing a corresponding exponential rate of decay to 0 for 
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p(.u, t ) .  In this section we make the following assumptions. We take oe  C2 
with 

o, a  I ,  ox,  bounded, a,ixi e.Pr, i J =  1,. . . , n, (5.1) 

for some r > 0. For each r ,  g(., 1 )  E C 2 .  Moreover, 

and g, gxi, gxrXj are continuous on Q. b'or each t. V(.. t ! eC2.  Moreover, V 
satisfies (4.41, 

and V V,,. V,.,. are continuous on Q. We assume that p0 E C 2  and that 
there exist poshhe /?. M such that 

THFOREM 5.1 Let P(X, r )  be a C2.' ~ o l u r i ~ n  to (2.1) such fhut p(x, t)+O US 

Ix[+;x, unifi~rmly for OSt 5 t , .  Then there exists 6>0 such that 
exp [d/.ujm ' : ]p (x .  t )  is bourzded on Q. 

Proof Let 

Then n is a solution to 
- 

nf=~t ra rc , ,+g~nX+Vz,  

By Sheu [ I  1, Theorem 11, Eq. (5.5) with initial data no =exp(6$)p0 has 
for small enough 6 >0 the probabilistic solution 

I 

n O I X ( t ) ]  exp f [ o  ' 2  d w  -310 '21' d z  + V d z ]  
b 

where X(t) satisfies 

d X  = o [ X ( r ) ]  dw,  z  2 0, (5.7) 
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with X(G)=:<. In :he inregrands o 'g and P are evaluated at ( X ( T ) .  T). The 
proof in Sheu [ I  11 that ir satisfies (5 .5 )  is done by approximating 2. P by 
functions g,, c, for which the corresponding 77,, tend to il boundedly and 
pointwise. By standard estimates for partial derivatives to solutions of 
linear parabolic piir~ial diffcrential equations, 5 is C 2 .  and satisfies (5 .5) .  

Then fi-exp(-F$)+ is a CL.' solution to (2.1), with initial data pO, and 
with F(x,  t )  tending to 0 as / X ( + X  uniformly for 0 5  t 5 r , .  By the 
maximum principle, c = p  which implies that exp [d/u/" " I p  is bounded on 
Q. This proves Theorem 5.1. 

Since S =  -logp, wc get by taking logarithms: 

COROLLARY For some positive S, d l  

6.  CCNNECT!ON W!TH THE PATHWISE FILTER 
EQUATION 

The generator -4 of the signal process in ( 1 . 1 )  satisfies for b , € C 2  

The pathwise filter equation (1.5) for p=ps  is 

p, = (As)*p + psp, 

whcre 

A s 4  = Ab, - y(t)a(xjh,(x).  4, 

Hence. in (1.5) we should take 

To satisfy the various assumptions about g=gs ,  V =  V' made above, 
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suitable conditions on 0, b, and h must be imposed. To obtain the local 
Holder conditions needed in Section 4 we assume that y( . )  is Holder 
continuous on [O,t]. This is no real restriction, since almost all 
observation trajectories y(.) are Holder continuous. 

To avoid unduly complicating the exposition let us consider only the 
following special case. We take a=identity, an assumption already made 
for the exisicnce iheorem in Scction 4. W-e assume that b~ C 3  with 6, b, 
bounded, and all second, third order partial derivatives of h of.class 9, for 
some r. Lei h be a pviynomiai of degrcc m and S% poiynomial of degree 
I, ssuch that h = h ,  + h,, S O  = S: + S! where h,, Sy are homogeneous 
polynomials of degrees m, I, 

h,  is of degree t rn and SP of degree t 1 
Then all of the hypotheses in Sections 2-4 hold. In (6.2), g" has 

polynomial growth ol degree m -  l as /X I+X ' .  while in (6.3) VJ' is the sum 
of the degree 2~ co!x~no!nia! A - -I~'(Y) - and terms p~lynomizl go::.!!: 
of degree < 2m. 

Let SY= - logpY.  From Theorem 3.1 we get the upper bounds 

i) Sy(x , r )5M,(1  +Ixlp),  O ~ t ~ t , ,  p=max(m+ 1.1). 
ii) S Y ( x , t ) ~ M , ( 1 + l x l m + ' ) ,  O < t o ~ t S r , ,  m > l ,  

where M,, M, depend on y. For pO=exp(-So) to satisfy (5.4) we need 
12 m + 1. The corollary to Theorem 5.1 then gives the lower bound 

From (6.5) (ii) and (6.6) we see that Sy(x, t )  increases to + K: like I x lm+ ' ,  
at least for m > 1 and t  bounded away from 0, and for 0 5  r 5 t ,, in case 
l=m+ 1. 

Finally, q=exp(y(t)h)p is a solution to the Zakai equation. For any 
4 E C, (i.e., 6 )  continuous and bounded on Rn) let 

where h denotes expectation with respect to the probability measure 
obtained by eliminating the drift term in (1.2) by a Girsanov 
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OPTIMAL CONTROL AND FILTERING 77 

transformation. The measure A, is the unnormalized conditional 
distribution of .x(r). Then A, is also a (weak) solution of the Zakai 
equation, with h , ( l ) =  1. By a result of Sheu [11,  Theorem 43, A, = A,. 
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