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CHAPTER 1
INTRODUCTION

Algorithms for finding a global extremum of a real-valued function may
be classified into two groups: deterministic and random. The distinction here
is of course that the random or Monte-Carlo algorithms make use of pseudo
random variates whereas the deterministic algorithms do not. The earliest
global optimization algorithms were of the deterministic type and were
associated with evaluating the cost function at points on a grid. One
drawback of these methods is that they typically require certain prior
information about the cost function such as a Lipshitz constant. Most global
optimization algorithms are of the random type and are related to the so-
called multistart algorithm. In this approach, a local optimization algorithm
is run from different starting points which are selected at random, usually
from a uniform distribution on the domain of the cost function. See [5], [29]
for a discussion of global optimization algorithms.

Recently, motivated by hard combinatorial optimization problems such
as arise in computer design and operations research, Kirkpatrick et. al. [19]
and independently Cerny [3] have proposed a different kind of random
algorithm called simulated annealing. The annealing algorithm is based on an
analogy between large scale optimization problems and statistical mechanics.
For our purposes this analogy consists simply of viewing the cost function as
an energy function defined on a finite state space of an imaginary physical
system. The annealing algorithm is then seen as a variation on a Monte-
Carlo algorithm developed by Metropolis et. al. [25] for making statistical
mechanics calculations, which we now describe. It is well-known that the
states of a physical system in thermal equilibrium obey a Gibbs distribution
o< exp{—U(*)/T|, where U(*) is an energy function and T is the temperature.
The Metropolis algorithm was developed for obtaining samples from such a
Gibbs distribution and for computing estimates of functionals averaged over
the Gibbs distribution. The Metropolis algorithm proceeds as follows:

Given a state i of the system, select a candidate state j in a random
manner corresponding to a small perturbation of the system, and

compute the change in energy AU =U(j) — U(i). If AU < 0 accept
state j as the new state for the next iteration of the algorithm. If
AU > 0 accept state j with probability exp[— AU/T); otherwise the
algorithm starts at state i for the next iteration.

The annealing algorithm consists of identifying the cost function to be
minimized with the energy function U(*) and taking the temperature T as a
function of time and slowly lowering it to zero. Suppose that the distribution
of a candidate state is independent of past states given the current state.
Then it is clear that the Metropolis algorithm simulates the sample paths of a
Markov chain, and it can be shown that if the candidate states are selected
in a suitable manner then this chain infact has a Gibbs distribution
oc exp[— U(i)/T] as its (unique) equilibrium distribution (see Chapter 2 for
details). Furthermore as the temperature T is decreased to zero the Gibbs
distribution concentrates more and more on the lower energy states. The
motivation behind the annealing algorithm is that if T—0 slowly enough such
that the system is never far away from equilibrium, then presumably there is
convergence (in some probabilistic sense) to the global minima of U().

The annealing algorithm stands in contrast to heuristic methods for
combinatorial optimization which are based on iterative improvement,
allowing only decreases in the cost function at each iteration. Iterative
improvement algorithms in statistical mechanics terms correspond to rapidly
quenching a system from a high to a very low temperature. Such quenching
can result in the system getting trapped in a so-called metastable state, and
analogously the iterative improvement algorithm getting trapped in a strictly

“local minimum of the cost function. On the other hand, the annealing

algorithm corresponds to slowly cooling a system. Such cooling should result
in the system spending most of its time among low energy states and
analogously the annealing algorithm finding a global or nearly global
minimum of the cost function.

The annealing algorithm as described above is suitable for combinatorial
optimization. Motivated by optimization problems with continuous variables
which arise in image processing problems, Geman and independently
Grenander [13] have proposed a diffusion-type algorithm called the Langevin
algorithm {as coined by Gidas [11]). Consider the diffusion solution of the
Langevin equation

dx(t) = — VU(x(t))dt + V2T dw(t)

where U(*) is now a smooth function on r-dimensional Euclidean space (again
called energy), T is a positive constant (again called temperature), and w(*) is




a standard r-dimensional Wiener process. The Langevin equation describes
the motion of a particle in a viscous fluid. The Langevin algorithm consists of
identifying the cost function to be minimized with the energy function U(*)
and taking the temperature T as a function of time and slowly iowering it to
zero. Now it is well known that under suitable conditions on U(*) the
diffusion solution of the Langevin equation has a Gibbs density
o< exp[— U(*)/T] as its (unique) equilibrium density, and as the temperature T
is decreased to zero this density becomes more and more concentrated on the
lower energy states. Like the annealing algorithm, the motivation behind the
Langevin algorithm is that if T—0 slowly enough such that the system is
never far away from equilibrium, then presumably there is convergence (in
some probabilistic sense) to the global minima of U(*).

The annealing algorithm has been applied with varying success to a wide
range of problems including circuit placement and wire routing for VLSI chip
design [19], image reconstruction [8], and assorted hard combinatorial
problems which arise in operations research (3], [12], {18], [18]. There has also
been intense theoretical interest in both the annealing algorithm (8], [10], [11],
{14], {15], [26], [31] and the Langevin algorithm [4], (9], [11], [15], [21].

CHAPTER II
FINITE STATE ANNEALING TYPE ALGORITHMS

2.1 Introduction to the Annealing Algorithm

In Chapter 1 we briefly described the annealing algorithm and discussed
the heuristic motivation based on the connection that Kirkpatrick [19] has
suggested between statistical mechanics and large-scale optimization
problems. Mathematically, the annealing algorithm consists of simulating a
nonstationary finite-state Markov chain whose state space is the domain of
the cost function {called energy) to be minimized. In this Section we shall
discuss in detail the annealing algorithm and describe some of the
considerable literature which has been devoted to its analysis.

We first give some standard finite state space Markov chain notation (c.f.
[6], [7])- Let ¥ be a finite set. P = [p;]i;er is a stochastic matrix on X if
pij = O for all i,j€X and

JEL
(plok+)y — {{pigk'k“)]} are the l-step transition matrices for a Markov chain
{€,} with state space & if for every k€M P®¥+1) i a stochastic matrix on &
and
P{ées1 =il =i} = pé“"‘“’ (if P{&=1i}>0) (2.1)
for all i,jEX. Conversely, given a sequence {P(k'k“)} = {[pigk'k*'d)l} of
stochastic matrices on ¥ we can construct on a suitable probability space
(A.F,P) a Markov chain {£,} with state space X which satisfies (2.1). For
each delNlet :
plk+d) _ plkk+1) . ... . plktd—1k+d)

plek+d) _

[pigk'k"'d)] is a stochastic matrix on ¥ and
P{&a=ilex =1} = piﬁk"‘“’ (if P{& =1i}>0)

for all ,j€X. It will be convenient to have a fixed version of the conditional
probability of &, 4 given & which we define by




P{&cra€AlG =i} = 3 pf*+d
JEA
for all i€X and ACYE.

We now define the annealing algorithm. Let U(*) be a nonnegative
function on X, called the energy function. The goal is to find a point in ¥
which minimizes or nearly minimizes U(*). Let {T\} be a sequence of positive
numbers, called the temperature schedule. Let Q = [g;] be a stochastic matrix
on X. Now let {£,} be the Markov chain with state space ¥ and 1-step
transition matrices {P(k'k“)} = {[pigk’k“)]} given by

U(;) — U(i . . .
q;j exp [— _(J‘)T(Q if U(j) > U(i)
pigk‘kﬂ) = |y if U@ <u@), jA (2.2)
1 — 3 pflktt) if j=1
[ES

for all i,j€X. {&} shall be called the annealing chain. For each dEN let
Q! = [qigd)]. Recall that Q is irreducible if for every i,jEX there exists a d€IN
such that qigd) > 0. Also, Q is symmetric if q; = q; for all i,j€X. In the
special case where Q is irreducible and symmetric and T, = T, a positive
constant, {Ek} is the stationary Markov chain introduced by Metropolis et. al.
[25] for computing statistics of a physical system in thermal equilibrium at
temperature T. It was Kirkpatrick et. al. {19] and Cerny [3] who suggested
that the Metropolis scheme could be used for minimizing U(*) by letting
T = Ty — 0. We shall call the algorithm which simulates the sample paths
of {£,} with T, —0 the annealing algorithm.

