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SAMPLE SPLITTING AND THRESHOLD ESTIMATION 

BY BRUCE E. HANSEN' 

Threshold models have a wide variety of applications in economics. Direct applications 
include models of separating and multiple equilibria. Other applications include empirical 
sample splitting when the sample split is based on a continuously-distributed variable such 
as firm size. In addition, threshold models may be uised as a parsimonious strategy for 
nonparametric function estimation. For example, the threshold autoregressive model 
(TAR) is popular in the nonlinear time series literature. 

Threshold models also emerge as special cases of more complex statistical frameworks, 
such as mixture models, switching models, Markov switching models, and smooth transi- 

~tion threshold models. It may be important to understanid the statistical properties of 
threshold models as a preliminary step in the development of statistical tools to handle 
these more complicated structures. 

Despite the large number of potential applications, the statistical theoiy of threshold 
estimation is undeveloped. It is known that threshold estimates are super-consistent, but a 
distribution theoiy useful for testing and inference has yet to be provided. 

This paper develops a statistical theoiy for threshold estimation in the regression 
context. We allow for either cross-section or time series observations. Least squares 
estimation of the regression parameters is considered. An asymptotic distribution theoiy 
for the regression estimates (the threshold and the regression slopes) is developed. It is 
found that the distribution of the threshold estimate is nonstandard. A method to 
construct asymptotic confidence intervals is developed by inverting the likelihood ratio 
statistic. It is shown that this yields asymptotically conservative confidence regions. Monte 
Carlo simulations are presented to assess the accuracy of the asymptotic approximations. 
The empirical relevance of the theoiy is illustrated through an application to the multiple 
equilibria growth model of Durlauf and Johnson (1995). 

KEYWORDS: Confidence intervals, nonlinear regression, growth regressions, regime 
shifts. 

1. INTRODUCTION 

A ROUTINE PART OF AN EMPIRICAL ANALYSIS of a regression model such as 
Yi= 13 'xi + ei is to see if the regression coefficients are stable when the model is 
estimated on appropriately selected subsamples. Sometimes the subsamples are 
selected on categorical variables, such as gender, but in other cases the subsam- 
ples are selected based on continuous variables, such as firm size. In the latter 
case, some decision must be made concerning what is the appropriate threshold 
(i.e., how big must a firm be to be categorized as "large") at which to split the 
sample. When this value is unknown, some method must be employed in its 
selection, 

This research was supported by a grant from the National Science Foundation and an Alfred P. 
Sloan Foundation Research Fellowship. Thanks go to Robert de Jong and James MacKinnon for 
insightful comments and Mehmet Caner and Metin Celebi for excellent research assistance. Special 
thanks go to two diligent referees whose careful readings of multiple drafts of this paper have 
eliminated several serious errors. 
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576 B. E. HANSEN 

Such practices can be formally treated as a special case of the threshold 
regression model. These take the form 

(1) Yi= O'x +e1, qi< y, 

(2) Yi = O'X x+ e, qi > ',' 

where qi may be called the threshold variable, and is used to split the sample 
into two groups, which we may call "classes," or "regimes," depending on the 
context. The random variable ei is a regression error. 

Formal threshold models arise in the econometrics literature. One example is 
the Threshold Autoregressive (TAR) model of Tong (1983, 1990), recently 
explored for U.S. GNP by Potter (1995). In Potter's model, yi is GNP growth 
and xi and qi are lagged GNP growth rates. The idea is to allow important 
nonlinearities in the conditional expectation function without over-parameteri- 
zation. From a different perspective, Durlauf and Johnson (1995) argue that 
models with multiple equilibria can give rise to threshold effects of the form 
given in model (1)-(2). In their formulation, the regression is a stan- 
dard Barro-styled cross-country growth equation, but the sample is split into 
two groups, depending on whether the initial endowment is above a specific 
threshold. 

The primary purpose of this paper is to derive a useful asymptotic approxima- 
tion to the distribution of the least-squares estimate j of the threshold parame- 
ter y. The only previous attempt (of which I am aware) is Chan (1993) who 
derives the asymptotic distribution of j for the TAR model. Chan finds that 
n(^ - yo) converges in distribution to a functional of a compound Poisson 
process. Unfortunately, his representation depends upon a host of nuisance 
parameters, including the marginal distribution of xi and all the regression 
coefficients. Hence, this theory does not yield a practical method to construct 
confidence intervals. 

We take a different approach, taking a suggestion from the change-point 
literature, which considers an analog of model (1)-(2) with qi = i. Let 8,n = 02 - 

01 denote the "threshold effect." The proposed solution is to let 5, ' 0 as 
n -X o. (We will hold 02 fixed and thereby make 01 approach 02 as n -x oc.) 
Under this assumption, it has been found (see Picard (1985) and Bai (1997)) that 
the asymptotic distribution of the changepoint estimate is nonstandard yet free 
of nuisance parameters (other than a scale effect). Interestingly, we find in the 
threshold model that the asymptotic distribution of the threshold estimate j is 
of the same form as that found for the change-point model, although the scale 
factor is different. 

The changepoint literature has confined attention to the sampling distribution 
of the threshold estimate. We refocus attention on test statistics, and are the 
first to study likelihood ratio tests for the threshold parameter. We find that the 
likelihood ratio test is asymptotically pivotal when 8n decreases with sample 
size, and that this asymptotic distribution is an upper bound on the asymptotic 
distribution for the case that 8,k does not decrease with sample size. This allows 
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us to construct asymptotically valid confidence intervals for the threshold based 
on inverting the likelihood ratio statistic. This method is easy to apply in 
empirical work. A GAUSS program that computes the estimators and test 
statistics is available on request from the author or from his Web homepage. 

The paper is organized as follows. Section 2 outlines the method of least 
squares estimation of threshold regression models. Section 3 presents the 
asymptotic distribution theory for the threshold estimate and the likelihood 
ratio statistic for tests on the threshold parameter. Section 4 outlines methods to 
construct asymptotically valid confidence intervals. Methods are presented for 
the threshold and for the slope coefficients. Simulation evidence is provided to 
assess the adequacy of the asymptotic approximations. Section 5 reports an 
application to the multiple equilibria growth model of Durlauf and Johnson 
(1995). The mathematical proofs are left to an Appendix. 

2. ESTIMATION 

The observed sample is {yi, xi, qi}f1=. 1, where yi and qi are real-valued and xi is 
an m-vector. The threshold variable qi may be an element of xi, and is assumed 
to have a continuous distribution. A sample-split or threshold regression model 
takes the form (1)-(2). This model allows the regression parameters to differ 
depending on the value of qi. To write the model in a single equation, define the 
dummy variable di(y) = {qi < y1 where {N} is the indicator function and set 
xi(y) =xidi(y), so that (1)-(2) equal 

(3) yi= 0'xi + xi(y) + ei 

where 0 = 02. Equation (3) allows all of the regression parameters to switch 
between the regimes, but this is not essential to the analysis. The results 
generalize to the case where only a subset of parameters switch between regimes 
and to the case where some regressors only enter in one of the two regimes. 

To express the model in matrix notation, define the n x 1 vectors Y and e by 
stacking the variables Yi and ei, and the n x m matrices X and X, by stacking 
the vectors x' and xi(y)'. Then (3) can be written as 

(4) Y=X0+X, 8, , + e. 

The regression parameters are (0, 5,,y), and the natural estimator is least 
squares (LS). Let 

(5) S,J(0, 8, y) = (Y-Xo -X, x8)'(Y-Xo -X,, ) 

be the sum of squared errors function. Then by definition the LS estimators 
0, 8, A jointly minimize (5). For this minimization, y is assumed to be restricted 
to a bounded set [y, F] = P. Note that the LS estimator is also the MLE when ei 
is iid N(O, o( 2). 

