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1. INTRODUCTION

Dynamic programming offers a unified approach to solv-
ing problems of stochastic control. Central to the method-
ology is the cost-to-go function, which is obtained via
solving Bellman’s equation. The domain of the cost-to-go
function is the state space of the system to be controlled,
and dynamic programming algorithms compute and store a
table consisting of one cost-to-go value per state. Unfortu-
nately, the size of a state space typically grows exponen-
tially in the number of state variables. Known as the curse
of dimensionality, this phenomenon renders dynamic pro-
gramming intractable in the face of problems of practical
scale.
One approach to dealing with this difficulty is to gener-

ate an approximation within a parameterized class of func-
tions, in a spirit similar to that of statistical regression. In
particular, to approximate a cost-to-go function J ∗ mapping
a state space � to reals, one would design a parameter-
ized class of functions J̃ � � ×�K �→�, and then compute
a parameter vector r ∈�K to “fit” the cost-to-go function;
i.e., so that

J̃ �·� r�≈ J ∗�
Note that there are two important preconditions to the

development of an effective approximation. First, we need
to choose a parameterization J̃ that can closely approximate
the desired cost-to-go function. In this respect, a suitable
choice requires some practical experience or theoretical
analysis that provides rough information on the shape of

the function to be approximated. “Regularities” associated
with the function, for example, can guide the choice of
representation. Designing an approximation architecture is
a problem-specific task and it is not the main focus of this
paper; however, we provide some general guidelines and
illustration via case studies involving queueing problems.
Given a parameterization for the cost-to-go function

approximation, we need an efficient algorithm that com-
putes appropriate parameter values. The focus of this paper
is on an algorithm for computing parameters for linearly
parameterized function classes. Such a class can be repre-
sented by

J̃ �·� r�=
K∑
k=1
rk
k�

where each 
k is a “basis function” mapping � to �
and the parameters r1� � � � � rK represent basis function
weights. The algorithm we study is based on a linear pro-
gramming formulation, originally proposed by Schweitzer
and Seidman (1985), that generalizes the linear program-
ming approach to exact dynamic programming (Borkar
1988, De Ghellinck 1960, Denardo 1970, D’Epenoux 1963,
Hordijk and Kallenberg 1979, Manne 1960).
Over the years, interest in approximate dynamic pro-

gramming has been fueled to a large extent by stories
of empirical success in applications such as backgammon
(Tesauro 1995), job shop scheduling (Zhang and Dietterich
1996), elevator scheduling (Crites and Barto 1996), and
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pricing of American options (Longstaff and Schwartz 2001,
Tsitsiklis and Van Roy 2001). These case studies point
toward approximate dynamic programming as a potentially
powerful tool for large-scale stochastic control. However,
significant trial and error is involved in most of the success
stories found in the literature, and duplication of the same
success in other applications has proven difficult. Factors
leading to such difficulties include poor understanding of
how and why approximate dynamic programming algo-
rithms work and a lack of streamlined guidelines for imple-
mentation. These deficiencies pose a barrier to the use
of approximate dynamic programming in industry. Lim-
ited understanding also affects the linear programming
approach; in particular, although the algorithm was intro-
duced by Schweitzer and Seidmann more than 15 years
ago, there has been virtually no theory explaining its
behavior.
We develop a variant of approximate linear programming

that represents a significant improvement over the origi-
nal formulation. While the original algorithm may exhibit
poor scaling properties, our version enjoys strong theoret-
ical guarantees and is provably well-behaved for a fairly
general class of problems involving queueing networks—
and we expect the same to be true for other classes of prob-
lems. Specifically, our contributions can be summarized as
follows:
• We develop an error bound that characterizes the