The heuristic motivation behind the annealing algorithm was discussed
(briefly) in Chapter 1. Here we give the motivation in more mathematical
terms. Suppose that Q is irreducible and symmetric, and let {E,;r} be the
stationary chain with 1-step (stationary) transition matrix PT = {p;jr] given by
the r.h.s of (2.2) with Ty =T, a positive constant. Then it can be shown that
PT has an invariant Gibbs vector I1T = [mT] (a row vector), i.e.,

HT — HTPT

where

7
1 _exp |- UG)/T] -
0 N
jex

This follows from the detailed reversibility

pg =7pf  VijeED .
Furthermore, Q irreducible and symmetric implies that {ufl;r} is an irreduciblet
{(and aperiodic) chain and by the Markov Convergence Theorem [6, p. 177]

Jim P{F =i} =7T VvieD. (2.3)

Let S be the set of global minima of U{(*), i.e.
s = {iexX : U(i)) < U(G) Viel}.
Now

Jim r =7  VYier (2.4)

where II" = [7r;] is a probability vector with support in S. In view of (2.3)
and (2.4) the idea behind the annealing algorithm is that by choosing
T = T;—0 slowly enough hopefully

P{§ =i} = 7r1-Tk (k large) (2.5)
and then perhaps
Jim P{g =i} = n Vien (2.6)

and consequently £, converges in probability to S.

In Chapter 1 we roughly described the procedure by which the sample
paths of the annealing chain are simulated. It is seen that the Q matrix
governs the small perturbations in the system configurations which are then
accepted or rejected probabilistically depending on the corresponding energy
changes and the temperature. More precisely, the annealing chain may be
simulated as follows. Suppose £, =i. Then generate a >-valued random
variable  with P{n =j} = gij> Suppose 77 =j. Then set

1A stationary chain is irreducible if its 1-step (stationary) transition matrix is
irreducible. ’




i uG) < Ul

Eprr = i if U{j) > U(i) with probability exp [— E(l)fr——_—U(l)—]
k

i else

There are two in depth numerical studies of simulated annealing of which
we are aware. Johnson et. al. [18] applied the annealing algorithm to four
well-studied problems in combinational optimization: graph partitioning,
number partitioning, graph coloring, and the travelling salesman problem.
They compare the annealing algorithm with the best of the traditional
algorithms for each problem. They found that although annealing is able to
produce quite good solutions on three of the four problems, only on one of the
four (graph partitioning) does it outperform the best of its rivals. Golden and
Skiscim [12] have tested the annealing algorithm on routing and location
problems, specifically the travelling salesman problem and the p-median
problem. They conclude that there are more efficient and effective heuristics
for these problems.

We shall now outline the convergence results on the annealing algorithm
which are known to us. We refer the reader to the specific papers for full
details.

Geman and Geman (8] were the first to obtain a convergence result for
the annealing algorithm. The consider a version of the annealing algorithm
which they call the Gibbs sampler. They show that for temperature schedules
of the form :

c
T =
k log k
that if c is sufficiently large then {2.6) is obtained.

Gidas [10] also considers the convergence of the annealing algorithm and
similar algorithms based on Markov chain sampling methods related to the
Metropolis method.

We next discuss the work of Mitra et. al. [26]. The idea behind their
work is similar to that of Geman and Geman and also Gidas in that they
show that for temperature schedules which vary slowly enough the annealing
chain reaches “‘quasiequilibrium”, i.e., something like {(2.5) holds. In order to
state Mitra et. al.’s result we will need the following notation. Let

(k large)

N(i) = {jex: q; >0} YV iEx .
Let Sy be the set of states that are local maxima of U(*), i.e.,
Sy = {iET: Ui) > U(G) VieNQ)} .
Let

r = min max d(i,j)
ieE\8y jeS

where d(i,j) is the minimum number of steps to get from state i to state j.
Finally, let

L = max ma ]U’—Ui .
ie%l JEN(I) @) ( )I
Here is Mitra et. al.’s result:

Theorem 2.1 (Mitra et. al. [26]) Assume Q is irreducible and symmetrict.
Let Ty |0 and

§ exp |— rL = 00. (2.7)
k=1 Tkr—l
Then
lim P{§, =i} =7  Viex. (2.8)
k—o0
Remarks

(1) If Ty = c/log k then (2.7) holds iff ¢ > r L.

(2) An estimate of the rate of convergence in (2.8) is obtained for
annealing schedules of the form Ty = c/log k for ¢ > r L. Let

w = min min q; ,
€T jeNg)

~ = min U(i} — min U(j) .
ieE‘\s M j€s @
It is shown that

1

P{{=i}=m +0 )

] as k—oo (2.9)

where

tor just q;j > 0 iff q;; > 0 for all L,jex
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.Since @ and f are increasing and decreasing respectively with increasing c, it
is suggested that ¢ > r L be chosen to maximize min{a,5}.

We next discuss the work of Hajek [14]. The idea behind his work is
that for temperature schedules which vary slowly enough, the annealing chain
escapes from local minima of U(*) at essentially the same rate as for a
constant temperature. In order to state Hajek's result we will need the
following notation. We shall say that given states i and j; 1 can reach j if
there exists a sequence of states i = igs...olp = j such that q ; > 0 for all
n =0,..,p—1; if Ui,) <E (a nonnegative number) for all n =m(;,+,l,.,p then we
shall say that i can reach j at height E. We shall say that the annealing
chain is strongly irreducible if i can reach j for all 1,j€X. Clearly, strong
irreducibility is equivalent to Q irreducible, but we introduce strong
irreducibility to conform with Hajek’s notation. We shall also say that the
annealing chain is weakly reversible if for every E > 0, i can reach j at energy
E iff j can reach i at energy E, for all i,jE€X. Let S, be the states that are

local minima of U("), i.e.,
Sm={i€S: UM <TG ieN() .
For each i€5,\S let A(i) be the smallest number E such that i can reach some

JEX with U(j) < U(i) at height U(i) + E. A(i) is the “depth” of the local (but
not global) minimum i. Let

* . .
A= ig;z{(s Afi) . (2.10)

Here is Hajek’s result:

:I‘heorem 2.2 (Hajek [14]) Assume that the annealing chain is strongly
irreducible and weakly reversible. Let Ty l0. Then

Jim P{§€8}) =1 (2.11)
iff
oo A*
3 exp {— =00.
[ 2 ] (212

11

Remark If Ty = c/log k then (2.12) and hence (2.11) holds iff ¢ > A’. For
this reason A’ has been called the optimal constant and Ty = A‘/log k the
opttmal schedule.

We should also mention that Tsitsiklis [30] has proved of generalization
of Theorem 2.2 which does not assume weak reversibility, using (and
extending) the theory of singularly perturbed Markov chains.

In view of Theorem 2.2 and the refinement in [30], the analysis of the
convergence in probability of the annealing algorithm is essentially complete,
with the exception that it does not appear that anyone has determined the
rate of convergence for optimal or nearly optimal temperature schedules.
Recall that Mitra et. al. have shown that (2.9) holds if

c

T = logk '
but r L is in general much larger than A'. In 2.2, 2.3 we shall analyze the
rate of convergence in probability of the annealing algorithm for a special
case with two local minima. We will obtain results on the convergence rate
for nonparametric temperature schedules (schedules not of the form
Ty = ¢/log k) and also for temperature schedules Ty =c/log k for ¢ > A
We remark that in the latter case with ¢ = A’ there is apparently some
interesting and unexpected behavior. Our results are different although
consistent with (2.9).

Also in 2.2, 2.3 we shall explore the sample path behavior (as opposed to
the ensemble behavior) of the annealing algorithm. We shall give a number
of results, the most important of which is conditions such that the annealing
chain visit the set S (infinitely often) with probability one. Suppose we let

c>rlL ,

=56
{€k+1 if U(€irr) < Ul
Skt =
Gk else .

Note that if {£} visits S with probability one then {¢c} traps in S with
probability one, and furthermore no additional evaluations of U(*) are
required to compute {¢ } over what are required to simulate {&}. Hence by
just doubling the memory requirements and keeping track of {6}, it seems
sufficient to show that {£,} visit S'with probability one rather than converge
to S in probability. Now it might be imagined that the conditions on the
temperature schedule under which {&} visits S with probability one are
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weaker than those under which {£,} converges to S in probability. However,
the proof of Thecrem 2.2 shows that (assuming strong irreducibility and weak
reversibility) {£,} visits S with probability one iff (2.12) holds. From this
point of view our result does not offer anything new; infact the temperature
schedules we consider are not even optimal. However, we believe our result is
important in the following sense. In Chapter 3 we extend the annealing
algorithm to general state spaces. It turns out that our result on the finite
state annealing chain visiting S infinitely often with probability one can also
be extended, essentially under the condition that the state space be a
compact metric space and the energy function be continuous. It is not clear
whether convergence to S in probability can be shown in such a general
setting; the methods used to analyze the finite state case (quasiequilibrium
distributions, large deviations and perturbation theory) do not seem directly
applicable.