The computationally easiest method to obtain the LS estimates is through 
concentration. Conditional on y, (4) is linear in 0 and 8,, yielding the condi- 
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tional OLS estimators 0(y) and (y) by regression of Y on X= [X X,,]. The 
concentrated sum of squared errors function is 

S,,(y) = S((y), (y),y) = Y,Y - Yxy*(Xy'*x*)lxy 

and y is the value that minimizes S,1Qy). Since S,,Qy) takes on less than n 
distinct values, y can be defined uniquely as 

y = argmin S, (y) 
3 ,= F" 

where 1,7 = Frn {qj,.. ., q,}, which requires less than ni function evaluations. The 
slope estimates can be computed via 0 = 0(Ay) and 8 

= 8(A). 

If n is very large, F can be approximated by a grid. For some N < n, let 

q(j) denote the (j/N)th quantile of the sample {qj,..., q,,}, and let FN = 

Frn {q(l),_.. ., q(l)}. Then iN = argmin TN S,,Qy) is a good approximation to 
A 

which only requires N function evaluations. 
From a computational standpoint, the threshold model (1)-(2) is quite similar 

to the changepoint model (where the threshold variable equals time, qi = i). 
Indeed, if the observed values of qi are distinct, the parameters can be 
estimated by sorting the data based on qi, and then applying known methods for 
changepoint models. When there are tied values of qi, estimation is more 
delicate, as the sorting operation is no longer well defined nor appropriate. 
From a distributional standpoint, however, the threshold model differs consider- 
ably from the changepoint model. One way to see this is to note that if the 
regressors xi contain qi, as is typical in applications, then sorting the data by qi 
induces a trend into the regressors xi, so the threshold model is somewhat 
similar to a changepoint model with trended data. The presence of trends is 
known to alter the asymptotic distributions of changepoint tests (see Hansen 
(1992, 2000) and Chu and White (1992)). More importantly, the distribution of 
changepoint estimates (or the construction of confidence intervals) has not been 
studied for this case. Another difference is that the stochastic process R,(y)= 

7i= 1 xiei{qi < y} is a martingale (in y) when qi = i (the changepoint model), but 
it is not necessarily so in the threshold model (unless the data are independent 
across i). This difference may appear minor, but it requires the use of a 
different set of asymptotic tools. 

3. DISTRIBUTION THEORY 

3. 1. Assumnptions 

Define the moment functionals 

(6) M(y) = E(xix'{qi < y}), 

(7) D(y) = E(xix1 qi = Y), 

and 

V(y) = E(xix'e 2lqi = y). 
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Let f(q) denote the density function of qi, y0 denote the true value of -y, 
D = D(70), V= V(yO), f = f(yo), and M = E(xi x'). 

ASSUMPTION 1: 

1. (xi, qi, ei) is strictly stationaty, ergodic and p-mixing, with p-mixinig coefti- 
cients satisfying p, = 1/2 < 00 

2. E(eiIF1)= 0. 
3. Elx1K < xo and E1xiei1K < x. 
4. For all -y F F, E(Ix i 4e4lqi = y) < C and E(xiK 1q = y) ? C for some C < 

ox, and f(y)<f< 00. 

5. f(y), D(y), and V(y) are continuous at zy= yo. 
6. = cna with c = 0 and O < a < 
7. c'Dc > 0, c'Vc > 0, and f > O. 
8. M>M(y)>0 forall ye r. 

Assumption 1.1 is relevant for time series applications, and is trivially satisfied 
for independent observations. The assumption of stationarity excludes time 
trends and integrated processes. The p-mixing assumption2 controls the degree 
of time series dependence, and is weaker than uniform mixing, yet stronger than 
strong mixing. It is sufficiently flexible to embrace many nonlinear time series 
processes including threshold autoregressions. Indeed, Chan (1989) has demon- 
strated that a strong form of geometric ergodicity holds for TAR processes and, 
as discussed in the proof of Proposition 1 of Chan (1993), this implies p,,,= 
0( p "') with I pI < 1, which implies Assumption 1.1. 

Assumption 1.2 imposes that (1)-(2) is a correct specification of the condi- 
tional mean. Assumptions 1.3 and 1.4 are unconditional and conditional moment 
bounds. Assumption 1.5 requires the threshold variable to have a continuous 
distribution, and essentially requires the conditional variance E(e72lqi = y) to be 
continuous at yo, which excludes regime-dependent heteroskedasticity. 

Assumption 1.6 may appear unusual. It specifies that the difference in 
regression slopes gets small as the sample size increases. Conceptually, this 
implies that we are taking an asymptotic approximation valid for small values of 
5n. The parameter a controls the rate at which 8,, decreases to zero, i.e., how 
small we are forcing 8,, to be. Smaller values of a are thus less restrictive. The 
reason for Assumption 1.6 is that Chan (1993) found that with 8,, fixed, 
n(^ - yo) converged to an asymptotic distribution that was dependent upon 
nuisance parameters and thus not particularly useful for calculation of confi- 
dence sets. The difficulty is due to the OP(n-') rate of convergence. By letting 
5,, tend towards zero, we reduce the rate of convergence and find a simpler 
asymptotic distribution. 

Assumption 1.7 is a full-rank condition needed to have nondegenerate asymp- 
totic distributions. While the restriction c'Dc > 0 might appear innocuous, it 

2 For a definition, see Ibragimov (1975) and Peligrad (1982). 
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excludes the interesting special case of a "continuous threshold" model, which is 
(1)-(2) with xi = (1 qi)' and ,'>y* = 0 where y = (1 yo)'. In this case the 
conditional mean takes the form of a continuous linear spline. From definition 
(7) we can calculate for this model that c'Dc = c'E(x x'Iqi = yo)c = c'y*,y*'c = 

0. A recent paper that explores the asymptotic distribution of the least squares 
estimates in this model is Chan and Tsay (1998). 

Assumption 1.8 is a conventional full-rank condition which excludes multi- 
collinearity. Note that this assumption restricts F to a proper subset of the 
support of qi. This is a technical condition which simplifies our consistency 
proof. 

3.2. Asymptotic Distribution 

A two-sided Brownian motion W(r) on the real line is defined as 

W,(-r), r 
<r0, 

W(r) = )O r = O, 
{ JV(r), r > 0, 

where W1(r) and W2(r) are independent standard Brownian motions on [0, x). 

THEOREM 1: UnderAssumption 1, n 12a(j_ Y O) _)>d wT, where 

c'Vc 
C1)= ~~2 

(c'Dc) f 

and 

r1 
T= argmax r--rI + W(r)I. 

- <1 < [2] 
Theorem 1 gives the rate of convergence and asymptotic distribution of the 

threshold estimate 5. The rate of convergence is n1 2a, which is decreasing in 
a. Intuitively, a larger a decreases the threshold effect 5n, which decreases the 
sample information concerning the threshold y, reducing the precision of any 
estimator of y. 

Theorem 1 shows that the distribution of the threshold estimate under our 
"small effect" asymptotics takes a similar form to that found for changepoint 
estimates. For the latter theory, see Picard (1985), Yao (1987), Dumbgen (1991), 
and Bai (1997). The difference is that the asymptotic precision of 5 is propor- 
tional to the matrix E(x, xIqi = yo) while in the changepoint case the asymp- 
totic precision is proportional to the unconditional moment matrix E(xix'). It is 
interesting to note that these moments are equal when xi and qi are indepen- 
dent, which would not be typical in applications. 

The asymptotic distribution in Theorem 1 is scaled by the ratio w0. In the 
leading case of conditional homoskedasticity 

(9) E(e2Iqi) = (T2, 



SAMPLE SPLITTING 581 

then V= o-2D and w simplifies to 

2 

(c'Dc)f 

The asymptotic distribution of y is less dispersed when w is small, which occurs 
when o-2 is small, f(yo) is large (so that many observations are near the 
threshold), and/or Icl is large (a large threshold effect). 