quality of approximations produced by approximate lin-
ear programming. The error is characterized in relative
terms, compared against the “best possible” approximation
of the optimal cost-to-go function given the selection of
basis functions—“best possible” is taken under quotations
because it involves choice of a metric by which to compare
different approximations. In addition to providing perfor-
mance guarantees, the error bounds and associated analysis
offer new interpretations and insights pertaining to approx-
imate linear programming. Furthermore, insights from the
analysis offer guidance in the selection of basis functions,
motivating our variant of the algorithm.
Our error bound is the first to link quality of the approx-

imate cost-to-go function to quality of the “best” approx-
imate cost-to-go function within the approximation archi-
tecture not only for the linear programming approach but
also for any algorithm that approximates cost-to-go func-
tions of general stochastic control problems by computing
weights for arbitrary collections of basis functions.
• We provide analysis, theoretical results, and numerical

examples that explain the impact of state-relevance weights
on the performance of approximate linear programming and
offer guidance on how to choose them for practical prob-
lems. In particular, appropriate choice of state-relevance
weights is shown to be of fundamental importance for the
scalability of the algorithm.
• We develop a bound on the cost increase that results

from using policies generated by the approximation of
the cost-to-go function instead of the optimal policy. The
bound suggests a natural metric by which to compare dif-
ferent approximations to the cost-to-go function and pro-

vides further guidance on the choice of state-relevance
weights.
The linear programming approach has been studied in

the literature, but almost always with a focus different from
ours. Much of the effort has been directed toward efficient
implementation of the algorithm. Trick and Zin (1993,
1997) developed heuristics for combining the linear pro-
gramming approach with successive state aggregation/grid
refinement in two-dimensional problems. Some of their grid
generation techniques are based on stationary state distribu-
tions, which also appear in our analysis of state-relevance
weights. Paschalidis and Tsitsiklis (2000) also apply the
algorithm to two-dimensional problems. An important fea-
ture of the linear programming approach is that it generates
lower bounds as approximations to the cost-to-go function;
Gordon (1999) discusses problems that may arise from that
and suggests constraint relaxation heuristics. One of these
problems is that the linear program used in the approximate
linear programming algorithm may be overly constrained,
which may lead to poor approximations or even infeasibil-
ity. The approach taken in our work prevents this—part of
the difference between our variant of approximate linear
programming and the original one proposed by Schweitzer
and Seidmann is that we include certain basis functions
that guarantee feasibility and also lead to improved bounds
on the approximation error. Morrison and Kumar (1999)
develop efficient implementations in the context of queue-
ing network control. Guestrin et al. (2002) and Schuurmans
and Patrascu (2001) develop efficient implementations of
the algorithm to factored MDPs. The linear programming
approach involves linear programs with a prohibitive num-
ber of constraints, and the emphasis of the previous three
articles is on exploiting problem-specific structure that
allows for the constraints in the linear program to be rep-
resented compactly. Alternatively, de Farias and Van Roy
(2001) suggest an efficient constraint sampling algorithm.
This paper is organized as follows. We first formulate

in §2 the stochastic control problem under consideration
and discuss linear programming approaches to exact and
approximate dynamic programming. In §3, we discuss the
significance of “state-relevance weights” and establish a
bound on the performance of policies generated by approx-
imate linear programming. Section 4 contains the main
results of the paper, which offer error bounds for the algo-
rithm as well as associated analyses. The error bounds
involve problem-dependent terms, and in §5 we study char-
acteristics of these terms in examples involving queueing
networks. Presented in §6 are experimental results involv-
ing problems of queueing network control. A final section
offers closing remarks, including a discussion of merits of
the linear programming approach relative to other methods
for approximate dynamic programming.