Finally, in 2.4 we give a modification of the annealing algorithm which
allows for noisy measurements of the energy function and examine its
convergence.

2.2 Asymptotic Analysis of a Class of Nonstationary Markov Chains

In this Section we analyze the asymptotic properties of a certain class of
nonstationary (finite state) Markov chains. These chains will have the
property that their 1-step transition probabilities will satisfy bounds similar
to those satisfied by the d-step tramsition probabilities of the annealing chain.
The results of this Section will be used in 2.3 to deduce corresponding
asymptotic properties of the annealing chain.

We shall consider the following class of Markov chains. Let 3 be a finite
set. Let oy, G € [0,00] for i,j€EZ, and {f,} a sequence of real numbers with
0<6 <1. Let {{} be a Markov chain with state space L and l-step
transition matrices {P(k'k“)} = {[pigk'k"'l)]} with the following property: there
exists positive numbers A, B such that

p.(k,k+l) 2 A 0aij 2.13
i} k

pxt) < B ofs (2.14)

for all i,j€X. Actually, we shall assume that (2.13) and/or (2.14) hold
depending on the result we wish to prove.
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2.2.1 Convergence in Probability and Rate of Convergence for a
Three State System '

We now establish the convergence in probability and rate of convergence
of a Markov chain {£,} with state space X which satisfies (2.13) and (2.14) for
a special case with |[©Z]=3. In 2.3.2 we shall apply this result to the
annealing chain with an energy function which has two local minima. It will
be useful here to consider the more detailed bounds

A< pE <BB)  VijeS , (2.15)

where Aj;, B;; are positive constants. Here is our theorem.

j
Theorem 2.3 Let X = {1,2,3} and assume that (2.15) holds. Let

a = max{cy,,;, o3} < o0,
b = min{B,, Bz} > a2,

T=b-—a,
min{Ay;, Az} if oy =ay
§= 1A, if gy > g
Az if oy <oy

(a) Suppose that 6,10 and

(2.16)

I
8

o0
3
k=1
Then
lim P{{ =1}=1.
k—oo

(b) Suppose (more strongly) that 6,10 and there exists a sequence {e,}
with 0 < ¢, < 1 and ¢, —1 such that

k
o2+ % log fp = o0 as k—oo | (2.17)
n = k%
gk‘e
£ . 2.18
Slltp B < o0 ( )

"Then
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P{§=1}=1+0(4) as k—oo.

The proof of Theorem 2.3 will require the following lemmas.

Lemma 2.1 Let {s,} be a sequence of positive numbers with s;—0 and

3 s =00.
k=1
Then
oo k-1
5 s (1 —s,) <oo.
k=1 n=1
Proof Let
k
S =3 s
n=1

Now since s;—0 and S,—oco we have

exp(— Sy_;) = exp(s;) exp(— §)) < —-

8¢
for some constant ¢.. Hence
oo k-1 oo
s JT (1 —353) < 35 sy exp(— Sp_)
k=1 n=I k=1
o0 8
<e' ¥ o3
k=1 Sk
< oo

where the convergence of the last series follows from the Abel-Dini Theorem
[20, p. 290]. O

Lemma 2.2 Let b > a > 0 and assume that 6, ]0 and
<]
3 6 =oco. (2.19)
k=1

Then

15
k b k
lim ¥ 6 I (1-63)=0.
k—oo g n=m+1
Proof Let
k b k a
Py = 3 em I1 (1_91\)'
m=1 n=m+1
Let sy = 6. Then for KEN
k k
pe=3 s2/* II (1-sy)
m=1 n=m+1
b/a k k k
SKes* [T (1 —s))+ 0y ¥ s II (1—s) VEk>K,
n=K m=1 n=m+1
where y=b — a > 0. Hence
k k
lmsupp, <O sup 32 spy [ (1—sy) (2.20)
k—sco : k' mli p=mtl
since
o0 [o o] a
IMIA-s)=]I(1-6)=0
=K n=K
which follows from (2.19). Now
k k k m-1
Ysm I (T—s)= Y osm IT (1 —sy)
m=1 n=m+1 m=1 n=1
which is established by induction on k. Hence by Lemma 2.1
k k
sup Yosm I (1—s)<oo. (2.21)

m=1 n=m+1
Combining (2.20), (2.21) and letting K—00 (so that 67.,—0) gives p,—0 as

required. O

Lemma 2.3 Let b>a >0, y=b —a, and assume that 6,10 and there
exists a sequence {€} with 0 < ¢ <1 and €,—0 such that

k*ey

by

sup <00, (2.22)

Then
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k k
S 68 T (1—63)=0(%) as k—oo

m=k*e; n=m+1

Proof Let

k b k a
= ¥ u IT (1-63).
m=kee, n=m+1

Let sy = 62. Then

Ko e K
Px= 3 Sy 11 (l—sn)

m=k*¢, n=m+1
k k
<6 N s II (1—s,). (2.23)
m=1 z=m+1
Now
k k k m-1
Ysm I (1—sy)= Y osm [T (1 —sy)
m=1 n=m+1 m=1 n=1

which is established by induction on k. Hence by Lemma 2.1 there exists a
constant ¢; such that
k k
S om I (1=s)<cp. (2.24)
m=1 n=m+1
Also from (2.22) there exists a constant ¢, such that
' 61 <yt by, (2.25)

€k
Combining (2.23)-(2.25) gives p, = O(6) as required. O

Proof of Theorem 2.3
(a) Define the events

Cm,n = kDm {Ek€{2,3}} VYVn>m, (2.26)

Doppn = {fn =1} NCpy1n Vo>m. (2.27)
Then

k-1
{&ef23}} = ¢ U mL=J1 D

and

17
k-1
P{&€{2,3}} =PCy + 3 PD.y . (2.28)
m=1
Now using the lower bound in (2.15) and the Markov property, for i€{2,3}
. . k-1
P{Cm,klgm = ‘} < P{gm = l} * II max P{En-H = 1161: = J}
n=m =23
k-1 .
< II {1 — min P{'£n+1€{2’3}|€n =j}]
n=m =23
k-1
< 1 — min Au@:"‘
n=m =23
k-1
<c¢ - II (1—5(9:] Vk>m, (2.29)

for some constant c¢,. Also, using the upper bound in (2.15), the Markov
property, and (2.29)

PDyy = 5 P{én =1} pP™ D P{Co, |6y = i)
i=23

-1

<2-maxByfpiee, ] (1-562
1=2,

n=m+1
k-1
<c*6h [T 1-662) Vk>m, (2-30)
n=m+1

for some constant ¢,. Hence from (2.29) and (2.18)
o0
lim PCy, <¢;* JT (1 —662)
k—roo ' n=1

=0, (2.31)

and from (2.30) and Lemma 2.2

k-1 k-1 b —
lim % PDpy < lim ¢y 3 62 T (1-— 562)
! k—o0 m—1

k—oo 2y n=m+1

=0. (2.32)

Combining (2.28), (2.31), and (2.32) gives P{& = 1}—1 as required.
(b) Define Cy, ,, Dy as in (2.26), (2.27). Then
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k-1
{ske{z,s}}=c Y U Dy
m=k*¢,
and
k-1
P{GE@N =P, + & PDpy. (2.33)
m=k* €

From (2.29) we have

PC,. <o T (1-66)
n=keey
k-1
Sciexp |- %) 662

n=k*ey

k
=c exp (80¢) exp |- 6] 30 62+ % log 6, |16/

n=k*¢,

= of6y) as k—oo, (2.34)

where the last equality follows from 62—0 and (2.17). From (2.30) and
Lemma 2.2

k-1 k-1 b k-1
Y PDpy<e, ¥ g JI (1-663)
m=k*¢, m=kve,  2=mtl

= 0(4)) as k—oo. (2.35)

Combining (2.33)-(2.35) gives P{{, = 1} = 1 + O(8})) as required. O

The following corollary considers a choice of {6} which will be seen to
correspond to a temperature schedule T, =c/logk for the annealing
algorithm.

