- - . t: el s 3.3 n

VARIAELE METRIC METHEODS AND FILTERING THEORY £ is assumed to be thrice continuwously differentiable on .
Sanjoy K. Mitter

Department of Electrical Engineering and Computer Science VE{x} = g(x) and D fi{x) = G{x} . (2.2)
Massachusetts Institute of Technology

Cambridge, Massachusetts 02138 . o BT = 3 . s .
= g2 Let Xx* be a local minimum of £ and in sowe open, convex neighborhoccd D of

and x* , lec us assume

Pal Teoldalagi

_ S % 2 . < le +o.s ) -6(x +8s)] <tle, -8} . 1] s.| where L > 0 (2.3
Department of Electrical Engineering and Comxputer Science < l“'(x;.( 1 ,‘) Y 2 k)-l =~ Vot I kil ” ¢ )
Massachusetts Institute of Technology K
Carmbridge, Massachusetts 02138 | for all x ,x_ + s gD, all 8, ,925 [o,11.
| X X X <

we wish to discuss iterative algorithms for minimizing £(x) and the algorithm
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ABSTRACT prcoceeds as X3 = % + S v k:=0;1,2;::4 s

. & = = s o 3 t us use the notation
In this paper we show that there is a close relationship between variable Let us use =

metric methods of function minimization and filtering of linear stochastic systems

with disturbances which are modelled as unknown but bounded functions. We develop le‘e) = G(xk ® -’Jsk)
new variable metric algorithms for function minimization. gk(e) _ g(XR i ﬁsk) - S s ‘ (2.4)
1. INTRODUCTION )

The objective of this paper is tc show that there is a close relationship It is easy to see that there exists [;kng(o,_l;{(an]) such that
between variable metric methods of function minimization and filtering of linear 6
stechastic systems with disturbances which are modelled as unknown but bounded Gk(?;) - Gk(o) = I Uk(t)dt ¢ with
functions. o

It is well known that Newton's method for function minimization exhibits (2:5)
quadratic convergence in the neighborhocd of the minimum. This rapid convergence ;:Uk(a) H < L} lskll 7. - Xm0 52 sy Bel0Y =
rate however is obtained at the expense of requiringsecond derivative computations
and solution of a linear eguation at each iteration stage. On the other hand, e 2
variable metric methods do not reguire second derivative computations nor matrix gk(@) = gk(O) + f Gk(t)skdt = (2.¢6)
inversion (solution of a lirear eguation) ané versions of this algorithm are known o
to exhibit reasonably rapid convercence. Intuitively, one may consider a variable
metric method as one where an estimate of the Hessian (or inverse of a Hessian) is Evaluating {(2.5) and (2.6) at © = 1, and using the natural notation Gk:l) =
obtained on the basis of information on function values and gradient values in past Sepy ¢ (;k(c) = Gk 5 gku) =G, » otc., we get
iteraticns and the next step is determined on the basis of this estimate. In this :
paper, we attempt to make this intuitive notion precise. 6., =6 + f U (B)at

The work closest in spirit to this work is the doctoral dissertation of THOMAS &+l k 5 =
{4]. The stochastic models we derive are however, somewhat different and we exploit 2 (2.8
lirear filtering theory to the fullest extent possible. We obtain algozithl.ns which gk+1 =9, + Gksk + )' {Gk(t) - ka”skdt .
do not require accurate line search algorithms as was alsc done by Thomas. 0

2. FILTERING MODEL FOR THE ALGORITHM
Consider the problem of minimizing
{£(x)] = Rn} , where (2.1)
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v, = [ v (t)as
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It is natural to think V. and w,
x %

are obviously correlated.

To do the bounding, we use the following device: Let

Iow

of G . We then use the isomorphism

We can then rewrite eguation (2.8) in differential

= iu (&)

(2.10)

= (In a Sk) (lci(:‘]] -

nsor preduct. Writing (2.10)

In the above denotes transpose and @ denotes

in vector-matrix form:

iG_ (8) <] ( 5
K k k

= + . {2.11)
g, {8) Ines;( 0 9, {(8) 0

Wwe are interested in bounding V. and vy as {-) varies over the class of

all mappings

. Clearly, the set of all fi\-’k,’ varies

is a con

. Let ﬂ;- dencte the set. We can corpute the support

functicn of ox,a*), GreAR)*,

n n )
in A®') xR and Q

We eck that ¢ > 0 (unless
k
in following:
G, from
k
G -G * {2.14
“ke1 T %k !
z =G, s, where z, = g, - g . (2.15)
k Kk o ¥ 1 ~ % !
Let
<6 - G_, -G (2.16)
o o
and G ,m_ >0 are given .

1 . (2.17)

4. ION OF THE ESTI

The estimation problem can now be sclved usi

consists of recursively estimating the sets The centre
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(2.18)

. and let us
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