A Work-Efficient Parallel Breadth-First Search Algorithm (or How to Cope with the Nondeterminism of Reducer Hyperobjects)

Charles E. Leiserson  Tao B. Schardl

MIT Computer Science and Artificial Intelligence Laboratory

22nd ACM Symposium on Parallel Algorithms and Architectures
2010
Problem: Given an unweighted graph $G = (V, E)$ and a designated starting vertex $v_0$, find the shortest path distance from $v_0$ to all other $u \in V$.

- Guarantee that the vertices are visited in *breadth-first order*: For all distances $d$, all vertices that are $d$ away from $v_0$ must be visited before any vertex of distance $d + 1$.
- We want a parallel algorithm to solve this problem.
Serial BFS

```
SERIAL-BFS(G = (V, E), v0)
1 for each vertex u ∈ V − {v0}
2    u.dist = ∞
3 v0.dist = 0
4 Q = {v0}
5 while Q ≠ ∅
6    u = DEQUEUE(Q)
7 for each v ∈ V such that (u, v) ∈ E
8 if v.dist == ∞
9    v.dist = u.dist + 1
10 ENQUEUE(Q, v)
```

- The queue $Q$ is a FIFO queue.
- The distance of vertex $u = \text{DEQUEUE}(Q)$ in line 6 is monotonically increasing.
- Consequently, vertices are visited in breadth-first order.

This algorithm does not parallelize well.
- FIFO queue is a serial bottleneck.
- Parallelizing the for loops gives $O(E/V)$ parallelism, which is puny for sparse graphs.
We have designed a parallel breadth-first search algorithm, called PBFS, and we have implemented PBFS using Cilk++. PBFS obtains $5 \times$ to $6 \times$ speedup on eight processing cores on many real-world benchmark graphs. When run serially, PBFS is competitive with SERIAL-BFS. The theoretical running time of PBFS on $P$ processors is $O((V + E)/P + D \log^3(V/D))$. 
Outline

1. Strategy for Parallelizing Breadth-First Search

2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design

3. Empirical Results

4. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
Outline

1. Strategy for Parallelizing Breadth-First Search
   - The Bag Data Structure
     - Bag Requirements and Usage
     - Bag Design

2. Empirical Results

3. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
Strategy: consider the graph in layers.

- The \( d \)th layer of \( G \) is the set \( V_d \) of vertices that are all at distance \( d \) from \( v_0 \).
- Breadth-first ordering: all vertices in \( V_d \) are visited before any vertex in \( V_{d+1} \).
- We shall examine the layers \( V_d \) serially, but
- For each layer \( V_d \), we shall process all vertices in \( V_d \) in parallel.
Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL)
Strategy for parallelizing breadth-first search
Strategy for parallelizing breadth-first search
Strategy for parallelizing breadth-first search
Outline

1. Strategy for Parallelizing Breadth-First Search

2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design

3. Empirical Results

4. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
Problem: We need a data structure to handle a single layer. Specifically, we need a data structure that does the following:

- It must store an unordered set of elements.
- It must support efficient parallel traversal of the stored elements.
- It must allow parallel workers to add elements simultaneously to the same structure.
Storing a layer of the graph

**Solution:** Use a *bag* — a multi-set data structure, which supports the following operations:

- **Bag-Create**: Create a new, empty bag.
- **Bag-Insert**: Add an element to a bag.
- **Bag-Split**: Divide a bag into two equal-sized bags.
- **Bag-Union**: Combine the contents of two bags into a single bag.
Processing a layer

\texttt{PROCESS-LAYER}(in\-bag, out\-bag, d)