19

Corollary 2.1 Let X, a, b, 7, and § be given as in Theorem 2.3. ‘Assume
that

1

01( = kl/c

where ¢ is a positive constant.
(a) If ¢ > a then

klim P{§=1}=1.
(b) Ifc > a then
P{& =1} =1+ 0(8)) as k—oo.
(c) Ifc=a then

14+ 0(6)) if v<46
P{& =1} = 11 + O(6] log k) if y=§6
1+ O(8) if v>6, as k—oo.

Proof We shall assume that ¢ = 1; the general case follows easily.
(a) If a < 1 then

1

ka

=00

and Theorem 2.3(a) applies.

(b) Suppose a < 1. To apply Theorem 2.3(b) we must construct a
sequence {¢,} with 0 < e <1 and ¢ —1 such that _conditions (2.17), (2.18)

are satisfied. Fix 0 < 9 < 1—a and let
1
k"l_ﬁ (k large) .

Then for sufficiently large k
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k k 1 k-1 k-1 b k1 .
¥ h= X S PDpy<c, ¥ 0 II (1-663)
a=keey n=k(1-k™) B m=1 m=1 n=m+1
k-1 k-1
k 1 1
1 <ep 3 —vexp|—6 -
> f_q ;:' dx m=1 m® n=m+1 D
k(1~k™") o .
<ec E——l exp|—6 | 1
. 1—a— = %2
2k ! m=1 m® m+l X
- ¢y k-1 i P
after evaluating the integrel and applying the Mean Value Theorem. Hence = g Zl 5 * {m + 1)
—
k Ca
3 9:+%logé’1‘2nk“"—%logk—>oo as k—oo, 2¢; k1 1

n=keey,

& b—é
and consequently (2.17) is satisfied. (2.18) is also satisfied. Hence Theorem k' moym
2.3 (b) applies. since (p +q)f <p" +q" for p,g >0, 0<r<1 Since §<1 (use 6, =1 in

(¢) Suppose a = 1. It is not apparent in this case how to construct the (2.15)) and b > a =1 we have b — § > 0. Hence
{ek} sequence which is necessary to apply Theorem 2.3 (b). However, we can

. . k— 2 k
directly use (2.28)-(2.30) to get the desired estimate of P{§, = 1}. So, from 21 PD_, < "céi L4 b1_6 i
(2.28) me1  k 1 X

k-1
= 2.36
P{6E(23)} =PCix + T PDay- (23¢) R R Y
- (2.38)
Now from (2.29) ~ 2¢, (1 + log k) * ;17- if y=6

k-1
PCip <o JIT (1 —063)

=1
* -1 where c3, ¢, are suitable constants. Combining (2.36)-(2.38) completes the
< ¢y exp [— DY —] proof of part {c). O
a=1

2.2.2 Sample Path Analysis

We now analyze the sample path behavior of a Markov chain {&c} with
state space X which satisfies (2.13) and/or (2.14). We shall give (different)

!
gclexp[—ﬁf—dx
1x

= X (2.37) conditions such that
==
K * {&} visits a subset of ¥ (infinitely often) with probability one
Also, from (2.30) * {&} visits a subset of 3 with probability less then one
so, .

{&x} converges to (i.e. eventually stays in) a subset of ¥ with
probability one
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It will be convenient to use the following notation. For J a subset of X define
the events

{& €T 1o} = an kL>Jn {&€T}

(€T aa} = un {&x€T}

(i.0. and a.a. stand for infinitely often and almost always, respectively).
Our first theorem gives sufficient conditions under which {£,} visits a

subset of ¥ infinitely often with probability one.
Theorem 2.4 Assume that (2.13) holds. Let J be a subset of ¥ and

a = max min o < 00, (2.39)
ies\I jel
Suppose
oo
3 6 =00 (2.40)
k=1

Then P{£,€J 0.} = 1.
Proof LetI = 3\J. Using (2.13) and the Markov property

P kf‘; {&€1} < P{¢,€0} nI:Il max P{&. €06 =i}
=m kem 1

n-1

<’ [1 — min P{£x1€T = i}]

1
B

g
0

< [1 — min Y A G:ij]

i€l jel

w
I
B

-]
-

<TII (1—A6) Yao>m.

k=m
Hence
PN{&GG<SII(—~-A6)=0 Vm,
k=m k=m

where the divergence of the infinite product follows from the divergence of the
infinite sum {2.40), and the Theorem follows. O
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The next theorem gives sufficient conditions that {£.} visits a subset of ¥

with probability strictly less than one, at least starting from certain initial
states. Let Pi(*) = P{-[¢; = i} for all i€X.

Theorem 2.5 Assume that (2.14) holds. Let J be a subset of X and

b = max min min §; >0. (2.41)
Kol ien\K jeK

Suppose that §,—0 and
3 o <oo. (2.42)
k=1

Then there exists an i€Y such that

P, kLng {&ely <.

Proof Let J' be a subset of & containing J which obtains the maximum in
(2.41) and let I = E\J*. Let f€l’. Using (2.14) and the Markov property

B n—1
Py N {&€l'} > T min P{€,,€T 6 =i}
k=1 k=1 i€l
n-1 " .
=TI [1 — max P{&,,€T [¢ = 1}]
k=1 i€l

1 —max ¥} BBE“'

o—1
> 11
k=1 el ey

n—1 *1.b
>TI(-BUlEY)  va.
k=1
Hence

Py N {&e’} > [T (1 -Bl'e) >0
= k=1

where the convergence of the infinite product follows from the convergence of
the infinite series (2.42), and the Theorem follows. O

Finally, we give a theorem which gives conditions such that {&}

converges to a subset of ¥ with probability one, provided it visits that subset
infinitely often with probability one.
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Theorem 2.6 Assume {2.14) holds. Let J be a subset of 5 and

= mi i .. 2.43
¢ = min min B (2.43)
Suppose §,—0 and
= e)
3 <oo. (2.44)
k=1

Under these conditions, if P{¢,€J i.0.} = 1 then P{£,€J a.a.} = 1.
Proof Let I = X\J. Using (2.14) and the Markov property
P{&€T, & €l} < P{GeET) max P{&e€Ilé = j}
8.
< max 2B 6. ¢
S ma; {g k

< Bljés.

Hence

0 o0

5 PUGET, §en€l} < 3 B 6§ < oo

k=1 k=1
by (2.44). Hence by the “first” Borel-Cantelli Lemma we must have
P{&€J, £ 1€l 10} =0, and it follows that P{{ €T a.a} =1 whenever
P{{ETi0} =1. O

2.3 Convergence of the Annealing Algorithm

In this Section we apply the results of 2.2 to obtain asymptotic properties
of the annealing algorithm. Throughout this Section (2.3) we use the notation
introduced in 2.1.

2.3.1 Bounds on the Transition Probabilities of the Annealing Chain

In order to apply the results in 2.2 we need to obtain bounds on the d-
step transition probabilities pigk'k"‘d) of the annealing chain {{,}. Toward this
end we make the following definitions. For every 1,j€L and d€N let Aa(i,j) be
the subset of £*! such that (i = iy...,ig = j) € Ag(i,j) if

p®M >0  yn=o, d1,

Intnt+l

for any k€N (this definition is valid since {Ty} is a positive sequence and so
pigk'k“) > 0 for all X whenever pigk'k'“) > 0 for some k). Hence Ay(i,j) is just
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the set of possible d-step transitions from state i to state j for the annealing
chain.  An alternate characterization of Ay(i,j) is as follows:
(i = loy..sig = ) € Ag(i,) iff for every n = 0,...,d—1 either

(i) 4, > 0or
(i) ip41 =1, 2nd q(iy,#) > 0 for some (€T with U(f) > U(i,).
This characterization follows easily from (2.2).
For each d€Nlet

Uulignie) = S max(0,00in12) = UG}

for all i,...,iy € %, and

Vi) = dnf U9, (2.45)
V(i:j) = i%f Vd(i:j) . (2'46)

for all i,j€X. Note that the infinum in (2.46) is obtained for d < [Z]. Also
note that

V(i) < V0 + VED)  Viides. (2.47)
We shall call V4(i,j) the d-step transition energy from i to j, and V(i,j) the
transition energy fromito j.

The following theorem gives upper and lower bounds on the d-step
transition probabilities of the annealing chain in terms of the d-step
transition energy.