2. STOCHASTIC CONTROL AND
LINEAR PROGRAMMING

We consider discrete-time stochastic control problems
involving a finite state space � of cardinality �� � =N . For
each state x ∈ � , there is a finite set of available actions
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�x. Taking action a ∈�x when the current state is x incurs
cost ga�x�. State transition probabilities pa�x� y� represent,
for each pair �x� y� of states and each action a ∈ �x, the
probability that the next state will be y given that the cur-
rent state is x and the current action is a ∈ �x.
A policy u is a mapping from states to actions. Given a

policy u, the dynamics of the system follow a Markov chain
with transition probabilities pu�x��x� y�. For each policy u,
we define a transition matrix Pu whose �x� y�th entry is
pu�x��x� y�.
The problem of stochastic control amounts to selection

of a policy that optimizes a given criterion. In this paper,
we will employ as an optimality criterion infinite-horizon
discounted cost of the form

Ju�x�= E
[ �∑
t=0
�tgu�xt�

∣∣∣x0 = x]�
where gu�x� is used as shorthand for gu�x��x�, and the dis-
count factor � ∈ �0�1� reflects intertemporal preferences. It
is well known that there exists a single policy u that min-
imizes Ju�x� simultaneously for all x, and the goal is to
identify that policy.
Let us define operators Tu and T by

TuJ = gu+�PuJ and TJ =min
u
�gu+�PuJ ��

where the minimization is carried out component-wise.
Dynamic programming involves solution of Bellman’s
equation,

J = TJ �
The unique solution J ∗ of this equation is the optimal
cost-to-go function

J ∗ =min
u
Ju�

and optimal control actions can be generated based on this
function, according to

u�x�= argmin
a∈�x

(
ga�x�+�

∑
y∈�
pa�x� y�J

∗�y�
)
�

Dynamic programming offers a number of approaches
to solving Bellman’s equation. One of particular relevance
to our paper makes use of linear programming, as we will
now discuss. Consider the problem

max cT J �

s�t� TJ � J �
(1)

where c is a (column) vector with positive components,
which we will refer to as state-relevance weights, and cT

denotes the transpose of c. It can be shown that any feasible
J satisfies J � J ∗. It follows that, for any set of positive
weights c, J ∗ is the unique solution to (1).
Note that T is a nonlinear operator, and therefore the

constrained optimization problem written above is not a
linear program. However, it is easy to reformulate the

constraints to transform the problem into a linear program.
In particular, noting that each constraint

�TJ ��x�� J �x�

is equivalent to a set of constraints

ga�x�+�
∑
y∈�
pa�x� y�J �y�� J �x� ∀a ∈ �x�

we can rewrite the problem as

max cT J �

s�t� ga�x�+�
∑
y∈� pa�x� y�J �y�� J �x��

∀x ∈ S�a ∈ �x�

We will refer to this problem as the exact LP.
As mentioned in the introduction, state spaces for

practical problems are enormous due to the curse of
dimensionality. Consequently, the linear program of inter-
est involves prohibitively large numbers of variables and
constraints. The approximation algorithm we study reduces
dramatically the number of variables.
Let us now introduce the linear programming approach

to approximate dynamic programming. Given pre-selected
basis functions 
1� � � � �
K , define a matrix

� =


� �


1

��� 
K

� �

 �
With an aim of computing a weight vector r̃ ∈ �K such
that �r̃ is a close approximation to J ∗, one might pose the
following optimization problem:

max cT�r�

s�t� T �r ��r�
(2)

Given a solution r̃ , one might then hope to generate near-
optimal decisions according to

u�x�= argmin
a∈�x

(
ga�x�+�

∑
y∈�
pa�x� y���r̃��y�

)
�

We will call such a policy a greedy policy with respect to
�r̃ . More generally, a greedy policy u with respect to a
function J is one that satisfies

u�x�= argmin
a∈�x

(
ga�x�+�

∑
y∈�
pa�x� y�J �y�

)
�

As with the case of exact dynamic programming, the
optimization problem (2) can be recast as a linear program