11 \textbf{if} \texttt{BAG-SIZE}(in\-bag) < \texttt{GRAINSIZE}
12 \hspace{1em} \textbf{for} each \texttt{u} \in \texttt{in\-bag}
13 \hspace{2em} \textbf{parallel for} each \texttt{v} \in \texttt{Adj}[u]
14 \hspace{3em} \textbf{if} \texttt{v.dist} == \infty
15 \hspace{4em} \texttt{v.dist} = d + 1 \hspace{1em} // benign race
16 \hspace{3em} \texttt{BAG-INSERT}(out\-bag, v)
17 \hspace{1em} \textbf{return}
18 \hspace{1em} \texttt{new\-bag} = \texttt{BAG-SPLIT}(in\-bag)
19 \hspace{1em} \textbf{spawn} \texttt{PROCESS-LAYER}(new\-bag, out\-bag, d)
20 \hspace{1em} \texttt{PROCESS-LAYER}(in\-bag, out\-bag, d)
21 \hspace{1em} \texttt{sync}
PROCESS-LAYER\((in\text{-}bag, out\text{-}bag, d)\)

11 \textbf{if} BAG\text{-}SIZE\((in\text{-}bag)\) $<$ GRAINSIZE
12 \hspace{1em} \textbf{for} each $u \in in\text{-}bag$
13 \hspace{2em} \textbf{parallel for} each $v \in Adj[u]$
14 \hspace{3em} \textbf{if} $v.\text{dist} == \infty$
15 \hspace{4em} $v.\text{dist} = d + 1$ \hspace{0.5em} // benign race
16 \hspace{4em} BAG\text{-}INSERT\((out\text{-}bag, v)\) \hspace{0.5em} // malignant race
17 \hspace{1em} \textbf{return}
18 \hspace{1em} new\text{-}bag = BAG\text{-}SPLIT\((in\text{-}bag)\)
19 \hspace{1em} \textbf{spawn} PROCESS-LAYER\((new\text{-}bag, out\text{-}bag, d)\)
20 \hspace{1em} PROCESS-LAYER\((in\text{-}bag, out\text{-}bag, d)\)
21 \hspace{1em} \textbf{sync}
Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a **reducer**.

```
1  x = 10
2  x++
3  x += 3
4  x += -2
5  x += 6
6  x--
7  x += 4
8  x += 3
9  x++
10 x += -9
```

```
1  x = 10
2  x++
3  x += 3
4  x += -2
5  x += 6
6  x' = 0
7  x' --
8  x' += 4
9  x' += 3
10 x' += -9
    x += x'
```

```
1  x = 10
2  x++
3  x += 3
4  x' += -2
5  x' += 6
6  x' --
7  x'' = 0
8  x'' += 4
9  x'' += 3
10 x'' += -9
    x += x'
    x += x''
```
Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a reducer.

1. \( x = 10 \)
2. \( x++ \)
3. \( x += 3 \)
4. \( x += -2 \)
5. \( x += 6 \)
6. \( x-- \)
7. \( x += 4 \)
8. \( x += 3 \)
9. \( x++ \)
10. \( x += -9 \)

1. \( x = 10 \)
2. \( x++ \)
3. \( x += 3 \)
4. \( x += -2 \)
5. \( x += 6 \)
6. \( x' = 0 \)
7. \( x'-- \)
8. \( x' += 4 \)
9. \( x'+= 3 \)
10. \( x' += -9 \)
11. \( x += x' \)

1. \( x = 10 \)
2. \( x++ \)
3. \( x += 3 \)
4. \( x' + = -2 \)
5. \( x' + = 6 \)
6. \( x'-- \)
7. \( x'' = 0 \)
8. \( x'' + = 4 \)
9. \( x'' + = 3 \)
10. \( x'' + = -9 \)
11. \( x += x' \)
12. \( x += x'' \)
Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a *reducer*.

1. \( x = 10 \)
2. \( x++ \)
3. \( x += 3 \)
4. \( x += -2 \)
5. \( x += 6 \)
6. \( x-- \)
7. \( x += 4 \)
8. \( x += 3 \)
9. \( x++ \)
10. \( x += -9 \)

1. \( x = 10 \)
2. \( x++ \)
3. \( x += 3 \)
4. \( x += -2 \)
5. \( x += 6 \)
6. \( x' = 0 \)
7. \( x' += 4 \)
8. \( x' += 3 \)
9. \( x'++ \)
10. \( x' += -9 \)

\( x += x' \)

1. \( x = 10 \)
2. \( x++ \)
3. \( x += 3 \)
4. \( x' += -2 \)
5. \( x' += 6 \)
6. \( x'-- \)
7. \( x'' += 4 \)
8. \( x'' += 3 \)
9. \( x''++ \)
10. \( x'' += -9 \)

\( x += x' \)
\( x += x'' \)
Cilk++ reducers

We use the bag as a Cilk++ reducer to solve our malignant race.

