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ABSTRACT

A new appreach to computer interpretation of
vectorcardiograms (VCG's) has beern developed
using tools from the theory of statistical sig-
nal analysis. The system consists of a number
of program modules, including a preprocessor,
waveform detector, rhythm analyzer, waveform
morphclogy feature extractor and pattern recog-
nizer. A prototype system has been developegd,
impiemented and tested and@ is presently opera-
tional at the USAF Schoecl of Aerospace Medicine.

I. INTRODUCTION

Computerized interpretation of electrocardio-
grams (ECG's) and vectorcardiograms {(VCG's) is
a problem which has been studied for almost two *
decades. Development of computer programs began
in the early 1960's and has progressed to the
stage where nine major programs are available
for routine clinical use in the United States.
Volume has grown to the point where currently at
least four million ECG's are processed annually
at about 2400 sites [l]. However, even in light
of the extensive effort expended and the results
obtained in this area, it is fair to say that
significant problems remain to be solved. One
of these problems is the improvement of diagnos~
tic accuracy, both in morphology and rhythm ana-
lysis. Present programs must be overread, so are
designed for low miss probabilities, but in turn
have false alarm probabilities which are gener-
ally excessive.

Ancother problem area. is sensitivity to non-
diagnostic morphological changes. A revealing
stndy was recently performed by Bailey, et al
{2], in which several of the most popular pro-
grams were subjected tc almost identical replicas
of a2 series of ECG records. 'he only difference
was that one set was sampled at t = 0, 2, 4, 6,...
msec, while the other was sampled at 1, 3, 5, 7,.
...msec. Although there is no discernable visual
difference between the two sets, total program
diagnostic reproducibility was no more than 90%
for the programs tested. These results suggest
that nocise handling is a problem with these pro-
grams and that they are too highly tuned to para-
meters which may contain significant noise com-—
ponents.
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Another difficulty with many programs in pre-
sent use stems from the use of & hierarchical
decision-tree structure consisting of many deter-
ministic decisions. The diagnostic program de-
scribed here has resulted from an effort to view
the problem from another perspective —— one in
which the underlying statistical nature of the
problem is of paramount importance. An exper-
ienced cardiologist depends not only on a few
threshold-type decisions but on the weighing of
many relevant and interdependent factors which
he or she may find difficult to prescribe pre-
cisely. Rather than attempt to follow the hier-
archical decision structure, our approach has
been based on the idea of matching the computer
diagnoses to those of cardioclogists by varying
a set of free parameters of assumed statistical
models of the BCG or VCG.

II. PHILCSOPHY OF APPROACH

There are two principal classes of cardiac
abnormalities which may be diagnosed using ECG
or VCG data: (1) chronic, which produce changes
in waveform morphology; (2) rhythm, which produce
abnormal temporal patterns of P and R waves.
Based on this dichotomy, diagnostic system con-
tains twe prinicipal diagnostic subsystems: (1)
morphology, (2) rhythm.

Morphology interpretation is accomplished using
statistical pattern recognition. Feature extrac-
tion is performed using a Karhunen-Lo&ve {(K-L)
expansion which has desirable noise suppression
and data compression properties [3,4]. In addition,
the K-L expansion is & conservative approach
since signal reconstruction accuracy is the ex-
pansion criterion used. Careful visual examina-
tion by cardiclogists has been utilized to deter-
nine the appropriate expansion order. Pattern
recognition is . performed using a supervised learn-
ing technique to partition the feature space into
regions which correspond to cardiclegist-determined
disease classes.

Rhythm analysis is performed by using two
subsystems, one for persistent rhythms and the
other for transient rhythms [56]. Persistent rhythms
are identified by using a multiple-model Kalman
Filter to track the rhythms. The most likely




persistent rhythm is found by examination of the

innovations from each filter. Transient rhythms
are identified by using a generalized-likelihood
ratic (GLR) technigue.

The functional flow of the complete system is
outlined in Figure 1. Note that there is no inter-
action between the morphology and rhythm subsystems.
However, both morphology and wave timing will be
utilized in a postprocessor, yet to be designed, to
provide a gquite complete rhythm interpretation capa-
bility. It is to be emphasized here that we are
seaking to perform data compression and determine
a set of statistical discriminants which contain all
of the diagnostic information required for VCG intex-
pretation.