max cT�r�

s�t� ga�x�+�
∑
y∈�
pa�x� y���r��y�� ��r��x��

∀x ∈ S�a ∈ �x�
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We will refer to this problem as the approximate LP. Note
that although the number of variables is reduced to K, the
number of constraints remains as large as in the exact LP.
Fortunately, most of the constraints become inactive, and
solutions to the linear program can be approximated effi-
ciently. In numerical studies presented in §6, for exam-
ple, we sample and use only a relatively small subset of
the constraints. We expect that subsampling in this way
suffices for most practical problems, and have developed
sample-complexity bounds that qualify this expectation
(de Farias and Van Roy 2001). There are also alterna-
tive approaches studied in the literature for alleviating
the need to consider all constraints. Examples include
heuristics presented in Trick and Zin (1993) and problem-
specific approaches making use of constraint generation
methods (e.g., Grötschel and Holland 1991, Schuurmans
and Patrascu 2001) or structure allowing constraints to be
represented compactly (e.g., Morrison and Kumar 1999,
Guestrin et al. 2002).
In the next four sections, we assume that the approximate

LP can be solved, and we study the quality of the solution
as an approximation to the cost-to-go function.

3. THE IMPORTANCE OF STATE-RELEVANCE
WEIGHTS

In the exact LP, for any vector c with positive components,
maximizing cT J yields J ∗. In other words, the choice of
state-relevance weights does not influence the solution. The
same statement does not hold for the approximate LP. In
fact, the choice of state-relevance weights may bear a sig-
nificant impact on the quality of the resulting approxima-
tion, as suggested by theoretical results in this section and
demonstrated by numerical examples later in the paper.
To motivate the role of state-relevance weights, let us

start with a lemma that offers an interpretation of their
function in the approximate LP. The proof can be found in
the appendix.

Lemma 1. A vector r̃ solves

max cT�r�

s�t� T �r ��r�

if and only if it solves

min �J ∗ −�r�1� c�
s�t� T �r ��r�

The preceding lemma points to an interpretation of the
approximate LP as the minimization of a certain weighted
norm, with weights equal to the state-relevance weights.
This suggests that c imposes a trade-off in the quality of
the approximation across different states, and we can lead
the algorithm to generate better approximations in a region
of the state space by assigning relatively larger weight to
that region.
Underlying the choice of state-relevance weights is the

question of how to compare different approximations to

the cost-to-go function. A possible measure of quality is
the distance to the optimal cost-to-go function; intuitively,
we expect that the better the approximate cost-to-go func-
tion captures the real long-run advantage of being in a given
state, the better the policy it generates. A more direct mea-
sure is a comparison between the actual costs incurred by
using the greedy policy associated with the approximate
cost-to-go function and those incurred by an optimal pol-
icy. We now provide a bound on the cost increase incurred
by using approximate cost-to-go functions generated by
approximate linear programming.
We consider as a measure of the quality of policy u the

expected increase in the infinite-horizon discounted cost,
conditioned on the initial state of the system being dis-
tributed according to a probability distribution �; i.e.,

EX∼�
[
Ju�X�− J ∗�X�

]= �Ju− J ∗�1� ��
It will be useful to define a measure �u�� over the state

space associated with each policy u and probability distri-
bution �, given by

�Tu�� = �1−���T
�∑
t=0
�tP tu� (3)

Note that because
∑�
t=0 �

tP tu = �I −�Pu�−1, we also have
�Tu�� = �1−���T �I −�Pu�−1�
The measure �u�� captures the expected frequency of

visits to each state when the system runs under policy u,
conditioned on the initial state being distributed according
to �. Future visits are discounted according to the discount
factor �.
Proofs for the following lemma and theorem can be

found in the appendix.

Lemma 2. �u�� is a probability distribution.