The distribution function for T is known. (See Bhattacharya and Brockwell 
(1976).) Let P(x) denote the cumulative standard normal distribution function. 
Then for x > (, 

P(T<x) = 1 + 2exp 8) 

3 /3V ) (x+5 \/Vi4 
+ -exp(x)PI--IVPI- 0---- 

2 \2j\2\2 

and for x < 0, P(T < x) = 1 - P(T < -x). A plot of the density function of T is 
given in Figure 1. 

LO 

ICD 

O 0 8 i I'6 - 4I -1' -- 2 4 6 I 1 , I 

0 

0 

0 

010 -8 -6 -4 -2 0 2 4 6 8 10 

FIGURE 1.-Asymptotic density of threshold estimator. 
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3.3. Likelihood Ratio Test 

To test the hypothesis Ho: y = yo, a standard approach is to use the 
likelihood ratio statistic under the auxiliary assumption that ei is iid N(O, 2). 

Let 

LR1(y) = n iS,(y) - Sn ()Y 

The likelihood ratio test of Ho is to reject for large values of LRn(YO). 

THEOREM 2: UnderAssumption 1, 

LR,,(Y0) >d -q2(, 

where 

= max [2W(s) - Isl] 
sER 

and 

c ' Vc 
2= 

= 2c'Dc 

The distribution function of ( is P( < x) = (1 - e-x /2)2. 

If homoskedasticity (9) holds, then 'r2= 1 and the asymptotic distribution of 
LR,,(yo) is free of nuisance parameters. If heteroskedasticity is suspected, 'rj2 
must be estimated. We discuss this in the next section. 

Theorem 2 gives the large sample distribution of the likelihood ratio test for 
hypotheses on y. The asymptotic distribution is nonstandard, but free of 
nuisance parameters under (9). Since the distribution function is available in a 
simple closed form, it is easy to generate p-values for observed test statistics. 
Namely, 

= 1 - (I - exp( - -LR (y0)2)) 

is the asymptotic p-value for the likelihood ratio test. Critical values can be 
calculated by direct inversion of the distribution function. Thus a test of Ho: 
y = yo rejects at the asymptotic level of a if LR,,(yo) exceeds c (1 - a), where 
c(z)= -2 ln(1 - xzY). Selected critical values are reported in Table I. 

TABLE I 

ASYMPTOTIC CRITICAL VALUES 

.80 .85 .90 .925 .95 .975 .99 

P( < x) 4.50 5.10 5.94 6.53 7.35 8.75 10.59 
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3.4. Estimation of ',2 

The asymptotic distribution of Theorem 2 depends on the nuisance parameter 
2. It is therefore necessary to consistently estimate this parameter. Let r1i= 

( 6xi)2(e7/o 2) and r2i = (61xi)2. Then 

(10) 2 E(rjjIqj = yo) 
E(r2ilqi = yo) 

is the ratio of two conditional expectations. Since rli and r2i are unobserved, let 
r^i = (6'x )2(7/6-2) and r2i = (6'xi)2 denote their sample counterparts. 

A simple estimator of the ratio (10) uses a polynomial regression, such as a 
quadratic. For j= 1 and 2, fit the OLS regressions 

A AjO + A + Aj9q + A 

and then set 

A^2 /10 +Ly 17+ 12 y 

AQ + A 
IA1+ AA2Y /120 - -217 - /22 y 

An alternative is to use kernel regression. The Nadaraya-Watson kernel 
estimator is 

2 Ei= K1(ly - qi 7 

N~~ ~~ Y'l Kl qi 7i 

where K1(u) = h- 'K(u/h) for some bandwidth h and kernel K(u), such as the 
Epanechnikov K(u) = 4(1 - U2){IUI ? 1}. The bandwidth h may be selected 
according to a minimum mean square error criterion (see Hardle and Linton 
(1994)). 

4. CONFIDENCE INTERVALS 

4.1. Threshold Estimate 

A common method to form confidence intervals for parameters is through the 
inversion of Wald or t statistics. To obtain a confidence interval for y, this 
would involve the distribution T from Theorem 1 and an estimate of the scale 
parameter to. While T is parameter-independent, to is directly a function of 6, 
and indirectly a function of yo (through D(yo)). When asymptotic sampling 
distributions depend on unknown parameters, the Wald statistic can have very 
poor finite sample behavior. In particular, Dufour (1997) argues that Wald 
statistics have particularly poorly-behaved sampling distributions when the pa- 
rameter has a region where identification fails. The threshold regression model 
is an example where this occurs, as the threshold y is not identified when 
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=1 0. These concerns have encouraged us to explore the construction of 
confidence regions based on the likelihood ratio statistic LR,(y). 

Let C denote the desired asymptotic confidence level (e.g. C = .95), and let 
c = c,(C) be the C-level critical value for f (from Table I). Set 

= {y: LR,1(y) < c}. 

Theorem 2 shows that P(y0 E F) -- C as n -> oo under the homoskedasticity 
assumption (9). Thus F is an asymptotic C-level confidence region for y. A 
graphical method to find the region F is to plot the likelihood ratio LR,,(y) 
against y and draw a flat line at c. (Note that the likelihood ratio is identically 
zero at y= Y.) Equivalently, one may plot the residual sum of squared errors 
S(jy) against y, and draw a flat line at S,QY) + 2c. 

If the homoskedasticity condition (9) does not hold, we can define a scaled 
likelihood ratio statistic: 

LR* (y) LR,1 (y) _ YS,(y) -Sn (Y9 ) 

and an amended confidence region 

r y= 
{ LR* (y) < c}. 

Since A12 is consistent for ij2, P(F0 E r*) - C as n -o whether or not (9) 
holds, so F * is a heteroskedasticity-robust asymptotic C-level confidence region 
for y. 

These confidence intervals are asymptotically correct under the assumption 
that 6k -- 0 as n - oo, which suggests that the actual coverage may differ from 
the desired level for large values of 5,Z. We now consider the case of a = 0, 
which implies that 5, is fixed as n increases. We impose the stronger condition 
that the errors ei are iid N(O, o 2), strictly independent of the regressors xi and 
threshold variable qi. 

THEOREM 3: UnderAssumption 1, modifyingpart 6 so that a = 0, and the errors 
ei are iid N(0, of 2) strictly independent of the regressors xi and threshold variable qi, 
then 

P(LR,I(yo) ?x) <P( ?x) +o(1). 

Theorem 3 shows that at least in the case of iid Gaussian errors, the 
likelihood ratio test is asymptotically conservative. Thus inferences based on the 
confidence region F are asymptotically valid, even if 6, is relatively large. 
Unfortunately, we do not know if Theorem 3 generalizes to the case of 
non-normal .errors or regressors that are not strictly exogenous. The proof of 
Theorem 3 relies on the Gaussian error structure and it is not clear how the 
theorem would generalize. 
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4.2. Simulation Evidence 

We use simulation techniques to compare the coverage probabilities of the 
confidence intervals for y. We use the simple regression model (3) with iid data 
and xi = (1 zi)', ei - N(0, 1), qi - N(2, 1), and y = 2. The regressor zi was either 
iid N(0, 1) or zi = qi. The likelihood ratio statistic is invariant to 0. Partitioning 
5, = (61 62)' we set 6, = 0 and assessed the coverage probability of the confi- 
dence interval F as we varied 62 and n. We set 62 = .25, .5, 1.0, 1.5, and 2.0 and 
n = 50, 100, 250, 500, and 1000. Using 1000 replications Table II reports the 
coverage probabilities for nominal 90% confidence intervals. 

The results are quite informative. For all cases, the actual coverage rates 
increase as n increases or 62 increases, which is consistent with the prediction 
of Theorem 3. For small sample sizes and small threshold effects, the coverage 
rates are lower than the nominal 90%. As expected, however, as the threshold 
effect 62 increases, the rejection rates rise and become quite conservative. 