The use of the 3-lead VCG rather than the
12~lead ECG for prototype design was chosen for
several reascns: {L) the metheds to be tested are
more efficiently mechanized since there are fawer
leads (2} the USAFSAM cardiclogists were axperienced
in reading VCG's as well as ECG's (3) VCG data was
available for morphology interpretation. Since
rhythm diagnosis was concerned only with R-R inter-~
val patterns, both VCG and ECG data were used to
achieve a suitable rhythm data base for design. The
vee data was recorded in the Prank (X,Y,3Z) lead
system and digitized at USAFSAM. In the remainder
of this paper, we discuss in more detail the phil-
osophy of approach and the development of the inte-
grated system for VCG interpretation.

ITI. DATA PREPROCESSING

Data preprocessing is divided into two princi-
pal functions: (1) baseline removal {2} R wave
detection. Starting with a sampled (250 Hz) and
digitized signal representation, data preprocessing
consists of three steps:

Step 1: Crude Baseline Removal

The baseline is estimated using a symmetric
moving window (non-causal filter). Eleven equally
spaced points in a 200 msec window are employed.

The amplitude frequency response has a slope of

about -1/Hz up to the first cutoff point at 1.25 Hz.
_ This step removes most of the low-frequency baseline
but does leave artifacts due principally to QRS waves.
These axre removed in step 3.

Step 2: R Wave Detection

The R wave fiducial points are found using a <¢om-
bination of amplitude (above the haseline} and
slope information for the X lead. Let I be the
initial 2.4 sec data interval and let x,x be,res-
pectively, the value and slope of the x component.
Then t@e tests are, in_ordex: ;
(1) x| > 0.15 maxjx|
tel
(ii) change in sign of x detected for two consec=
utive steps {R wave peak)

(1ii) |x| > 0.20 max |x] ]
. tel : at peak
xx > 0.13 max (xx) s
teT
tiv): |x| < 0.60 R wave height
I;z < 0.10 max |x
€EX
Step 3: Fine Baseline Removal

The QRST complexes are removed from the raw
data and then the baselines computed from this
rectified data which contains essentially baseline
and P waves. This gives a very accurate baseline
estimate. At present, one of two methods may be
used: (1} the method of step 1, or {2} a method
pased on spline approximations to the sample means
found in successive PR intexvals.

The results of these three steps is the produc-
tion of cleaned up VCG signals, essentially free
from baseline, and the location of each QRS complex.

1V, MORPHOLOGY DIAGNOSIS

4,1 Feature Extraction

In this work we modeled the waveforms recorded
at the three VCG leads as second order non-stationary
random processes. The statistical properties of
a second order random process are essentially
characterized by its covariance function (with no
loss of generality we may assume the processes to
be zero mean}. Let (X QE;ﬁ?) denote a second
order process. It is krown that the process can
be represented uniquely as

oo

xt(w) = nél Zn(w)mn(t) (4.1)
where Zn(w} are mutually uncorrelated random
variables given by

T
- 4.2
Zn(w} Io xt(w)¢n(t)dt { }

and the ¢ (t) are obtained by soiving the eigen-
value~eigenfunction problem.
7 .

[ RiE,s)d(s)ds = Ad () (4.3)
where R{t,s) is the covariance kernel of the
process (X IQfFf?). This representation is optimal
in the sense that

N .
T 2
S Iz tw- Z.Z (e ()] at
(an(w))n=l,...N

li

| .

. T 2
Mm{folxt(w) ~nZ1 an(w)lp_n(t)| at .
I, wi(t)lpj (£) dt
- (4.4)

= Gij]
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where the eigenvalues of (4.3} form an ordered set
AoPA] -..2A>...  and either the sequence termi-
nates in a finite number of steps or A, + 0 as

n -+ o, This expansion is known as the Karhunen—
Loeve {K-L) expansion. It should be emphasized
that no assumption of stationarity of the process
needs to be made for the expansion (4.1) to be valid.
In fact, if the process were stationary then (4.1)
reduces to the Fourier Series (sine-cosine} ex-
pansion. .

In order to apply these ideas to the modelling
of VCG waveforms, we compute the sample covariance
function of the waveforms obtained at each of the
three VCG leads, where the sample functions are
elements of a representative collection of samples
corresponding to both normal and vaious types of
abnormal heartheats. Thus our sample covariance
functions are computed from a finite number of
second order random variables and the eigenvalue-
eigenfunction problem reduces to an eigenvalue-
eigenvector problem.