We are now poised to prove the following bound on the
expected cost increase associated with policies generated
by approximate linear programming. Henceforth we will
use the norm � · �1� � , defined by
�J�1� � =

∑
x∈�

��x��J �x���

Theorem 1. Let J � � �→� be such that TJ � J . Then

�JuJ − J ∗�1� � �
1

1−��J − J
∗�1��uJ �� � (4)

Theorem 1 offers some reassurance that if the approxi-
mate cost-to-go function J is close to J ∗, the performance
of the policy generated by J should similarly be close to the
performance of the optimal policy. Moreover, the bound (4)
also establishes how approximation errors in different states
in the system map to losses in performance, which is use-
ful for comparing different approximations to the cost-to-go
function.
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Contrasting Lemma 1 with the bound on the increase in
costs (4) given by Theorem 1, we may want to choose state-
relevance weights c that capture the (discounted) frequency
with which different states are expected to be visited. Note
that the frequency with which different states are visited
in general depends on the policy being used. One possibil-
ity is to have an iterative scheme, where the approximate
LP is solved multiple times with state-relevance weights
adjusted according to the intermediate policies being gen-
erated. Alternatively, a plausible conjecture is that some
problems will exhibit structure making it relatively easy to
make guesses about which states are desirable, and there-
fore more likely to be visited often by reasonable policies,
and which ones are typically avoided and rarely visited.
We expect structures enabling this kind of procedure to
be reasonably common in large-scale problems, in which
desirable policies often exhibit some form of “stability,”
guiding the system to a limited region of the state space
and allowing only infrequent excursions from this region.
Selection of state-relevance weights in practical problems
is illustrated in §§5 and 6.

4. ERROR BOUNDS FOR THE APPROXIMATE LP

When the optimal cost-to-go function lies within the span
of the basis functions, solution of the approximate LP
yields the exact optimal cost-to-go function. Unfortunately,
it is difficult in practice to select a set of basis functions that
contains the optimal cost-to-go function within its span.
Instead, basis functions must be based on heuristics and
simplified analysis. One can only hope that the span comes
close to the desired cost-to-go function.
For the approximate LP to be useful, it should deliver

good approximations when the cost-to-go function is near
the span of selected basis functions. Figure 1 illustrates the
issue. Consider an MDP with states 1 and 2. The plane
represented in the figure corresponds to the space of all
functions over the state space. The shaded area is the fea-
sible region of the exact LP, and J ∗ is the pointwise max-
imum over that region. In the approximate LP, we restrict
attention to the subspace J =�r .

Figure 1. Graphical interpretation of approximate
linear programming.

In Figure 1, the span of the basis functions comes rel-
atively close to the optimal cost-to-go function J ∗; if we
were able to perform, for instance, a maximum-norm pro-
jection of J ∗ onto the subspace J = �r , we would obtain
the reasonably good approximate cost-to-go function �r∗.
At the same time, the approximate LP yields the approx-
imate cost-to-go function �r̃ . In this section, we develop
bounds guaranteeing that �r̃ is not too much farther from
J ∗ than �r∗ is.
We begin in §4.1 with a simple bound, capturing the

fact that if e is within the span of the basis functions, the
error in the result of the approximate LP is proportional
to the minimal error given the selected basis functions.
Though this result is interesting in its own right, the bound
is very loose—perhaps too much so to be useful in prac-
tical contexts. In §4.2, however, we remedy this situation
by providing a refined bound, which constitutes the main
result of the paper. The bound motivates a modification to
the original approximate linear programming formulation
so that the basis functions span Lyapunov functions, defined
later.

4.1. A Simple Bound

Let � · �� denote the maximum norm, defined by �J�� =
maxx∈� �J �x��, and e denote the vector with every compo-
nent equal to 1. Our first bound is given by the following
theorem.

Theorem 2. Let e be in the span of the columns of � and
c be a probability distribution. Then, if r̃ is an optimal
solution to the approximate LP,

�J ∗ −�r̃�1� c �
2

1−� minr �J ∗ −�r���
Proof. Let r∗ be one of the vectors minimizing �J ∗ −
�r�� and define �= �J ∗ −�r∗��. The first step is to find
a feasible point r̄ such that �r̄ is within distance O��� of
J ∗. Because

�T�r∗ − J ∗�� � ���r∗ − J ∗���
we have

T�r∗ � J ∗ −��e� (5)