- After stealing a task, a worker starts executing the task with a local, “identity” copy of a new reducer.

- Each worker freely manipulates its local copy with write-only update operations.

- As tasks return, the workers’ local copies are combined together into a single data structure using REDUCE operations.

- If REDUCE is associative, then the program has serial semantics.
We use the bag as a Cilk++ reducer to solve our malignant race.

- After stealing a task, a worker starts executing the task with a local, “identity” copy of a new reducer.
  - For bags, the identity is an empty bag.
- Each worker freely manipulates its local copy with write-only update operations.
  - For bags, the update operation is BAG-INSERT.
- As tasks return, the workers’ local copies are combined together into a single data structure using REDUCE operations.
  - For bags, REDUCE = BAG-UNION.
- If REDUCE is associative, then the program has serial semantics.
  - For bags, BAG-UNION is not strictly associative, since the order of elements within a bag is nondeterministic. Bags have a notion of “logical associativity,” which is sufficient for PBFS’s correctness.
Outline

1. Strategy for Parallelizing Breadth-First Search
2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design
3. Empirical Results
4. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
The bag data structure

- A bag is made up of **pennants** — complete binary trees with extra root nodes, which store the elements.
  - Pennants may be split and combined in $O(1)$ time by changing pointers.
  - A pennant is only combined with another pennant of the same size.
- A bag is an array of pointers to pennants.
  - For all $i$, the $i$th entry in the array is either null or points to a pennant of size $2^i$.
  - Intuitively, a bag acts much like a binary number.
The bag data structure — **BAG-INSERT**

Inserting an element works similarly to incrementing a binary number.

\[ \text{BAG-INSERT runs in } O(1) \text{ amortized time and } O(\log n) \text{ worst-case time.} \]
The bag data structure — BAG-INSERT
The bag data structure — BAG-SPLIT

Splitting a bag works similarly to an arithmetic right shift.

\[
\text{BAG-SPLIT runs in } O(\log n) \text{ time.}
\]
The bag data structure — BAG-UNION

Unioning two bags is works similarly to adding two binary numbers.

\[
\text{BAG-UNION works in } O(\lg n) \text{ time.}
\]
1. Strategy for Parallelizing Breadth-First Search

2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design

3. Empirical Results

4. Theoretical Results
   - The DAG Model of Computation
   - ModelingReducers
   - Theoretical Analysis of PBFS
## Empirical Results

| Name              | Description                                           | Spy Plot | \( |V| \) | \( |E| \) | Parallelism | \( \frac{PBFS\ T_1}{SERIAL\ BFS\ T_1} \) | \( \frac{PBFS\ T_1}{T_8} \) |
|-------------------|-------------------------------------------------------|----------|-------|--------|-------------|---------------------------------|-------------------------------|
| Kkt_power         | Optimal power flow, nonlinear opt.                    | ![Spy Plot](image1) | 2.05 M | 12.76 M | 31          | 104.09                         | 0.705                          | 6.102                         |
| Freescale1        | Circuit simulation                                    | ![Spy Plot](image2) | 3.43 M | 17.1 M  | 128         | 153.06                         | 1.120                          | 5.145                         |
| Cage14            | DNA electrophoresis                                   | ![Spy Plot](image3) | 1.51 M | 27.1 M  | 43          | 246.35                         | 1.060                          | 5.442                         |
| Wikipedia         | Links between Wikipedia pages                         | ![Spy Plot](image4) | 2.4 M  | 41.9 M  | 460         | 179.02                         | 0.804                          | 6.833                         |
| Grid3D200         | 3D 7-point finite-diff mesh                           | ![Spy Plot](image5) | 8 M    | 55.8 M  | 598         | 79.27                          | 0.747                          | 4.902                         |
| RMat23            | Scale-free graph model                                | ![Spy Plot](image6) | 2.3 M  | 77.9 M  | 8           | 93.22                          | 0.835                          | 6.794                         |
| Cage15            | DNA electrophoresis                                   | ![Spy Plot](image7) | 5.15 M | 99.2 M  | 50          | 675.22                         | 1.058                          | 5.486                         |
| Nlpkkt160         | Nonlinear optimization                               | ![Spy Plot](image8) | 8.35 M | 225.4 M | 163         | 331.57                         | 1.138                          | 6.096                         |
Outline

1. Strategy for Parallelizing Breadth-First Search

2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design

3. Empirical Results

4. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
The dag model of computation

We can model a Cilk++ program with a dag (directed acyclic graph) $A$.