4.3. Slope Parameters 

Letting 0= (0, 6_,) and 0= (0, 5). Lemma A.12 in the Appendix shows that 

(11) 0-0) d Z-N(0,V) 

where Vo is the standard asymptotic covariance matrix if y = y0 were fixed. This 
means that we can approximate the distribution of 0 by the conventional 
normal approximation as if y were known with certainty. Let 0(y) denote the 
conventional asymptotic C-level confidence region for 0 constructed under the 
assumption that y is known. (11) shows that P( 0 A 

(j))- C as n - oc. 
In finite samples, this procedure seems likely to under-represent the true 

sampling uncertainty, since it is not the case that A= y0 in any given sample. It 
may be desirable to incorporate this uncertainty into our confidence intervals 
for 0. This appears difficult to do using conventional techniques, as 0(y) is not 
differentiable with respect to y, and A is non-normally distributed. A simple yet 
constructive technique is to use a Bonferroni-type bound. For any p < 1, let 

TABLE II 

CONFIDENCE INTERVAL CONVERGENCE FOR y AT 10% LEVEL 

x\i= qi xi- N(0 1) 

.25 .5 1.0 1.5 2.0 .25 .5 1.0 1.5 2.0 

ii = 50 .86 .87 .93 .97 .99 .90 .87 .93 .93 .97 
n = 100 .82 .90 .96 .98 .99 .84 .86 .92 .96 .95 
n = 250 .83 .93 .97 .98 .99 .80 .92 .94 .96 .98 
ni = 500 .90 .93 .97 .98 .99 .81 .93 .95 .96 .98 
n = 1000 .90 .93 .98 .99 .99 .86 .93 .94 .96 .97 
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A( p) denote the confidence interval for y with asymptotic coverage p. For each 
y F T( p) construct the pointwise confidence region ((y) and then set 

&P= U 0(y). 

yr t(p) 

Since 0p D @(A), it follows that P(O E & ) > P (O 
A C as n - . 

This procedure is assessed using a simple Monte Carlo simulation. In Table 
III we report coverage rates of a nominal 95% confidence interval (C = .95) on 
62. The same design is used as in the previous section, although the results are 
reported only for the case xi independent of qi and a more narrow set of n and 
62 to save space. We tried p = 0, .5, .8, and .95. As expected, the simple rule O0 
is somewhat liberal for small 02 and n, but is quite satisfactory for large n or 62. 

In fact, all choices for p lead to similar results for large 62. For small 62 and n, 
the best choice may be p = .8, although this may produce somewhat conservative 
confidence intervals for small 62. 

In summary, while the naive choice 0 
= @(A) works fairly well for large n 

and/or large threshold effects, it has insufficient coverage probability for small 
n or threshold effect. This problem can be solved through the conservative 
procedure Op with p > 0, and the choice p = .8 appears to work reasonably well 
in a simulation. 

5. APPLICATION: GROWTH AND MULTIPLE EQUILIBRIA 

Durlauf and Johnson (1995) suggest that cross-section growth behavior may 
be determined by initial conditions. They explore this hypothesis using the 
Summers-Heston data set, reporting results obtained from a regression tree 
methodology. A regression tree is a special case of a multiple threshold 
regression. The estimation method for regression trees due to Breiman et al. 
(1984) is somewhat ad hoc, with no known distributional theory. To illustrate the 
usefulness of our estimation theory, we apply our techniques to regressions 
similar to those reported by Durlauf-Johnson. 

TABLE III 

CONFIDENCE INTERVAL CONVERGENCE FOR 82 AT 5% LEVEL 

n=100 Ii=250 ,i= 500 

9= .25 .5 1.0 2.0 .25 .5 1.0 2.0 .25 .5 1.0 2.0 

Q0 .90 .93 .96 .95 .90 .95 .95 .94 .91 .97 .94 .94 

0.5 .90 .95 .96 .95 .94 .96 .96 .94 .94 .98 .94 .95 

0.8 .95 .97 .97 .96 .97 .98 .96 .94 .97 .98 .95 .95 

0.95 .99 .99 .95 .94 .99 .99 .97 .94 .99 .99 .95 .95 
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The model seeks to explain real GDP growth. The specification is 

In(Y/L) , 1985 - In (YIL)i, 1960 

- + /3 ln(Y/L)j,1960 + IT1 ln(I/Y)i 

+ 72 ln(ni +g + 8) + 73 ln(SCHOOL)i + ei, 

where for each country i: 

* (Y/L)i,t 
= real GDP per member of the population aged 15-64 in year t; 

. (I/Y)i = investment to GDP ratio; 

* ni = growth rate of the working-age population; 

. (SCHOOL)i = fraction of working-age population enrolled in secondary 
school. 

The variables not indexed by t are annual averages over the period 1960-1985. 
Following Durlauf-Johnson, we set g + 8= 0.05. 

Durlauf-Johnson estimate (12) for four regimes selected via a regression tree 
using two possible threshold variables that measure initial endowment: per 
capita output Y/L and the adult literacy rate LR, both measured in 1960. The 
authors argue that the error ei is heteroskedastic so present their results with 
heteroskedasticity-corrected standard errors. We follow their lead and use 
heteroskedasticity-consistent procedures, estimating the nuisance parameter q 2 

using an Epanechnikov kernel with a plug-in bandwidth. 
Since the theory outlined in this paper only allows one threshold and one 

threshold variable, we first need to select among the two threshold variables, 
and verify that there is indeed evidence for a threshold effect. We do so by 
employing the heteroskedasticity-consistent Lagrange multiplier (LM) test for a 
threshold of Hansen (1996). Since the threshold y is not identified under the 
null hypothesis of no threshold effect, the p-values are computed by a bootstrap 
analog, fixing the regressors from the right-hand side of (12) and generating the 
bootstrap dependent variable from the distribution N(O,ep), where ei is the 
OLS residual from the estimated threshold model. Hansen (1996) shows that 
this bootstrap analog produces asymptotically correct p-values. Using 1000 
bootstrap replications, the p-value for the threshold model using initial per 
capital output was marginally significant at 0.088 and that for the threshold 
model using initial literacy rate was insignificant at 0.214. This suggests that 
there might be a sample split based on output. 

Figure 2 displays a graph of the normalized likelihood ratio sequence LR*(y) 
as a function of the threshold in output. The LS estimate of y is the value that 
minimizes this graph, which occurs at j = $863. The 95% critical value of 7.35 is 
also plotted (the dotted line), so we can read off the asymptotic 95% confidence 
set f * = [$594, $1794] from the graph from where LR*(y) crosses the dotted 
line. These results show that there is reasonable evidence for a two-regime 
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Threshold Variable: GDP_1960 

FIGURE 2.-First sample split: Confidence interval construction for threshold. 

specification, but there is considerable uncertainty about the value of the 
threshold. While the confidence interval for y might seem rather tight by 
viewing Figure 2, it is perhaps more informative to note that 40 of the 96 
countries in the sample fall in the 95% confidence interval, so cannot be 
decisively classified into the first or second regime. 

If we fix y at the LS estimate $863 and split the sample in two based on initial 
GDP, we can (mechanically) perform the same analysis on each subsample. It is 
not clear how our theoretical results extend to such procedures, but this will 
enable more informative comparisons with the Durlauf-Johnson results. Only 18 
countries have initial output at or below $863, so no further sample split is 
possible among this subsample. Among the 78 countries with initial output 
above $863, a sample split based on initial output produces an insignificant 
p-value of 0.152, while a sample split based on the initial literacy rate produces a 
p-value of 0.078, suggesting a possible threshold effect in the literacy rate. The 
point estimate of the threshold in the literacy rate is 45%, with a 95% 
asymptotic confidence interval [19%, 57%]. The graph of the normalized likeli- 
hood ratio statistic as a function of the threshold in the literacy rate is displayed 
in Figure 3. This confidence interval contains 19 of the 78 countries in the 
subsample. We could try to further split these two subsamples, but none of the 
bootstrap test statistics were significant at the 10% level. 
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0 

C\2 LR.(y) 
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0 10 20 30 40 50 60 70 80 90 100 

Threshold Variable: LITERACY 

FIGURE 3.-Second sample split: Confidence interval construction for threshold. 