Theorem 2.7 Let {T,} be monotone nonincreasing and d€EM Then there
exists positive numbers A, B such that

V4(i,j V4i,j
A exp [—- —d-(-”—)] < pisk'k‘Ld) < Bexp [— %l] VijEY . (2.48)
k+d-1 k

Proof We prove the lower bound in (2.48); the upper bound is similar. Let

9 if j#i

re(i§) = pllek+1) (2.49)
s

if j=i

for all i,j€X, and
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~1

Filior...rla) = 11 "k(invin+1) ’ (2.50)
n=0

F(iol'--’id) = lIl:f fk(ioh--)id) y (2,51)

for all iy..,ig€Z. If AeX¥*! then since {Ty} is nonincreasing {F(\)} is
nondecreasing and so f(\) = f;(\) obtains the infimum. Note that #(\) >0
for all MeAy(i,), i,jEX.

Now from (2.2) and (2.49)-(2.51) we have that
UaN
Trta—1

p ) > 3 (N exp
AEAG(i5)

For each 1,j€X if V4(i,j) < oo let
N(Lj) = {MeAq(1) = UaN) = Va(ii)} = &

} vV ijES. (2.52)

and set
AEN(,j)
if V4(i,j) = coset a;; = 1. Then from (2.52)
V(i
pigk'k+d) > Aexp |— M] AR
k+d—1

where A = min a; > 0.0

ijex
Remark We note that the proof of Theorem 2.7 is quite trivial, and we
would like to point out that our reason for presenting it in detail is for
comparison with the (more difficult) proof of the general state analog
(Theorem 3.3) to come.

2.3.2 Convergence in Probability and Rate of Convergence for Two
Local Minima

We now apply the results of 2.2.1 to establish the convergence in
probability and rate of convergence for an annealing chain {Ek} with an
energy function U(*) with two local minima. We shall consider the following
example in detail:
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#H) X={1,23}
U(1) < U(3) < U(2)
Q125 921 923> Q32 > 0

q; =0 otherwise .

The annealing chain corresponding to (H) is illustrated by the transition
diagram in Figure 2.1. Let

2 =U(R) - U(3),
b = U@) — (1),
v =1U(3) - U(1),
6 = a35°qp; -
Here is our theorem.
Theorem 2.8 Assume the conditions in (H).
(2) Suppose T, |0 and
00

>, exp

k=1

a
— ] = . 2.53
T, oo (2.53)

Then

lim P{§ =1} =1.
k—oo

(b) Suppose (more strongly) that T,]0 and there exists a sequence {¢}
with 0 < ¢, <1 and ¢,—1 such that

k
> oexp |——— |- a. — 00 as k—oo, (2.54)
- Tox & Ty
sup TL i < oo. (2.55)
k 2k 2k*e;

Then
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U(z.) 1

U 4

U 4

\

Figure 2.1. Transition Diagram for Annealing Chain with Two Local
Minima ’
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Proof Let

Te =& s Sk = okt s

8, = exp [—

Ty Toxt1

, T = €Xp [—

Then {nk}, {g‘k} are Markov chains with 1-step transition matrices
Rk} — fpledrlly - (gllokr)y {[s8*+1)}, respectively, which satisfy

Ay <kt < Bijelfﬁ )

Ayt < sk < BijTlfij ,
for appropriate o, /J’ij, Ajj, Bij, and it is clear that these constants may be
chosen such that

a= ma.x{ozzl, 05y} < 00,

b = min{Byy, Bi5} > a,

Y=b—a,

6=Ag .
Hence we are (almost) in a position to apply Theorem 2.3 to {n,} and {¢}.

Suppose that Ty |0 and (2.53) holds. Since {Ty} is nonincreasing, the
divergence of the series in (2.53) implies that

[o0] o0
N =00, 31 =00.
k=1 k=1

Hence we may apply Theorem 2.3 (a) to {n,}, {¢} to get
lim P{€y =1} = lim P{p =1} =1,
k—oc0 k—o0
k—oo k—oco

and hence

lim P{{, =1} =1
k~+co

which proves (a).
Suppose that T\ |0 and (2.54), (2.55) hold. Now (2.54), (2.55) are
equivalent to, respectively,
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k
o6+ % log 6, — oo as k—oo, (2.57)
n=k*¢,
keey
sup < oo. (2.58)
L

Hence we may apply Theorem 2.3 (b) to {m} to get

P{€p =1} =P{m =1} =140

exp | — —— as k—oo. (2.59)
Tox

We make the following

Claim
k
w4 % log 7, — o0 as k—oo, (2.60)
n=k*¢,
Tk'e
sup = <oo. (2.61)
k Ty

Suppose the Claim is true. Then we may apply Theorem 2.3 (b) to {¢}
to get

Py =1} = Pla=1}=1+4+0

exp | =2 as k-—oo, (2.62)
Tors1

and it would follow from (2.59) and (2.62) that

exp | — 2
P Ty

which would prove (b). It remains to prove the Claim.

P{{,=1}=1+0 as k—oo,

Proof of Claim We first show that

1 1
sup - | <. (2.63)
k [ Tax1 Tox
Now
1 1 '
_ 1 _1 SN SRR

Toerr Tae Toper Toteripe  Topesrypeq L2k

In view of(2.55) it is enough to show

31

1 1

su
kP

_ < oo
Tosn),  Tak ’

or since {Tk} is nonincreasing,
2(k+1)¢ < 2k (k large) .

Suppose this last inequality is not satisfied. Then there exists a sequence {ko}
of positive integers with k,Tco and

ko€, > ky — 6 >k, —1.

Hence

< o}
lim inf S 0%+ — log b,

k—oco )
n=k*e;,
< lim |67 + X log 9k]
n—00 B ) "
=—00

which contradicts (2.57). Hence (2.63) must be true. Now using {2.63) we
obtain

k k

sup > - 3 < sup [Hk_ek - 9k+1] < o0,

n=k*€, n=k*¢,

sup (log 6, — log 7)) = sup 1L < 00,
k K Tasr  Tax

Tk'fk gk'fk < 1 1 <
sup - — sup exp - = 0o
LI O K Toerr Tax ’

and (2.60), (2.61) now follow from (2.57), (2.58). This completes the proof of
the Claim and hence the Theorem. O
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Corollary 2.2 Assume the conditions in (H). Let

__¢
log k

Ty (k large)

where ¢ is a positive constant.
{a) If ¢ > a then

klim P{§=1}=1.

(b) If ¢ > a then

P{€, =1} =1+ O |exp —Tl as k—oo. (2.64)
k
(¢) If ¢ = a then
1+ O |exp |~ =L if v<73
Ty

P{g=1}=41+0 exp—jg—+loglogk]] if vy=79

1+ Olexp]{——

(2.65)
where ¥ = §/2.

Proof We may use Corollary 2.1 by appropriately identifying variables. Let

M = Eox s Sic = Eorey1 s
and

1

61(: kl/c .

Then {n.}, {G} are Markov chains with one step transition matrices
{Rik1Y {[r{ki+)}, {stk+1)} = {[sigk'k“)]}, respectively, which satisfy

Aij 0:“ < rigk,kﬂ)’ s-.Sk'k”) < By 0}56 (k large)

for appropriate o, G;j, Ajj, Bjj, and these constants may be chosen such that

ift v>79, as k—oo,
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a = max{ay,05,} <00,
b= min{ﬁm,,@m} >a,
Y=b-—a,

T=Ay .

Hence we may apply Corollary 2.1 (a){c) to {m}, {a} to get the
corresponding (a)-(c) here. O

Remarks on Theorem 2.8 and Corollary 2.2

(1) Theorem 2.8 (a) is a simple case of Theorem 2.2 (Hajek’s Theorem)
since a = A(2) = A’, the optimal constant (see (2.10)).

(2) We compare our results with the rate of convergence (2.9) given by
Mitra et. al. First, Theorem 2.8 (b) gives the rate of convergence of '
P{Ek =1} to 1 for nonparametric temperature schedules, in particular
schedules not of the form Ty = ¢/log k. This is possible essentially due to the
application of the Abel-Dini Theorem on infinite series in the proof of Lemma
2.1. (2.9) is valid only for temperature schedules of the form Ty = c/log k.
Second, Corollary 2.2 (b), (c) gives the rate of convergence for temperature
schedules of the form Ty ==c/log k for ¢ > a, whereas (2.9) only holds for
¢ >r L =2[U(2) — U(1)] > U(2) — U(3) = a. Furthermore, for ¢ > r L where
(2.9) does hold, (2.64) is in general tighter:

exp [_ “

1 1

kﬂ é kmin{a,ﬂ) )

Recall that Mitra et. al. suggest choosing ¢ > r L such that min{oz,ﬂ} is
maximized (see {2.9)). Our results suggest choosing

a it <%
CTlate it 4>73

where 0 < e <a [(7/0) — 1] (see (2.84) and (2.65)). We want to stress that
(2.9) holds for general U(*) whereas we have not been able to extend Theorem
2.8 and Corollary 2.2 to a U(*) with more than two local minma.