Each vertex in $A$ corresponds to a strand — a sequence of serially executed instructions.

Edges in $A$ describe control dependencies between strands.
The dag model of computation

- **Work** $W(A)$: The sum of the lengths of all of the strands in $A$.
- **Span** $S(A)$: The length of the longest path in $A$.
- The Cilk++ scheduler guarantees that $A$ runs in $T_P(A) \leq W(A)/P + O(S(A))$.
- **Parallelism** of $A$: $W(A)/S(A)$.
- This model does not accurately represent runtime system operations on reducers.
Outline

1. Strategy for Parallelizing Breadth-First Search

2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design

3. Empirical Results

4. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
For a computation $A$:

- Consider the **user dag** $\text{User}(A)$ — a dag where runtime system operations on reducers are not represented.
  - This dag models the computation as the user understands it.

- Insert $\text{REDUCE}$ strands performed by the runtime system into $\text{User}(A)$ before the sync strand that requires its completion to get a **performance dag** $\text{Perf}(A)$.

- A delay-sequence argument proves that the performance of $A$ is $T_P(A) \leq W(\text{Perf}(A))/P + O(S(\text{Perf}(A)))$.

- We want a performance bound in terms of $\text{User}(A)$. 

---

**Modeling reducers**

![Diagram of a user dag and a performance dag](image-url)
Modeling reducers

Let $\tau$ be the worst-case running time of any REDUCE operation. In the paper, we show that:

- $S(\text{Perf}(A)) = O(\tau \cdot S(\text{User}(A)))$ and
- $W(\text{Perf}(A)) = W(\text{User}(A)) + O(\tau^2 P \cdot S(\text{User}(A)))$. 
Outline

1. Strategy for Parallelizing Breadth-First Search

2. The Bag Data Structure
   - Bag Requirements and Usage
   - Bag Design

3. Empirical Results

4. Theoretical Results
   - The DAG Model of Computation
   - Modeling Reducers
   - Theoretical Analysis of PBFS
Analysis of PBFS

- PBFS’s user dag has $O(V + E)$ work and $O(D \lg(V/D))$ span for bounded-degree input graphs.
- The worst-case cost of any BAG-UNION in PBFS is $O(\lg(V/D))$.
- Relating the user and performance dags for PBFS, we have $S(PBFS) = O(D \lg^2(V/D))$ and $W(PBFS) = O(V + E) + O(PD \lg^3(V/D))$.
- Consequently, we have $T_P(PBFS) = O((V + E)/P + D \lg^3(V/D))$.
- If $O((V + E)/P) \gg O(D \lg^3(V/D))$, then we expect linear speedup from PBFS. We define the effective parallelism of PBFS to be $O\left(\frac{V+E}{D \lg^3(V/D)}\right) \approx O\left(\frac{E}{D}\right)$.
We have seen a parallel breadth-first search algorithm implemented in Cilk++, which uses a novel Cilk reducer for unordered sets.

Future work includes:

- Comparing the performance of PBFS versus an implementation that uses thread-local storage instead of reducers.
- Augmenting PBFS to return a deterministic BFS tree.
- Parallelizing other graph algorithms, such as weighted SSSP, max flow, or min-cost flow.
- Parallelizing other non-numeric algorithms using Cilk technologies.
Questions?
Reducers are implemented in Cilk++ with one additional optimization.