Since R(t,s) is a covariance kernel the eigen-
value-eigenvector problem we have to solve corres-—
ponds to a non-negative definite symmetric co-
variance. The coefficients of the Karhunen-Loeve
expansion form a vector in feature space and we
are interested in keeping the dimensions of the
feature space as low as possible consistent with
waveform reconstruction with no loss of essential
information. This means that we do not have to
solve the eigenvalue-eigenvector problem corres-
ponding to (4.3) completely. Thus if the sample
covariance matrix in.nXn and the dimension of the
feature space is m<n, then we need only the first
m principal eigenvalues and eigenvectors. For
our problem n is typically 300 and m is 60. This
elgenvalue-eigenvector problem can be efficiently
solved using a methed due tc Wilkinson and Reinsch.

We remark that the ¥-L expansion apparently
has not found more widespread use because it was
felt that the eigenvalue-eigenvector problem was
too large to be solved efficiently.

We have previously remarked that we wish to
represent the heart-beat waveforms using the K-1L
expansion without any essential loss of informa-
tion. This means that if we compute

= T a2
e, W =S |x 0 - R (wim) [Tt

where
m .
xt(w;m) = ngl Zn(W)¢n(W)

then, for example, we want E{e (w)) < & where

€ is some pre-assigned small number. This,
however, is a global error criterion and in our
problem we are reguired tc make sure that the re-
presentation is adeguate in some local regions
(for example, the P-wave, the S-T segment). In
order to ensure this it may be more efficient to
use a weighted K~L expansion, i.e., the ¢_(%t)

are now orthonormal in the following sense:

T
fow(t)tbi(t)dlj (t)dt=6ij where w(t)>0, 0<e<T,

is a properly weighted function. We have experi-

mented with this approach and have obtained rea
sonably satisfactory results.[4]. :

Another possibility is to use a segmented K-L
expansion. This approach is being extensively
investigated in the M.I.T. doctoral dissertation
of A. Akant

Finally, we remark that the K~L expansion has
desirable noise suppression properties so that
60 Hz filtering and complex artifact rejection
logic is not necessary. Only gross artifacts,
which are easily detected and eliminated, need be
considered prior to feature extraction.

4.2 Clustering

Once the features are found (the coefficients
of the K-I. expansion), morphology interpretation
is performed using a supervised pattern recogni-
tion algorithm in feature space. The algorithm
used is based on representing each morpholeogical
class by a hyperellipse, defined by the class
mean and covariance matrix.

Partitioning Algorithm

Let o4{j) be the feature vector for the jth
record in the ith class. These are determined
apriori by USAF cardiclogists based on careful
examination-~enhanced VCG records. The algorithm
then preoceeds as follows: first, the class means
ai; 1= 1,2,...,C are computed. Then the class
covariance matrices P; and their inverses, are
found. However, the inverses were not found di-
rectly for two reasons:

(i) Pj may be ill-conditioned numerically, due
to insufficient data;

(ii}) possible ill-conditioning of numerical inver-
sion for large dimensions (up to 60 are
required).

The Matrix Inversion Lemma was used, which
necessitated using an initial estimate of P; and
Pi"l. The assumed form was Pj = f£iI with £fi a
scalar size parameter which was varied to give
best results.

After the clusters have been formed, it is
necessary to evaluate the clustering for diag-
nostic purposes., Given a point ¢ in feature space,
the distance of o from the ith cluster is computed
as 1 1
dp(i,q) = - Ed(i,a) - 5’% In(P;}iy (4.7)

where &(i,q) is the Mahalanobis distance between
o and the ith cluster

att,m = (o - ap” 7t (@ - 5y (4.8)

Under a gaussian assumption dp(i,u) is proporticnal
to the log probability of a for the ith class.
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V. RHYTHM AMNALYSIS

The basis for our approach to rhythm analysis
is the determination of a set of dynamic models
that accurately describe the sequential behavior
of the elapsed times between consecutive heart-
beats ("R-R intervals"). Specifically, a number
of arrhythmias are characterized by persistent
patterns of R-R intervals, while others involve
abrupt c¢hanges in the interval pattern. For each
of these we develop a simple model that generates
an interval pattern with the corresponding statis-
tical properties. Using these models, we then
apply two statistical techniques for the identi-
fication of persistent patterns and for the detec-
tion of abrupt changes.

Tt is this aspect that is novel in approach to
arrhythmia analysis. We have developed very simple
phenomenclogical moedels that accurately describe
‘the statistical behavior of R~R interval patterns.
Using these models we can apply powerful statis-
tical techniques to develop an ECG analysis system
that is simple and robust and whose performance
can be accurately determined as a function of &
very small number of design parameters. Our treat-
ment is necessarily brief. For a complete develop-
ment, we refer the readexr to [5,6].