(3) The proof of Theorem 2.8 and Corollary 2.2 (which rely on Theorem
2.3 and Corollary 2.1) show that there are two factors which limit the rate at
which P{{, = 1} converges to 1. One factor corresponds to the rate at which
the annealing chain makes transitions from state 1 to state 3 and back. For
temperature schedules of the form Ty = c/log k this factor dominates for
¢ > a and has a characteristic time scale 1/7. Note that ~ =U(3) — U(1)
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depends only on the energy function U(). The other factor corresponds to the
rate at which the annealing chain makes it first transition from state 3 to
state 1. For temperature schedules of the form Ty = c¢/log k this factor is
only important for ¢ = a and has characteristic time scale 1/5. Note that
8= q3305,/2 does not depend on the energy function U(*). We wonder
whether there is some physical significance to all of this.

2.3.3 Sample Path Analysis

We now apply the results of 2.2.2 to analyze the sample path behavior of
the annealing chain {§}. To avoid trivialities we will need the following
assumptions:

(P1) Every i€X\S can reach some j€S
(P2) There exists an i€X\S such that for every j€S, i can only reach j
at height greater than U(i).

The following theorem gives conditions under which the annealing chain
{Ek} visits S infinitely often with probability one. Let
v~ in V(i,j 2.66
Imax min (1.3) (2.66)
Note that (P1) holds iff V' < oo.

Theorem 2.9 Assume (P1). Let {Ty} be monotone nonincreasing and

[o0] V*
3 exp|— =00. (2.67)
k=1 Ty
Then P{£ €S i0.} = 1.
Proof We first show there exists a d€Nsuch that
V= in Vy(i,j) . 2.68
Dax min a(i.d) (2-68)
For every i€¥\S there exists a d;cNsuch that
3 ‘v I LY = - V- .« . < 'V'* .
min a(L3) min (iJ) <
Let d* = Fg&’é d;. Now it is easy to see that for every i€
1
Ijlgél Va(id) < ’,’%‘é‘ V(i) Vo>m.

Hence for every icX\S
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in Vy{i,j) = min, min V,(i,j) <V
Ijrélsn (i) e d jes a(isd)

and (2.88) follows by setting d = d".

Next, from Theorem 2.7 there exists a positive number A such that

Vd(iyj)
(ktd) > A exp|— ——— v ijes .
P - P Tk+d—1
Let
Fo= by O, =ex 1
= == ¢ - 1,
Ex =& b p Traras
and
ofij) = Va(ii) VY ijeS. (2.69)

Then zk is a Markov chain with 1-step transition matrices
(plkk+)y — {[f)i(jk'k'”)]} which satisfy

B2 AT VijeD.

Let

= max min o .
i€EX\S jes

By (2.68) and (2.69) a = V*. Hence since {T\} is nonincreasing the divergence
of the series in (2.87) implies

3 6 =00,
k=1

Hence we may apply Theorem 2.4 to {zk} with J = S to get P{§ xES i.o.} =1
and so P{{,€Si0.} =1. O

Remark Clearly V' > A, the optimal constant (see (2.10), (2.66)). Hence
(assuming strong irreducibility and weak reversibility) Theorem 2.2 is a much
stronger result. However, the importance of Theorem 2.9 is that it can be
extended to a general state version of the annealing algorithm under
essentially the condition that the state space be a compact metric space and
the energy function be continuous. This will be done in Chapter 3.

The next theorem gives conditions under which the annealing chain {£}
visits S with probability strictly less than one. Let




V. = . . -
1= max igzl:l\l%( rjrgsn V(i,j) - (2.70)
Note that (P2) and (2.47) imply V; > 0.
Theorem 2.10 Assume (P2). Let T)—0 and
o v,
Mexp|—- | <.
k=1 Ty
Then there exists an i€X such that

o]
P; kU1 {68} < 1.
Proof From Theorem 2.7 there exists a positive number B such that
Viii
P+ < B exp [— —%ﬂ] v ii€T
k
Theorem 2.5 may be applied to {£,} in an obvious manner. O

Finally, we give a theorem which gives conditions such that the
annealing chain {§,} converges to S with probability one, provided it visits S
infinitely often with probability one. Let

V, = min min V(j,i) .
» = min min (1) (2.71)

Theorem 2.11 Let T,—0 and
oo v,
Yexp|— | <.
k=1 Ty

If P{£,€S i.0.} =1 then P{{,€S a.a.} = 1.

Proof From Theorem 2.7 there exits a positive number B such that

il
p{H) < B exp [— ) |y ges.
k

Theorem 2.6 may be applied to {fk} in an obvious manner. O

Remark Theorem 2.2 or 2.9 may be combined with Theorem 2.11 to give
conditions under which the annealing chain {Ek} converges to S with
probability one. Note, however, that is is not always possible to do this since

it is mot in general true that V, > V" or even v, >A' (see (2.10), (2.66)
(2.71)). ’
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2.4 Annealing Algorithm with Noisy Energy Measurements

In this Section we consider a modification of the annealing algorithm so
as to allow for noisy measurements of the energy differences which are used in
selecting successive states. This is important when the energy differences
cannot be computed exactly or when it is simply too costly to do so. Using
the notation introduced in 2.1 we construct the modified annealing chain as
follows. At time k, given the current state is i we select a candidate state j
with probability q;;; We assume that the emergy difference U(j) — U(i) is
measured with (additive) noise, which is independent of states and candidate
states at times less than or equal to k, and noise at times less than k. The
exponent of the energy difference plus noise is then used to determine whether
a transition is made from i to j. More precisely, let {wk} be a sequence of R-
valued independent random variables. Construct a X-valued discrete-time

process {£,} with &, conditionally independent of &,...,61_; and wy,...,w_;

given £, and wy, and

P{ékﬂ =jlék =i, W = W}

G) — UG) o ) o
Qijexp[_U ’I[‘Jl_'—W if UG)—UG+w>0, j#i,

= k
a it UG)—U[) +w<0, j#i,

for all ijEX. It is easy to see that {£,} is a Markov chain. Let
(plek+1)} — {[f)igk'k“)]} be the 1-step transition matrices for {€,}. Then since
wy is independent of &, we have

f’i&k’kﬂ) =E{P{ 11 =ilw Wi}l =1}

= E{P{ék.u =j Iék =1, Wk}}

U(j) — U(i)
= f q;j exp | — T )+ w dF(w)
{w>U(i)-U(j)} k
+ q;; P{w, < U(i) — U()} Vi#i, (2.72)

where F,(*) is the. distribution function for w,. We shall call {£,} the

annealing chain modified for noisy energy measurements. In the sequel we
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shall only consider the case where w, is Gaussian with mean 0 and variance
og > 0. Hence (2.72) can be written as

0o
A (k, _ U(j) — U(i)
pigk k+1) f a;j exp [_ i) +w

dN(0,0) (w)
u(i) - u(j) Ty

+ i N(0,6¢) (o0, U()) —U()]  Vj #i. (2.73)

The following theorem shows that if the noise variance goes to zero fast
enough then the 1-step transition probabilities for the annealing chain
modified for {Gaussian additive) noisy measurements are asymptotically
equivalent to the 1-step transition probabilities for the unmodified annealing
chain.

Theorem 2.12 If
of =o{T§) as k—oo

then

~ i) =T ] if UG) > Ug)

Ty
9ij if UG)<U@E),j#=i,

s(k+) )i SXP
pi] ~
(2.74)

. as k—oo, for all i,jEX.

Corollary 2.3 If
of = oT{) as k—oo

then Theorems 2.1, 2.2, 2.7-2.11 hold with {&} by {fk}
Remarks

(1) The Corollary is more or less obvious, since the convergence in (2.74)
is uniform for i,jEX (since I is finite); we leave the details to the reader.

(2) We have reason to believe that of = o(T}) is quite conservative and
that of = o(T?) may suffice.
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CHAPTER I
DIFFUSION TYPE ALGORITHMS

3.1 Introduction to the Langevin Algorithm

In Chapter 2 we discussed the annealing algorithm proposed by
Kirkpatrick et. al. [19] and Cerny [3] for combinatorial optimization. In
Chapter 3 we extended the annealing for optimization on general spaces.
Motivated by image processing problems with continuous variables, Geman
and independently Grenander [13] have recently proposed using diffusions for
optimization on multidimensional Euclidean space. In this Section we
describe this method. Like the annealing algorithm, this approach to global
optimization has generated alot of interest and there already exists a
significant literature on the subject.