Our point estimates are quite similar to those of Durlauf and Johnson (1995). 
What is different are our confidence intervals. The confidence intervals for the 
threshold parameters are sufficiently large that there is considerable uncertainty 
regarding their values, hence concerning the proper division of countries into 
convergence classes as well. 

6. CONCLUSION 

This paper develops asymptotic methods to construct confidence intervals for 
least-squares estimates of threshold parameters. The confidence intervals are 
asymptotically conservative. It is possible that more accurate confidence inter- 
vals may be constructed using bootstrap techniques. This may be quite delicate, 
however, since the sampling distribution of the likelihood ratio statistic appears 
to be nonstandard and nonpivotal. This would be an interesting subject for 
future research. 

Dept. of Economics, Social Science Bldg., University of Wisconsin, Madison, WI 
53706-1393, U.S.A.; bhansen @ssc. wisc. edu;www. ssc. wisc. ed u/ bhansen. 
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APPENDIX: MATHEMATICAL PROOFS 

Define hi(yl, 7Y2) = lxieil Idi(y2) - di(yl)l and ki(yl, Y2) = Ixil Idi(y2) - di(y1)l. 

LEMMA A.1: There is a C1 < oo such that for -y < m < Y2 j y, and r < 4, 

(12) Eh(Y1, zY2) < Cl -Y2- Yl 

(13) Ek(Y1, lY2) < C11Y2 - yil- 

PROOF: For any random variable Z, 

d 
(14) -E(Zdi(y)) = E(Zlqi = y)f(7). 

dzy 

Thus under Assumption 1.4, 

d 
d- (xieiIrdi(y)) = E(Ixieil Iqi = y)f(7) 

< [E(Ixiei4 lqi = .)r f(y) 

< Cr?4f < C1, 

setting C1 = max[l, C]f. Since di(y2) - di(yl) equals either zero or one, 

EhW(y1,Y2) = E(xieirdi(y2))-E(Ixiei rdi(y1)) < Cl IY2- Yl 1, 

by a first-order Taylor series expansion, establishing (12). The proof of (13) is identical. Q.ED. 

LEMMA A.2: There is a K < oo such that for all 7y < y < Y2 < 7ZY 

l1 1 2 

(15) E |- (h2(^y1,,Y2) -Eh?2(YI,Y2)) |< Kj y2 - 11 , 

1 2( l (16) E|- (ki Y2)-Ekl?(YI,Y2)) <KI y2-Yll. 

PROOF: Lemma 3.4 of Peligrad (1982) shows that for p-mixing sequences satisfying Assumption 
1.1, there is a K' < oo such that 

E| ; (h2(^yl,'Y2) -Eh?l('Yl,'Y2))| 

B 
K'E(h(yl, 

y2) - Eh? 
(yl, 

Y2)) 2 

? 2K'Eh(yj1,Y2) 

< 2K'C11IY2 
- 

7lI 

where the final inequality is (12). This is (15) with K= 2K'C1. The proof of (16) is identical. 
Q.E.D. 
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Let 

1" 
],J(7)=- >xieidi(y). 

i= 1 

LEMMA A.3: There are finite constants K1 and K2 such that for all ZYl, 8> 0, 71 > 0, and 8 2 n -1, if 
xn 2 K2/m1, then 

p ( sup I ,(y) - J(Y1) I > n K< 4 
Yi ? y? Ny ? 73 

PROOF: Let m be an integer satisfying n 8/2 < m < n 8, which is possible since n 8? 1. Set 
8,,= 8/m. For k=1,...,m+1, set Yk=YI+8,,(k-1), hik=hi(yk,Yk+1), and hijk=hi(yj,Yk)- 
Note that (12) implies EWik < C1 8,, and EI 1k < C1I k - 18,, for r < 4. Letting H,,k = n1 =h 
observe that for Yk < Y ?< 7Yk + 1, 

IJl,(y)-J,,(7k)l <? H,,k < xIH,,k-EH,,kI /;EH,,k. 

Thus 

(17) sup J(y) --J,(yl)I < max l't(Yk) -J,(YI)I 
'Yi <,y <'YI +5 2<k<mn+1 

+ max VnIH,k-EH,kI+ max nEH,kk. 
1?<k<n 1 <k?<n 

For any 1 < j < k < m + 1, by Burkholder's inequality (see, e.g., Hall and Heyde (1980, p. 23)) for 
some C' < oo, Minkowski's inequality, Eh 2 < C1 8,,,, (15), n1 < 8,, and (k _j)l/2 <(k - j), 

1k - 

(18) El ',,(Yk)- J,(yj) = xjej(d(Yk) -di(j)) 

1 2 

<C E - Zh?k n 1~~~~ ~ ~~~ 1/2 1 

< Eij+ (E| (hi2j- Eh? 

[ ( ) ( K(k - j)81?z )1/2] 

< C '[C1 ? /VK]2((k _;) 8,)2. 

The bound (18) and Theorem 12.2 of Billingsley (1968, p. 94) imply that there is a finite K" such that 

(81 
2 82 

(19) P max I,(yk) -J,,(71)> 71) ?K" K =K 
2<k<m+1 on the r - sd of(17 

which bounds the first term on the right-hand side of (17). 
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We next consider the second term. Lemma 3.6 of Peligrad (1982) shows there is a K"' < 00 such 
that 

(20) E1?7(H,,k -EHG,,&k)14 < K"(n-'1Ehl4 + (Eh2 )2) 

<K'..(n -Cl8,,, + (C18,,) ) 

<?K"'(C1 + C2),2 

where the third inequality is n- ? 8,,,. Markov's inequality and (20) yield 

(21) P max VM(H,k - EI,Ik)l > r K"(C1 + c)8,, 

K"'(C1 + C2)82 

where the final inequality uses ni 8,, = 8 and 8,, < 8. 
Finally, note that 

(22) 2C,EH,Ik = EI/,k ? V7C18,,, ? 

since 8,, < 2/n. Together, (17), (19), (21), and (22) imply that when 2C1/ Ft? <7, 

[K" + K "'l(C1 + C12 ) ] 8 2 

P( sup IJj(y)-J,(7iI>3-7) < K 

which implies the result setting K1 = 34[K" + K"'(C1 + C2)] and K2 = 6C1. Q.E.D. 

Let "=> " denote weak convergence with respect to the uniform metric. 

LEMMA A.4: Jj(y) J(y), a mean-zero Gaussian process wit/i almost surely continuous sample 
pathls. 

PROOF: For each y, xieidi(y) is a square integrable stationaiy martingale difference, so J,,(y) 
converges pointwise to a Gaussian distribution by the CLT. This can be extended to any finite 
collection of y to yield the convergence of the finite dimensional distributions. 

Fix 8 > 0 and 71 > 0. Set 8 = 8714/K, and n7 = max[ 8- 1, K72/172], where K1 and K2 are defined 
in Lemma A.3. Then by Lemma A.3, for any yl, if n 2 

P( sup IJ,,(Y) - J"(Y)I > < Ki8 = 88. 

This establishes the conditions for Theorem 15.5 of Billingsley (1968). (See also the proof of 
Theorem 16.1 of Billingsley (1968).) It follows that J,,(Y) is tight, so J,,(Y) J(-Y). Q.E.D. 

LEMMA A.5: Y ,)i Yo 

PROOF: Lemma 1 of Hansen (1996) shows that Assumption 1 is sufficient for 

1 1 1 
(23) M,( y) = -X, X, =-E xixdi(y) - M(y), 

uniformly over y eR. Observe that (23) implies M, = (1/n)X'X -* M. 
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Let X0 = XA'0. Then since Y = XO + XA0 8, + e and. X lies in the space spanned by PF, = 

XY 1(X5, '1Xy )- X-y* 

S,(Y)-e'e =Y'(I-P), )Y-ee = -e'P,,e + 28,'Xo(I-P,,)e+8,Xo(I-P,)Xo8, . 