5.1 Modelling of R-R Intexval Patterns

Let y{(k) denote the actually observed kth
R-R interval. We think of y as being the output
of an R-R pattern generator, which is characterized
by the state vector x(k}.. The output Hx(k) repre-
sents the ideal kth R-R interval, which differs
from y{k} by the noise v(k}, which arises from
two sources:

i) the unavoidable errors in computing R-R inter-
vals, caused by inaccuracies in locating the
Eiducial points.

ii) variations due to the fact that actual rhythms
are never "textbook perfect", rather there
are small, apparently random variations about
the ideal underlying pattexrn.

Models are first described for several persistent
rhythms.

Small Variation: This class exhibits small but
random deviations from the mean value of the B-R
intervals (e.g., normal sinus rhythm).

x(k) = x{k-1), y(k} = x(k} + v(k} {5.1)

where v is zero mean Gaussian and white, with
variance Rg. The initial mean m(C) and variance
P(0) of x(0}, as well as Rg are design parameters,
reasonable values for which can be determined with
the ?id of the statistical techniques described

in [5].

Large Variation: This class is characterized by
large but random variatiens in the R-R intervals
(e.g., sinus arrhythmia). The model for this class
is also given by (5.1), the only difference being
that the variance of v is taken to be R1”Rg.
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Period Two Oscillator: This class is characterized

by R-R intervals which are alternately long and
short {(e.g., bigeminy).

0 1

x(k) = x{k-1) (5.2}
1 ¢

ylk) = (1,0)x(k) + vik) {5.3)

where the initial mean m(0) and covariance P(0) of
%x(0) and the variance Rz of v are free parameters
to be determined by some statistical means.

Period Three Oscillator: This class exhibits an
R-R interval sequence with a peried of 3 (e.g..
trigeminy) .

x({k)

0
1
o]

OO

1
Q x{k=-1} (5.4)
Ly

y(k} (1 0 aix{k) + vik) {5.5)
Again m{0), P(0), and R3 (the variance of v) are
free parameters.

We now turn our attention to the models of tran-
sient events. All such events are modeled as sud-
den, unpredictable changes on an otherwise normal
record. Thus the basic model is {5.1) with covar-
iance of v = Rg, and the various transient events
are modeled as changes in this pattern.

Rhythm Jump: This class is characterized by a
sudden change in the heart rate.

x(k) = x(k-1} + vﬁa'k (5.6}

Here v is the unknown size of the shift in the
average R~R interval at the unknown time 8. Also,
6ij is the Kronecker delta (.. = 0, i#j, while
§,° = 1). H

1]
Noncompensatory Beat: This class is characterized
by the presence of a single lengthened or shortened
R~R interval {e.g., SA block, PAC}

x(k) = x{k=1) + v{§ 1 (5.7

8,k % x
i.e., x{k) = x{0) for k#0, and x(0} = x(0} + v.

Compensatoxy Beat: This class is characterized by
an isolated premature QRS complex followed by a
compensatory pause before the following beat (i.e.,
a PVC).
= -1) + - -4

x() = 2L} + VI8 = 8y g = O xn
Double Noncompensatory Beat: This class is char-
acterized by two consecutive shortened or leng-
thened R-R intervals.

1 (5.8)

x(@)_= x{k-1} + V[Ga,k - Ge,k-zj }5.9)



5.2 An Arrhythmia Detection Technigue

Examining the models for the persistent rhythm

classes, we see that they are all linear systems.
Thus, given a sequence of observed R-R intervals,
we can use the multiple hypothesis method [5}
-~ consisting of a bank of Kalman Filters, cne for
each of the models -- to compute the probabilities
for each of the persistent rhythm categories based
on analysis of the filter residuals.

In the case of the transient categories, the
generalized likelihood ratio (GLR) technigue
6] has been implemented. This approach involves
the implementation of a Kalman Filter based on the
small variation model. The residuals of this
filter are then fed into several matched filters
that compute most likely times and the likelihood
ratios for each type of transient event., Estimates
of the jump v are also obtained.

The prototype system consists of both of these
subsystems with several additional features de-
signed to:

a) shorten the response time of the multi-filter
in the case of a shift from one normal rhythm
pattern to another one;

b) improve the distinguishability of small varia-
tion from the period two and three osciliators
and from large variations;

c) speed up the GLR identification process hy
lovking at a narrow "window" of the most
recent data;

d) provide an initialization procedure for all
filters to enhance detection of events at the
beginning of an ECG record;

e) reset the system subseguent to the detection
of a transient event.