Let U(*) be a nonnegative continuously differentiable function on B*. The
goal is to find a point in R' which minimizes or nearly minimizes U(*). Let
T(-)} be a positive Borel function on [0,00). As with the annealing algorithm
we shall refer to U(*) as the energy function and T(*) as the temperature
schedule. Let w(*) be a standard r-dimensional Wiener process and let x{*) be
a solution of the stochastic differential equation

dx(t) = — VU(x{t))dt + V2T(t) dw(t), t>0, (3.1)

for some initial condition x(0) =x, (by a solution we mean that x(*) is a
separable process with continuous sample paths with probability one, x{*) is
nonanticipative with respect to w(*), and x(*) satisfies the Ito integral
equation corresponding to (3.1)). For a fixed temperature T(t) = T > 0, (3.1)
is the Langevin equation, proposed by Langevin in 1908 to describe the
motion of a particle in a viscous fluid. Geman and Grenander suggested that
(3.1) could be used to minimize U(*) by letting T(t)—0. Following Gidas’ [11]
notation, we shall call the algorithm which simulates the sample paths of x(*)
with T(t)—0 the Langevin algorithm.

The motivation behind the Langevin algorithm is similar to that of the
annealing algorithm. Let x'(*) be the solution of (3.1) with T(t)=T, a
positive constant, and let PT(',',') be its (stationary) transition function, i.e.,
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* for every t > 0 and AEB' PT(t,',A) is a Borel function on R’

* for every t >0 and x€R' PT(t,x,') is a probability measure on
(B°B7)

. PT(t,x,A) =f PT(s,x,dy) PT(t—-s,y,A) for all 0 <s <t, x€R", and
AcCE’

- PiT(t)eakT(s)) = PT(xT(s),A) w.p.1 for all 0 < s < t and AEH
Under certain conditions (c.f. [31]), PT(*,,) has an invariant Gibbs measure
re), ie.,

I%A) = [ OT(dx) PT(t,x,A) V>0, VY ACE,

where

f exp(— U(x)/T) dx
A

[7(A) = ey V ACH,
and furthermore
PHT()E}-IIT()  weakly as t—oo. 4.2
Now for suitable U(+)
NT()—I'() weakly as T—0 (3.9

where H*(') is a probability measure on (B',B") with support in the set S of
global minima of U('),; see [17] for conditions under which (3.3) holds and a
characterization of 11 (*) in terms of the Hessian of U(*). In view of (3.2) and
(3.3) the idea behind the Langevin algorithm is that by choosing T = T(t)—0
slowly enough hopefully

P{x(t)e:} X M) (¢ large)
and then perhaps
P{x(t)e'}-II"() weakly as t—oo (3.4)
and consequently x(t) converges to S in probability.

The Langevin and the annealing algorithms both have a stochastic
descent behavior whereby ‘“‘downhill” moves are modified probabilistically by
‘“uphill” moves with fewer and fewer uphill moves as time tends to infinity
and temperature tends to zero. However, the simulations of these Monte
Carlo algorithms are quite different. To simulate sample paths of x(*) we
might discretize (in time) the Langevin algorithm as
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X1 = X — VU(xg)e + V2T(ke)e wy , (3.5)

where {w,} is a sequence of standard R-valued Gaussian random variables
and € is a (positive) discretization interval, and simulate sample paths of {xﬁ}
by generating pseudorandom Gaussian variates. VU(') may be computed
from an analytical formula or approximated in a standard fashion. Compare
this simulation with that of the annealing algorithm (see Chapter 2).

Geman reports some encouraging numerical results have been obtained
by Aluffi-Pentini et. al. [32] with a modified Langevin algorithm which uses an
interactive temperature schedule. Tests have been run on U(') defined on K
with r = 1,...,14. Gidas also reports a numerical experiment with a single U(*)
defined on B with 400 local minima. He suggests that a combination of the
Langevin algorithm with the popular multistart technique (c.f. [29]) might
improve the performance obtained by using either approach alone. We
remark here that comparing different global optimization algorithms is in
general a very difficult problem. Rubenstein [28] discusses some analytical
methods for comparing different algorithms. Dixon and Szego [5| have
attempted to define a standard set of test functions which might be used to
empirically compare different algorithms. It is not clear that either of these
methods are suitable for evaluating the performance of the Langevin
algorithm. These tools it seems were designed to compare algorithms which in
some way take advantage of the structure of smooth functions on low
dimensional spaces. We regard the Langevin algorithm as a ‘‘universal”
algorithm which may be used on functions defined on high dimensional space
whose structure is essentially unknown or cannot be simply characterized. It
seems that the best test for the Langevin algorithm is the particular problem
one wishes to solve.

We shall now outline those convergence results for the Langevin
algorithm which are known tc us. We refer the reader to the specific paper

for full details.

Geman and Hwang [9] were the first to obtain a convergence result for - -

the Langevin algorithm. They consider a version of the Langevin algorithm
restricted to a compact subset of K (using reflection barriers). They show
that for a temperature schedule of the form

T(t) = lo; : (t-large)

that if ¢ is no smaller than the difference between the maximum and
minimum values of U{*) then (3.4) is obtained.
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Gidas [11] has obtained necessary and sufficient conditions for the
convergence of the Langevin algorithm in all of B, using partial differential
equation methods. He shows that there exists a constant A® such that for
temperature schedules T(t)}0, (3.4) holds iff

dt = oo

T exp [_ A
0 T(t)
Furthermore, the constant A’ is the natural continuous analog of Hajek's
constant (see (2.10)). Chiang et. al. [4] have also obtained sufficient

conditions for the convergence of the Langevin algorithm in all of B using
large deviations theory.

Kushner [21] has obtained a detailed picture of the asymptotic behavior
of a class of diffusions related to the Langevin algorithm and certain discrete-
time approximations as well. Kushner comsiders (in discrete-time) an
algorithm of the form

Xir1 = Xie + ab(Xi6) + V2 2,0(X )w, (3.6)
where {£,} is 2 sequence of bounded random variables and

__c
- log k
In the special case where E(-) =E{b(*,§)} = — VU(*) and o(*) =1, (3.6) is a
stochastic approximation version of the Langevin algorithm with noisy
measurements of VU(*). We shall refer to the Monte Carlo algorithm which
simulates the sample paths of {X,} as Kushner’s algorithm.

ap (k large) .

We remark that the conditions under which the above results are
obtained typically include
(i)  U() has continuous second-order partial derivatives

(ii) The local minima of U(*) consist of a finite number of compact
sets; for Gidas’ result it is actually required that the local minima
be isolated and nondegenerate.

43

In this Chapter we shall examine certain issues concerning the Langevin
and annealing algorithms which seem important to us and apparently have
not been considered elsewhere. We proceed as follows. We have seen that
the motivation behind the annealing and Langevin algorithms is quite similar.
The first question we would like to answer is:

* what more can be said about the relationship between the
annealing and Langevin algorithms?

In 3.2 we shall show that an annealing chain driven by white Gaussian noise
converges in a certain sense to a Langevin diffusion. Now it seems clear that
the annealing algorithm and the Langevin algorithm each have certain
advantages. The Langevin algorithm, for example, looks like (for large time
and small temperature) a gradient descent algorithm, and gradient descent
algorithms and their higher order generalizations such as Newton's algorithm,
which are “local” algorithms in the sense that they use only the value of the
objective function and a finite number of derivatives at the current iterate to
obtain the next iterate, are efficient at finding local minima. The annealing
algorithm, on the other hand, is not strictly “local’ in that it uses the value
of the objective function in some set containing the current iterate to obtain
the next iterate. In this sense, the annealing algorithm might be called
“semilocal” or even ‘“global” depending on how much of the objective
function is used. Following the usual thinking behind both the annealing and
Langevin algorithms, the idea is to make large fluctuations initially and small
descent-like moves eventually. In view of these considerations, the second
question we would like to answer is:

* is there a natural hybrid algorithm whose initial behavior resembles
the annealing algorithm an whose large time behavior is similar to
the Langevin algorithm?