- After stealing a task, a worker starts executing the task with a local *null* copy of a reducer.
  - For example, this null copy may be a *NULL* pointer to a bag.
- The first time the worker tries to manipulate its local copy of the reducer after a steal, the runtime system initializes the reducer using a `CREATE-IDENTITY` operation.
  - For bags, `CREATE-IDENTITY = BAG-CREATE`.
- Modeling `CREATE-IDENTITY` calls in theory is similar (and simpler) than modeling `REDUCE` calls.
Optimizing the bag data structure

We can improve the real-world efficiency of the bag by storing an array of data at each node.

- Each node in a pennant stores a fixed-size array of data, which is guaranteed to be full.
- The bag stores an extra fixed-size array of data, called the hopper, which may not be full.
- Inserts first attempt to insert into the hopper. Once the hopper is full, a new, empty hopper is created while the old hopper is inserted into the bag using the original algorithm.

With this optimization, the common case for BAG-INSERT is exactly like enqueueing a vertex in a FIFO queue.
Locked PBFS

To simplify theoretical analysis, we analyze a locked version of PBFS.

\textbf{PROCESS-LAYER}(\textit{in-bag}, \textit{out-bag}, d)

11 \textbf{if} \textit{BAG-SIZE}(\textit{in-bag}) < \textit{GRAIN-SIZE}
12 \hspace{1em} \textbf{for each} \textit{u} \in \textit{in-bag}
13 \hspace{2em} \textbf{parallel for} each \textit{v} \in \textit{Adj}[\textit{u}]
14 \hspace{3em} \textbf{if} \textit{v.dist} == \infty
15 \hspace{4em} \textbf{if} \textit{TRY-LOCK}(\textit{v})
16 \hspace{5em} \textbf{if} \textit{v.dist} == \infty
17 \hspace{6em} \textit{v.dist} = \textit{d} + 1
18 \hspace{5em} \textit{BAG-INSERT}(\textit{out-bag}, \textit{v})
19 \hspace{4em} \textit{RELEASE-LOCK}(\textit{v})
20 \hspace{1em} \textbf{return}
21 \textit{new-bag} = \textit{BAG-SPLIT}(\textit{in-bag})
22 \textbf{spawn} \textit{PROCESS-LAYER}(\textit{new-bag}, \textit{out-bag}, \textit{d})
23 \textit{PROCESS-LAYER}(\textit{in-bag}, \textit{out-bag}, \textit{d})
24 \textbf{sync}
Relating the user and performance dags

Lemma

Consider a computation $A$, and let $\tau$ be the worst-case running time of any \texttt{REDUCE} or \texttt{CREATE-IDENTITY} operation in $A$. We have $S(\text{Perf}(A)) = O(\tau \cdot S(\text{User}(A)))$ in expectation.

Proof.

- Every successful steal may force a \texttt{CREATE-IDENTITY} operation.
- Every successful steal may force a \texttt{REDUCE} operation.
Relating the user and performance dags

Proof cont’d.

- Consider a critical path \( p \) in \( \text{Perf}(A) \).
- This path \( p \) corresponds to some path \( q \) in \( \text{User}(A) \), which has length at most \( S(\text{User}(A)) \).
- Since at most every node in \( q \) corresponds to a steal, the length of \( p \) is \( O(\tau \cdot S(\text{User}(A))) \) in expectation.
**Lemma**

Consider a computation $A$, and let $\tau$ be the worst-case running time of any REDUCE or CREATE-IDENTITY operation in $A$. We have

$$W(\text{Perf}(A)) = W(\text{User}(A)) + O(\tau^2 P \cdot S(\text{User}(A)))$$

in expectation.

**Proof.**

- The computation $A$ contains all of the strands in $\text{User}(A)$.
- At most $O(P \cdot S(\text{Perf}(A)))$ steals occur during $A$'s execution.
- Consequently, $\text{REDUCE}$ and $\text{CREATE-IDENTITY}$ strands contribute $O(\tau P \cdot S(\text{Perf}(A)))$ additional work to $\text{User}(A)$.
- From the previous lemma, we have $S(\text{Perf}(A)) = O(\tau \cdot S(\text{User}(A)))$.
- Therefore, we have

$$W(\text{Perf}(A)) = W(\text{User}(A)) + O(\tau^2 P \cdot S(\text{User}(A)))$$

in expectation.