Using Assumption 1.6, Lemma A.4, and (23), we see that uniformly over y E F, 

I 
+22a(S,,(y) -e'e) = nic'(X6(I-P)Xo)c + op(l). 

The projection P. can be written as the projection onto [A',, Z, ], where Z', = X - X,, is a matrix 
whose ith row is x,(1 - di(y)). Observe that X' ZY, = 0, and for y2 yo, XX,X =X'AXo and X'6Z,= 0. 
Then using (23) we calculate that uniformly over y E [ye, yo] 

Et- 'c'(X0'(I - P,)X0)C = c'(M,(Y0) - M'1(Y0)M,(Y) M,(Y0))C 

pc'(M(^y0)-M(^y0)M(^y)- 
I 
M(^yo))c--bl(^y), 

say. Note that M(,y)-1 exists under Assumption 1.8 so bl(y) is well defined. 
A calculation based on (14) shows 

d 
(24) M(y) = D(y)f(y), 

dy 

where M(y) and D(y) are defined in (6) and (7). Using (24), 

d 
dYbl(y) = c'M(y0)M(y)[ D(y)f(y)M(y l'M(y0)c 2 0 

so b 1(y) is continuous and weakly increasing on [yo, z2]. Additionally, 

d 
d-bl(yo) = c'Dfc > 0 

by Assumption 1.7, so b 1(y) is uniquely minimized at yo on [ye, y]. 
Symmetrically, we can show that uniformly over y E [y, ye], i-1c'(X6(I - PY,,)XO)c ->P b2(,y), a 

weakly decreasing continuous function which is uniquely minimized at yo. Thus uniformly over 
yc=F, n- +2a(S,(y) - e'e) -* bl(y){y ? y} + b,(y){y < yo}, a continuous function with unique 
minimizer yo. Since j minimizes S,(y) - e'e, it follows that ->P yo (see, e.g., Theorem 2.1 of 
Newey and McFadden (1994)). Q.E.D. 

LEMMA A.6: n'(6 0- 0) = op(l ) atid na6 -X -8,1) = op(l ). 

PROOF: We show the result for 8, as the derivation for 0 is similar. Let Px = I - X(X'X)- X'. 
Then on -y E F, using (23), 

1 
-XAPXX, = M,(Y) - M,(Y)M,; lM,"(Y) M(y) - M(Y)M- 'M(Y) = M (Y), n 

say. Observe that for y E F, M 8(y) is invertible since M - M(y) is invertible by Assumption 1.8. 
Also, 

1 
-X,'PxX0 =*M(y A yo) - M(y)M' M(y0) = MO*(y), n 
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say. Thus 

na( 8(y) - 8, ) = (nX, Px) X (nx PX ((Xo -XX )c + ena)) 

=> M*(y)- 1 (MO* (^y) - M * (y)) c 

=8a(y), 

say. Note that MO* (yo) = M*(,yo) so 8(yo) = 0. Since M(y) is continuous and M*(y) is invertible, 
8(y) is continuous in F. Lemma A.5 allows us to conclude that 

n8-8,,) = n(8) , 8 (^yO) =O. Q.E.D. 

Define G,,(^y) = n-1 EZ'= 1(c'x.)2Idi(y) - di(,yo)l and K,,(,y) = n1 Z. kI(yo, y). Set a, = nl2a. 

LEMMA A.7: There exist constants B > 0, 0 < d < oo, and 0 < k < oo, such that for all > 0 and 
8> 0, there exists a u < oo such that for all n, 

(25) P inf G,(yd j 
-< y- yol<IB 

a,, ( ~~~~K,('y) P1 sup> +qk 
F,'- oI?B 

a,, 

PROOF: We show (25), as the proof of (26) is similar. First, note that for y 2 yo, 

(27) EG,(y) = c'(M(y) -M(yo))c, 

so by (24), dEG,,(,y)/dy = c'D(,y)f(,y)c, and the sign is reversed if 'y < Yo. Since c'D('yo)f('yo)c > 0 
(Assumption 1.8) and c'D(y)f(y)c is continuous at yo (Assumption 1.5), then there is a B 
sufficiently small such that 

d= min c'D(y)f(y)c > 0. 
ly- yoj<B 

Since EG,,(,yo) = 0, a first-order Taylor series expansion about 'yO yields 

(28) inf EG,,(y) ?dly- yo1. 
ly- yol<B 

Lemma A.2 (16) yields 

(29) EIG,(y) -EG,(y)12 ? Icj4EIKj(y) -EK,(y)12 ? IcI4n1Kly- yol. 

For any 71 and s, set 

1 - -q/2 
(30) b= > 1 

1- N 

and 

8IcI4K 
(31) 

'=2d2(1 - 1/b)s' 
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We may assume that n is large enough so that D/a,? <B, else the inequality (25) is trivial. For 
j = 1, 2,. .., N + 1, set yj = yo + vbi- 1/a,, where N is the integer such that YN - YO= vbN- '/a,, < B 
and yN+ 1 - yo > B. (Note that N ? 1 since 79/a,, < B.) 

Markov's inequality, (29), and (28) yield 

G((Y1) ) (2)2NEl G,,(yj) - EG,,(yj) 2 

N IcI4Kn-1lly - Yol 
< - 2 d2y1-_012 

- 2a 4IIK 1 2 
j=1 d vj= 

-n 

41cl4K 1 
< - /2 

where the final equality is (31). Thus with probability exceeding 1- -/2, 

(32) EG, (,Y) -1 2 

for all 1 <j<N. 
So for any y such that (P/a,) < y - yo < B, there is some j < N such that yj < '< yj , and on 

the event (32), 

(3) Gjy() > G,,(yj) EG,,(yj) 
I33 ly YolI EQ,, (yj) jyj + I-yo I 

- 
_ 7 dl Jyj -'Yo 

I 
> - 2 ^j+- 

? (1- -q)d, 

using (28), the construction (yj - yo)/(yj+1 - yo) = 1/b, and (30). Since this event has probability 
exceeding 1 - ?/2, we have established 

Pt inf _<y(1-)d) <?/2. 
uly- Yol 
-'- yo'B 

A symmetric argument establishes a similar inequality where the infimum is taken over - (D/a,,) ? y 
- Y> -B, establishing (25). Q.E.D. 

LEMMA A.8: For all -q > 0 and ? > 0, there exists some - < oo such that for any B < 00, 

(34) |/ sup 
i(Y) -sl(O)l 

I 

v y-?B Xa, ly- yol 
-<1y- YOl<B 
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PROOF: Fix 1> 0. For j = 1, 2,..., set yj - yo = TJ2 l/a, where L < o will be determined later. 
A straightforward calculation shows that 

I J,l(y) - ll - O 
(35) sup < 2sup 

-<Iy-yol<B 
2jo 7all/ o 

a,, 

+ 2sup sup 
j O ej< < ej+, 'a.. ly. - yol 

Markov's inequality, the martingale difference property, and (12) imply 

I il (i) ill(YO I 4 El EJ,(1) _J,(Yo)I12 
(36) P(2sup i>()2I)I > N 

_ 
2 L j 12 

j .>O ra,, J^yj - yo I 'q j=1 a,Ly1-y)o 

4 E(jxjej121 dif (yj) - dif (,) 1) 

4 C,jyj y,lly 
4 E lly 

j= 1 a,y- 

4CI 1 1 8C 

= 1 '.72j- 1 -VU 

Set = yj + 1-y and q,= a,I yj-yo I -q. Then 

(37) P 2 sup sup > 7(1 )J (y)I 

?> yj < 7l+l Fal gl^Y - )/ol 

< 2 LP( p sup I i,l(Y) - i,l(Yi) I > 
j j<y ? + 5 

Observe that if 73 2 1, then 81 > a >n Furthermore, if U 2 K,/, then qj a 1/2 2j- 'T),q 
K2a7 '/2 >Kn -1/2. Thus if Ty ? max[l,K,/I-] the conditions for Lemma A.3 hold, and the 
right-hand side of (37) is bounded by 

(38) 2 , 4 = I: &' =/tY 
K 1 8 1 2 

2- 
___ 

_ _ _ _ _ 
_4 _4 4_ 

_ 
2 

(35), (36), (37), and (38) show that if -7 ? max[1, K/rl], 

p IJsup 
I(Y) -J,(y0) 

I> 2q 
8C<, 8K, 

TI ra,I y - yo I2 3~47 
-<IY- zoj<B 
a,, 

which can be made arbitrarily small by picking suitably large 7y. Q.ED. 