3.2 Convergence of the Annealing Chain to a Langevin Diffusion

In this Section we shall examine the relationship between the annealing
and Langevin algorithms. We shall show using a result of Kushner’s [22] on
the weak convergence of interpolated Markov chains to diffusions that a
parameterized family of annealing chains driven by white Gaussian noise
interpolated into piecewise constant processes converge weakly to a time-
scaled solution of the Langevin equation. The weak convergence here is in
the sense that the probability measures induced by the interpolated chains on
the path space of functions without discontinuities of the second kind

P
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converge weakly to the probability measure induced by the limit diffusion.
This technique is the same one used to justify the popular diffusion
approximation method, whereby a complicated possibly non-Markovian
process is approximated by a simpler diffusion process (c.f. [23]).

Let D[0, T] denote the space of R'-valued cidldg functions on [0, T] with
0<T< 00, i.e., functions which are nght continuous on [0, T] have left-hand
limits on (0, T], and are left continuous at T. The following elementary results
on weak convergence of probability measures may be found in [2]. There is a
metric dp(*,') on D*[0,T] with respect to which D [0,T] is a complete separable
metric space, and if f(*)€D'[0,T] and {f,(*)} is a sequence in D*[0,T}] then the
convergence of f (*) to f(*) in D’[O,T] implies convergence at all points of
continuity of f(*) (convergence of f,(*) to {(*) in D'[0,T] is roughly equivalent to
uniform convergence outside of any neighborhood of the discontinuity points
of f(*)). Let &(*), {€(*): € > 0} be processes with sample paths in D*[0,T], or
equivalently, random variables which take values in D’[O,T], and let
4(), {#{*) : € >0} be the probability measures they induce on the Borel
subsets of D*[0,T]. We shall say that £.(*) converges weakly to £(*) in D'[0,T)
and write £(*)—¢€(*) weakly (in D'[0,T]) if u(-) converges weakly to u(*) as
e—0, i.e,, if

lim [ £(x) du(x) = [ £(x) dp(x)

for all bounded continuous f(*) on Dr[O,T]. Let D'[0,00) denote the set of R'-
valued functions on [0,00) which are right-continuous on [0,00) and have left-
hand limits on (0,00). Let

x 1
difg) =% 2—n d.(f,g) V £,g€D™[0,00) .
n=1

d(,’) is a metric on D[0,00) with respect to which D'[0,00) is a complete
separable metric space, and we can define the weak convergence of processes
with sample paths in D*[0,00) analogously to D'[o, T] with T finite.

Suppose £ (*)—E(*) weakly (in D"[O,T]) as €—0 with 0 < T < co. Then it
can be shown that the set of points t€[0,T] such that u({€(t_) # £(t)}) >0 is
at most countable. Let

C = {t€[0,T] = pu({&(t-) # &(t)}) =0} .
Then it can also be shown that for any points t,,..,,t,EC the multivariate
distributions of {£(t;),...,{.(ty)} converge to the multivariate distributions of
{&(t)s....,£(t)} as e—0. But the weak convergence of &) to &(*) says much
more than this: if f(*) is a continuous functional on D'[0,T] (or just p-a.s.
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continuous) then f(Ee( ))—E(E(*)) weakly as e—0.

Let C7[0,T] denote the space of B'-valued continuous functions on [0,T]
with 0 < T < co. If we equip CT[0, T] with the uniform topology for T < co
and with the topology of uniform convergence on compacts for T = 0o, then
C'lo, T] is a complete separable metric space and we can define weak
convergence of processes with sample paths in C*[0, T] Our reason for using
D*lo, T] is simply that we shall make use of Kushner's result on the weak
convergence of Markov chains interpolated into Drﬁ) T] Kushner’s stated
reason for working with D’[0,T] as opposed to C'[0,T] is that it is easier to
verify tightness (relative compactness) for a sequence of probability measures
on the Borel subsets of D'[0,T]. If the limit process is a jump diffusion then of
course it would be necessary to work with D'[O,T], but this is not an issue
here since our limit processes are assumed to be ordinary (continuous sample
paths with probability one) diffusions.

We now set up the notation necessary to state Kushner's Theorem on the
weak convergence of interpolated Markov chains. It will be notationally
convenient in the sequel to assume that all processes are defined on a common
probability space (Q, F, P) and we shall do so without further comment. Let
0 <T <oco Let F(-,) and F,(*,"), € >0, be K-valued Borel functions on
E'x[0,T], and let G(°, *) and GE(' *), € > 0, be rxr matrix-valued Borel functions

on B'x[0,T]. For each € > 0 let {£;} be a Markov chain with state-space B
such that

E{€ﬁ+l - Eli ]fli} = Fe(_&li:ke)e ’
E{(in — &D® (&1 — €D} = GlEke) G/(€fke)e
with probability one. Interpolate {{} into a process £(*) with sample paths
in D[0,T] by
Elt) =& Vk-1le<t<ke, Vk=1,., ]"‘] .

Here is Kushner’s Theorem in slightly modified form.
Theorem 3.1 (Kushner [22]). Assume

(K1) F(+,*), G(*,*) are bounded and continuous

(K2) F.(*,*), G(*,*) are uniformly bounded for small ¢ > 0
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l’—f/zJ .
K3) E1 20 [[F‘C(E,i,ke)—F(ﬁﬁ,kel2+ IGE(flg,ke)-—G(gg,ke)F]e —0

k=1
as €~

(5]

(K4) E kz [IEI§+1'—612"'F((E)irke)fl2+a}_> 0
=1

as €—0 for some o > 0.

Let v(*) be a standard r-dimensional Wiener process and assume that
dg(t) = F(£(t),6)dt + G(E(t),t)dv(t), 0<t<T,

has a unique solution £(*) {in the sense of multivariate distributions) with
initial condition £(0) = &;. Assume that )

§{—E weakly as e—0 .
Then
E()—€() weakly (in D'[0,T]) as e—0.

Consider now the following family of Markov chains. Let U(*) and T(*)
be defined as in .1. For each € > 0 let {z;} be a Markov chain with state
space B and 1-step transition functions {P{(*,*)} given byt

Pi(x,A) = { sk(xy) AN(x,eD)(y) + ¥%l(x) 6(x,A) (3.7)

for all x€R" and AEB", where
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exp |— Uly) = Ulx i x

sifxy) = {“P |77 T(ke F U > Ul
1 it Uly) < Ux), (38)
() =1 — [ sg(x,y) AN(x,€D) (v) (3.9)

and 8(x,*) is the unit measure concentrated at x, for all x,yERE, It is
easy to see that (z{} is infact an annealing chain with state space the

measure space (2,B,4) whexre S =IRT, B =BT, g(+) is Lebesque measure, and
Q(x,A) = [ q(x,¥) ¢(dy) = N(x,€I) {A) Y ACB’
A

(hence the annealing chain is “‘driven” by white Gaussian noise). It will be
convenient to introduce the following notation. For each € > 0 let

_U(y) = Ufx)
T(t)
1 if U(y) <U(x),

exp

it Uly) > Ux)

s(x,y,t) =

Ye(x,6) =1 — [ s(x,y,t) dN(x,el) (y) ,
for all x,y€R" and t > 0, and let
PC(X,A,t) = f S(X1Y)t) dN(X,EI) (Y) + ’Ye(xrt) 6(X,A)
A

for all x€R", AER’, and t > 0. Then
P.(x,Ake) = P{(x,A) vV x€R", ¥V AEB" .
For each ¢ > 0, x€R" and t > 0 let

b.(x,t) = % J & —x) P (x,dy,t) ,
adxt) == [ (7 =0 ® (v =) Pulxdnt),

and o(x,t) be a positive square root of a (x,t) i.e.

a.(x,t)0,(x,t) = a,(x,t) .

Since P{,",ke) = P{(*,") is a (regular wide-sense) conditional distribution for
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. €
Zx 41 EIVeD Zp,

E{zfq — zflaf} = b(zke)e

E{(2f41 — 20) @ (241 — 2)la} = oalke)o(aike)e

with probability one. Interpolate {zf} into z(*) with sample paths in D'[0,T]
by

z(t) = 2§ V (k—1)e < t <ke, vYk=1,.,

Here is our convergence theorem.

Theorem 3.2 Assume
(A1) U(*) is continuously differentiable, VU(*) is bounded and Lipshitz
(A2) T(-) is continuous

Let w(*) be a standard r-dimensional Wiener process, and let z(*) be a solution

of?t

dz(t)=—-ﬂ2%%))-dt+dw(t), 0<t<T, (3.10)

with initial condition z{0) = z;. Assume that
z;—z, weakly as ¢—0.
Then
z.(*)—z(*) weakly (in D'[O,’f]) as €—0.
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