VI. RESULTS

Fig. 2. depicts the result of ope test on real
ECG data using the rhythm subsystem. ‘The format
of the figure is as follows: At the top of the
figure is the actual ECG waveform being processed.

The small vertical lines beneath the waveform are
the R-wave detector. The multifilter probabilities
{in percentage form) are displayed next, where the
R-R intervals (between the present R-wave and the
preceding one) are measured in units of 4 ms. The
symbol "QUT" is used to indicate & multifilter out-
lier -- an indication that a previously identified
persistent pattern has been interrupted.

The GLR likelihood ratios are plotted below the
multifilter results. Again, the horizontal axis
is actual time, while the numbers given represent
the running estimate of the mean R-R interval, as
produced by the small variation GLR filter. We
note that in addition to the categories, "noncom-
pensatory"” (M), "compensatory" {C)}, and "double
noncempensatory"” (D), we have the category "warn-
ing" (W), which indicates the preceding R-R inter-
val is fine but that the present one is abexrant.
This signal tells us that when we look at the next
interval, we should be able to decide among the
various transient categories. The actual GLR de-
cisions are located beneath the plot. 1In addition,
W, C, N, and D, two other symbols are used. "JD"
denotes the detection of a double noncompensatory
and indicates that it might really be a jump —— a
question that is resolved upon looking at the next
interval. Pinally, at the top of the GLR plot,
the times at which the GIR filter is adjusted are
indicated. "JUMP" indicates that the filter esti-
mate has been adjusted following the detection of
a jump. "OUT" indicates that the GLR filter has
been reinitialized. This only happens if the multi-
filter has locked onto period two or three oscil-
lation and an outlier has been detected.

The record shown in Fig. 2 contains several bursts

of ventricular tachycardia plus one isolated PVC.
The bursts tend to drive the multifilter towards
jarge variation, although several inliers (IN} are
signaled during thée calm periods between the bursts.
Bach of the bursts consists of two shortened R-R
intervals followed by a pause. The GLR system con-
sistently detects the two shortened intervals as a
jump or double nen-compensatory (JD). In several
¢ases the pause was long enough to be classified as

compensatory {C)}, while in the others it was shorter

digitize
o REiggE BASELINE R WAVE LIRE UP _ [. FEATORE CLUSTER MORPHOLOGY
HOISE DETECTION| HEARTBEATS SELECTO! ANALYSTS [ DIAGNOSIS [*
i

H -

, ] rhythm analysis ;

REGULAR RHYTHM ;
MULTIFILTER !

v

COMPUTE APOSTERIORI

REGULAR RHYTHM

PROBABILITIES

‘

ECTOPIC EVENT

DECISION

RHYTHM
DIAGNOSIS

IDENTIFY IRREGULAR

DETECTION (QUTLIER TEST}

RHYTHM (GLR TESTS)

Fig. 1:

VOG Interpretation System Functional Flow




lending to a "D" classification. The isclated PVC
is classified as a compensatory premature {C) .

An ensemble of 936 VCG records were employed to
develop and test the K-L expansion technique.
Approximately one nalf of these were normal, with
the other half containing examples from 22 cardiolo-—
gist-determined disease ¢lasses. This was done to
give maximum variapiiity to the data, and thus pro-
vide good reconstructions for both normal and ab-
normal records. It was estimated that 60 coeffi-
cients were sufficient to give reconstructions
accurate enough to retain diagnostie information.
The worst pointwise reconstruction error was eval-
uated for each record. An example of the most severe
error encountered is shown in Fig. 3. The maximum
error is 0.092 mv, for the z axis reconstruction.
The integrated absolute errors are shown for each
axis. The average pointwise error is obtained by
dividing by 100.

yII. CONCLUSIONS

A new approach is being taken to the problem of
automated interpretation of electrocardiograms.
Rather than relying on deterministic decision rules
and a hierarchical decision tree structure, the
approach is an attempt to make full use of several
powerful and relevant tools of modern filtering and
detection theory. The approach utilizes the concepts
of data compression, pattern recognition and suffi-
cient statistics to generate a parsimonious set of
discriminants which contain all of the useful diag-
nostic information. With this approach, it is felt

that the program will be insensitive to noise and
more sensitive to diagnostic discriminants than
present programs. This conjecture has been bhorne
out in recent experimental results, which will be
the subject of future papers.
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