We also recall that for any vector J and any scalar k,

T �J −ke�=min
u
!gu+�Pu�J −ke�"

=min
u
!gu+�PuJ −�ke"

=min
u
!gu+�PuJ "−�ke

= TJ −�ke� (6)

Combining (5) and (6), we have

T ��r∗ −ke�= T�r∗ −�ke
� J ∗ −��e−�ke
��r∗ − �1+���e−�ke
=�r∗ −ke+ #�1−��k− �1+���$e�
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Because e is within the span of the columns of �, there
exists a vector r̄ such that

�r̄ =�r∗ − �1+���
1−� e�

and r̄ is a feasible solution to the approximate LP. By the
triangle inequality,

��r̄− J ∗�� � �J ∗ −�r∗��+��r∗ −�r̄��
� �

(
1+ 1+�

1−�
)
= 2�
1−��

If r̃ is an optimal solution to the approximate LP, by
Lemma 1 we have

�J ∗ −�r̃�1� c � �J ∗ −�r̄�1� c
� �J ∗ −�r̄��
�

2�
1−��

where the second inequality holds because c is a probability
distribution. The result follows. �

This bound establishes that when the optimal cost-to-
go function lies close to the span of the basis functions,
the approximate LP generates a good approximation. In
particular, if the error minr �J ∗ −�r�� goes to zero (e.g.,
as we make use of more and more basis functions), the
error resulting from the approximate LP also goes to zero.
Though the above bound offers some support for the

linear programming approach, there are some significant
weaknesses:
1. The bound calls for an element of the span of the

basis functions to exhibit uniformly low error over all
states. In practice, however, minr �J ∗ −�r�� is typically
huge, especially for large-scale problems.
2. The bound does not take into account the choice of

state-relevance weights. As demonstrated in the previous
section, these weights can significantly impact the approxi-
mation error. A sharp bound should take them into account.
In §4.2, we will state and prove the main result of this

paper, which provides an improved bound that aims to alle-
viate the shortcomings listed above.

4.2. An Improved Bound

To set the stage for development of an improved bound, let
us establish some notation. First, we introduce a weighted
maximum norm, defined by

�J��� � =max
x∈�

��x��J �x��� (7)

for any �� � �→ �+. As opposed to the maximum norm
employed in Theorem 2, this norm allows for uneven
weighting of errors across the state space.
We also introduce an operator H , defined by

�HV ��x�=max
a∈�x

∑
y

Pa�x� y�V �y��

for all V � � �→ �. For any V , �HV ��x� represents the
maximum expected value of V �y� if the current state is x
and y is a random variable representing the next state. For
each V � � �→�, we define a scalar 'V given by

'V =max
x

��HV ��x�

V �x�
� (8)

We can now introduce the notion of a “Lyapunov
function.”

Definition 1 (Lyapunov Function). We call V � � �→
�+ a Lyapunov function if 'V < 1.

Our definition of a Lyapunov function translates into the
condition that there exist V > 0 and ' < 1 such that

��HV ��x�� 'V �x�� ∀x ∈� � (9)

If � were equal to 1, this would look like a Lyapunov
stability condition: the maximum expected value �HV ��x�
at the next time step must be less than the current value
V �x�. In general, � is less than 1, and this introduces some
slack in the condition.
Our error bound for the approximate LP will grow pro-

portionately with 1/�1−'V �, and we therefore want 'V to
be small. Note that 'V becomes smaller as the �HV ��x�’s
become small relative to the V �x�’s; 'V conveys a degree
of “stability,” with smaller values representing stronger sta-
bility. Therefore our bound suggests that the more stable
the system is, the easier it may be for the approximate LP
to generate a good approximate cost-to-go function.
We now state our main result. For any given function V

mapping � to positive reals, we use 1/V as shorthand for
a function x �→ 1/V �x�.