LEMMA A.9: a,Cj' - YO) = O(1). 

PROOF: Let B, d, and k be defined as in Lemma A.7. Pick -1 > 0 and K > 0 small enough so that 

(39) (1 - -7)d - 2(IcI + K)7 - 2(Icl + K)K(1 + -7)k - (21cl + K)K(1 + -q)k > 0. 
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Let E, be the joint event that LIr- yoI <B,nan0' O0 01 K,nal - 
80 

< K, 

G,,(-y) 
(40) inf > (1 -)d 

-<1y-yoJ'B 7y-? 
a,, 

(41) sup - - + q)k, l 7 - yol 
-<17-y71<B 
a,, 

and 

(42) sup 
I J,,(y) -J,ll )Io) 

o) ra,, 1 <2 -o I 
-<?y-yo?<B 
a,, 

Fix- > 0, and pick ui and ni so that P(E,) ? I - ? for all n ? ni, which is possible under Lemmas 
A.5-A.8. 

Let S,*(y) = S,I(0 , y), where S,,Q*, ) is the sum of squared errors function (5). Since 
Y=XO +Xo08, + e, 

Y - XO - X0 - = (e - X(Oa- 0) - XO(- 8-,)) - AXj, 5 

where AX, = Xy - Xo. Hence 

(43) S,*(y) - S,*(yo) = -Xo9-X, 5)'Y-Xo -X, ) 

( Y - -Xo 8 )'(Y - x -Xo ) 

=5'AX', AX 8-25'AX,'e + 28'AX,'AX (0-0) 

=8I,lAX"yAx785,1 - 285AXy'e +2 'AXY'Ax (30- 0) 

+ ( 8Z + 5^ ) AX', AX. ( 8 - 6 ). 

Suppose y r- [,Yo + P/a,, yo + B] and suppose E,, holds. Let C^ = na8 so that Ic^ - c < K. By 
(39)-(43), 

S* (Y)-SS*(yO) c'AxzAX7c 2c'A X e 2c'AX AX7n,z(0-0) 

a,,(Y - y =) 1(y- 0) n a(-Yo) n(y-yo) 

(c + c')'Xz, AX7(c^-c) 

a,,(-y-y0 
Gl7 _ 11 IJ/(7 JZ(o _ 1^1I(O-0 1 

()' - 'yo) 1^-ra,(,y - y'o) ( 
I^ I ( 

O)I - O)) 

I C + C^1 IC^ - cl '(7 

? (1 - )d - 2(0cl + K) - 2(|c| + K)K(1 + -q)k 

-(21cI + K)K(1 + -q)k 

>0. 

We have shown that on the set E,,, if y e [yo + TP/a,,, yo + B], then S; (y) - S,*(yo) > 0. We can 
similarly show that if y E [y0 - B, yo - Pja,,] then S* (y) - S* (y0) > 0. Since S*( y)-S (y0) < 0, 
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this establishes that E,, implies Iy- yoI ?l /a, As P(E,Z) 1 -8 for n 2 n1, this shows that 
P(aI| -YoI > v3) ?8 for n ? -n, as required. Q.E.D. 

Let G,* (v) = 
a,,G,,( 

yo + 
v/a,,) 

and K,*(v) = a, K,(y + 
v/a,,). 

LEMMA A.10: Uniformly on compact sets I, 

(44) G,*, ( v) , Ivl 

and 

(45) K,*(v)- l DfllIvl, 

where A = c'Dcf. 

PROOF: We show (44). Fix v E T. Using (27), 

(46) EG,*(v) = a,c'(M(,y0 + v/a,) -M(,yo))c IvIc'Dfc = vi, 

as n - oo. By (29), 

(47) ElI G,*, ( v )EG,*, ( v) 12 = a2 El G,, ( yo + vla,,) )-EG, ( yo + vla,,) ) 
a2 

< l -c = Icl4Klvln2a O0. 
n a,, 

Markov's inequality, (46) and (47) show that G,*(v) -p ,uAIvI 
Suppose T = [0,-v1. Since G,*(v) is monotonically increasing on T and the limit function is 

continuous, the convergence is uniform over T. To see this, set G(v) = Av. Pick any 8 > 0, then set 
J = -V,/? and for j = 0, 1,...,J, set vj = D4j/J. Then pick n large enough so that maxj< J IG,*(vj) - 

G(vj)l < I with probability greater than 1 - 8, which is possible by pointwise consistency. For any 
j 1 1, take any v E (vj- 1, vj). Both G,*(v) and G(v) lie in the interval [G(vj1 ) -8, G(vj) + 8] (with 
probability greater than 1 - 8), which has length bounded by 38. Since v is arbitrary, IG,*(v) - G(v)I 
< 38 uniformly over T. 

An identical argument yields uniformity over sets of the form [-v, 0], and thus for arbitrary 
compact sets T. Q.E.D. 

Let R,(v) = Vfa(JI(yo + v/a,)-J,l( yo)). 

LEMMA A.11: On anzy compact set T, 

R,,(v) => B(v) 

where B(v) is a vector Brownian motion with covariance matrix E(B(1)B(1)') = Vf. 

PROOF: Our proof proceeds by establishing the convergence of the finite dimensional distribu- 
tions of R,(v) to those of B(v) and then showing that R,(v) is tight. 

Fix v E T. Define di*(v) = di(y0 + v/a,,) - di(y0) and u,,i(v) = a, xi7eiedi(v) so that R,(v) = 

n - /Et_1 u,l(v), and let V(v) = 1 u, (v)u,,i(v)'. Under Assumption 1.2, {u,j(v), Fi} is a 
martingale difference array (MDA). By the MDA central limit theorem (for example, Theorem 24.3 
of Davidson (1994, p. 383)) sufficient conditions for R,(v) ->d N(0, IvIVf) are 

(48) VJ(v) -p IvlIVf 
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and 

(49) n-l/2 max Ilu,(v)I -l 0. 
1<i<?11 

First, a calculation based on (14) shows dE(xjx'e?dj(y))/dy = V(y)f(y), where V(y) is defined 
in (8). Thus by the continuity of V(-y)f(-y) at yo (Assumption 1.5), if v > 0, 

(50) EV,J(v) = a,, E(xi x'e7I di(v)1) 

= a E(xix'e7di (d o + a E(xjxie?dj(y0)) 

-* iAif, 

with the sign reversed if v < 0. By (15), 

a 2 1 "2 

(51) El V,,(v) - EV,,() 2 =-E L (Ixiei 1l2d* (v) - E(lxjejI2I d* (v) I)) 
n ~ 

< -K- =- 2aKV -*0 
/I a,, 

as n -o, which with (50) combines to yield (48). By (12), 

1~241 E|n-'/2 max IU,,i(uV)I < -EIu,j(Uv)l 

a=2-E(Ixiei14 di (V 

a)2? IVU 

1a a, 

= ,-2ac lI LI 0, 

which establishes (49) by Markov's inequality. We conclude that R,(v) O N(O, IvIVf)V This argu- 
ment can be extended to include any finite collection [uV,...uVk] to yield the convergence of the 
finite dimensional distributions of R,(U) to those of B(v). 

We now show tightness. Fix ? > 0 and -1 > 0. Set 8 = e7(4/K1 and n- =(max[ 8- 1/2, K2/ ,])I/a, 

where K1 and K, are defined in Lemma A.3. Set Yi = YO + L1/a). By Lemma A.3, for n ? Tn, 

P sUP IR,v() -R,(VI)I > 7)) =P( sup I() -J,Qy1)I> a/2 ) 

KI 

a,, r 

(The conditions for Lemma A.3 are met since 8/a,, ? n- I when na ? 8- 1/2, and 71/al /2 ? K,/n'/2 
when na ? K2/71, and these hold for n ? fn.) As discussed in the proof of Lemma A.4, this shows 
that R,(y) is tight, so R,() => B(u). Q.E.D. 
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LEMMA A.12: n(-kyo ))-*p0, and n( (yo )- 0) --* Z - N(O, V0). 

PROOF: Let J, = 1I- 12X'e, and observe that Lemma A.4 implies 

a Gaussian process with continuous sample paths. Thus on any compact set ', 

J 
,, | ( 

* 

and (23) implies 

M M,,,v L M a (y0) M(yo)) 

uniformly on T. Also 

A,, (v) = IAX' i./ti,,AXY0+ia,, < K* (v) -,p 0 

uniformly on T by Lemma A.10, and hence 

(52) ( (4 + ) l) M, () (J,' (v) -(fA,,(v)caYI/2) 

jM M Y0)) ( J A 

kM(yo) M(yo) 0 J&(yo)) Z 

which establishes rn (k(yo)- 0) ->, Z as stated. 
Pick 8 > 0 and 8 > 0. Lemma A.9 and (52) show that there is a -< <o and 7n < oo so that for all 

n 2n, P(a,Li yo- I > 7) < e and 

P( sup- < ( + )+ 0 (Yo) > 8)?< 

Hence, for n > 27, 

P(r1 n 0(,Yo)l > ) <P _ _ (Yo+ )-YO) > ) 

+P(a, LI yol > U) < 2?, 

establishing that ii - O(yo)l -*.> 0 as stated. Q.E.D. 

Let Q,,(v) = S,(6, 8, yo) - S,(6, 8, -y0 + v/a,,). 

LEMMA A.13: On any comnpact set , Q,(v) ( Q(u) = -,tlvl + 2yA W(V), where A = c'Vcf. 

PROOF: From (43) we find Q,,(v.)) =- G,(G) + 2c'R,,(v) + L,(i'), where 

IL,,(v) I < 2 n 8-5, I IR, (L)I + (2naIC^ 16-01 + Ic +e lIl-cI)I K*(v) I 
n 
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since (uniformly on T) K*(v) - =O(l), R,(v) = O,)(1), l6- 01 = Op(1), and n8-8,I =O0l(1),by 
Lemmas A.10, A.11, and A.12. Applying again Lemmas A.10 and A.l1, Q,,(v) L)-,IvI + 2c'B(v). 
The process c'B(v) is a Brownian motion with variance A = c'Vcf, so can be written as A W(u), 
where W(L) is a standard Brownian motion. Q.E.D. 

PROOF OF THEOREM 1: By Lemma A.9, aj? - y0) = argmax, Q,(v) = O (1), and by Lemma 
A.13, Q,,(v) => Q(v). The limit functional Q(t') is continuous, has a unique maximum, and 
lim L,jI O Q(v) = -oo almost surely (which is true since lim,,, W(v)/v = 0 almost surely). It 
therefore satisfies the conditions of Theorem 2.7 of Kim and Pollard (1990) which implies 

a,l(Y- YO) >d argmaxQ(v). 
v ER 

Making the change-of-variables L =(A/Iu2)r, noting the distributional equality W(a21) aW(r), 
and setting o = A/Iu2, we can re-write the asymptotic distribution as 

ArgmaxA ] argmax [-lIvI + 2rAW(v,)] =- argmax [--1l + 2rAW( -I') 

[A A 
argmax - -r1 + 2-W(r) 
_ ,^ < )>< r U I 

=c argmax [- + W()] Q.E.D. 

PROOF OF THEOREM 2: Lemma A.12 and (23) show that 

RLR,(Y0) - Q,() = (SO((Y0), YO) - SJG-, 7))-(S,(b, Yo) -S,(b, ;6)) 

= S,(0(Y0), YO) - S,(e, Yo) 

= (9(yo) - 0)'Xe-'X,* (0(y0) - 6) -*J) O. 

Now applying Lemma A.13 and the continuous mapping theorem, 

Q___ sup" Q,()+ sup, Q(v) 
LR 0 

+o(1)=+' 
O 

2 +ojl)-y (J- (J~ ~~- oJ- 

This limiting distribution equals 

sup [-UlLI + 2rAW(v)] = Xsup I-L -1r + 2 A W( )] 

A 
- 2 sup [ - Ir + 2W(r)] = 

by the change-of-variables v = (A/li2)r, the distributional equality by W(a2r) aW(r), and the fact 
712 = A/(o-J2jL). 

To find the distribution function of g, note that g= 2rmax[ 1, (2], where 2 = sup < 0[W(s) - lsI] 
and (2 = SUPO< X[W(S) - 2IsI]- j and g2 are iid exponential random variables with distribution 
function P(zj < x) = 1 - e (see Bhattachaiya and Brockwell (1976)). Thus 

P < x) = P(2 max[ gz1, g:2 < x) = P( gz1 < x/2)P ( (2 < x/2) = ( - e -X/ ) 

PROOF OF THEOREM 3: Note that by the invariance property of the likelihood ratio test, LR,(-yo) 
is invariant to reparameterizations, including those of the form -y - * = F(y). Since the threshold 
variable qi only enters the model through the indicator variables {qi < y}, by picking F,J(x) to be the 



602 B. E. HANSEN 

empirical distribution function of the qi, we see that 

{qi < y} = {F,i(qi) < F,(y)} = < y 

for some 1 <?j < n. Without loss of generality, we therefore will assume that qi = i/n for the 
remainder of the proof. Let jo be the largest integer such that jo/n < yo. Without loss of generality, 
we can also set u2 = 1. 

If we set a = 0, the proof of Lemma A.13 shows that uniformly in v 

(53) Q,)o + v/n) = G,* (v) + 2 8'R,u(v) + o&(1) 

where for u > 0 

n 

G,8(v) = E (8'xi)2{yo < qi < yo + v/n} 

L ,(81x)2 <qj n }+v 

and 

R(v= xieit 1l fi -L- Io+ 1,' 

While Lemma A.13 assumed that a > 0, it can be shown that (53) continues to hold when a = 0. 
Note that the processes G,*(v) and 8,',R,,(v) are step functions with steps at integer-valued v. Let 

N+ denote the set of positive integers and D,,(v) be any continuous, strictly increasing function such 
that G,*(k) = D,(k) for k e N+. Let N,A(v) be a mean-zero Gaussian process with covariance kernel 

E(N,A(v,)NA1(V2)) = D,,(v, A V2). 

Since 8'R,,(v) is a mean-zero Gaussian process with covariance kernel ur2G,*(vI A V2), the restric- 
tion of 8'R,,(v) to the positive integers has the same distribution as NA1(v). 

Since D,(v) is strictly increasing, there exists a function u = g(s) such that D,(g(s)) =s. Note 
that NA(g(s)) = W(s) is a standard Brownian motion on R+. Let G+= {s: g(s) E N+}. 

It follows from (53) that 

max 
Q 

2 = max [ - G,* (k) + 28 'R,,(k)] + op(1) 
y>Yo (J keN+ 

max [-D,,(k) + 2N,,(k)] + op(1) 
keN+ 

=max [-D,(g(s)) + 2N,A(g(s))] + op(1) 

= max [-s + 2W(s)] + op(1) 

< max [-s + 2W(s)] +oP(1). 

We conclude that 

LR,(-yo)=max max 2 max 22 2 
[7> Y 7< Yn oJ 

<maxr max[-Isj+2W(s)], max[-Isj+2W(s)]1 +oP(1) 
s s20 s<O ] 

d max [-Isj+2W(s)]= . 

This shows that P(LR,,(-yo) ? x) < P( g ? x) + o(1), as stated. Q.E.D. 
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