Theorem 3. Let r̃ be a solution of the approximate LP.
Then, for any v ∈�K such that ��v��x� > 0 for all x ∈�
and �H�v < �v,

�J ∗ −�r̃�1� c �
2cT�v
1−'�v

min
r

�J ∗ −�r���1/�v� (10)

We will first present three preliminary lemmas leading
to the main result. Omitted proofs can be found in the
appendix.
The first lemma bounds the effects of applying T to two

different vectors.

Lemma 3. For any J and J̄ ,

�TJ −T J̄ �� �max
u
Pu�J − J̄ ��

Based on the preceding lemma, we can place the follow-
ing bound on constraint violations in the approximate LP.

Lemma 4. For any vector V with positive components and
any vector J ,

TJ � J − ��HV +V ��J ∗ − J���1/V � (11)
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The next lemma establishes that subtracting an appropri-
ately scaled version of a Lyapunov function from any �r
leads us to the feasible region of the approximate LP.

Lemma 5. Let v be a vector such that �v is a Lyapunov
function, r be an arbitrary vector, and

r̄ = r−�J ∗ −�r���1/�v
(

2
1−'�v

−1
)
v�

Then,

T�r̄ ��r̄�

Given the preceding lemmas, we are poised to prove
Theorem 3.

Proof of Theorem 3. From Lemma 5, we know that

r̄ = r∗ −�J ∗ −�r∗���1/�v
(

2
1−'�v

−1
)
v

is a feasible solution for the approximate LP. From
Lemma 1, we have

�J ∗ −�r̃�1� c
� �J ∗ −�r̄�1� c
=∑

x

c�x���v��x�
�J ∗�x�− ��r̄��x��

��v��x�

�

(∑
x

c�x���v��x�

)
max
x

�J ∗�x�− ��r̄��x��
��v��x�

= cT�v�J ∗ −�r̄���1/�v
� cT�v

(
�J ∗ −�r∗���1/�v+��r̄−�r∗���1/�v

)

� cT�v

(
�J ∗ −�r∗���1/�v+�J ∗ −�r∗���1/�v

·
(

2
1−'�v

−1
)
��v���1/�v

)

�
2

1−'�v
cT�v�J ∗ −�r∗���1/�v�

and Theorem 3 follows. �

Let us now discuss how this new theorem addresses the
shortcomings of Theorem 2 listed in the previous section.
We treat in turn the two items from the aforementioned list.
1. The norm � · �� appearing in Theorem 2 is undesir-

able largely because it does not scale well with problem
size. In particular, for large problems, the cost-to-go func-
tion can take on huge values over some (possibly infre-
quently visited) regions of the state space, and so can
approximation errors in such regions.
Observe that the maximum norm of Theorem 2 has

been replaced in Theorem 3 by � · ���1/�v. Hence, the
error at each state is now weighted by the reciprocal of

the Lyapunov function value. This should to some extent
alleviate difficulties arising in large problems. In particular,
the Lyapunov function should take on large values in
undesirable regions of the state space—regions where J ∗

is large. Hence, division by the Lyapunov function acts as
a normalizing procedure that scales down errors in such
regions.
2. As opposed to the bound of Theorem 2, the state-

relevance weights do appear in our new bound. In par-
ticular, there is a coefficient cT�v scaling the right-hand
side. In general, if the state-relevance weights are cho-
sen appropriately, we expect that this factor of cT�v will
be reasonably small and independent of problem size. We
defer to §5 further qualification of this statement and a dis-
cussion of approaches to choosing c in contexts posed by
concrete examples.

5. ON THE CHOICE OF LYAPUNOV FUNCTION

The Lyapunov function �v plays a central role in the bound
of Theorem 3. Its choice influences three terms on the right-
hand side of the bound:
1. the error minr �J ∗ −�r���1/�v;
2. the Lyapunov stability factor k�v;
3. the inner product cT�v with the state-relevance

weights.
An appropriately chosen Lyapunov function should make

all three of these terms relatively small. Furthermore, for
the bound to be useful in practical contexts, these terms
should not grow much with problem size.
In the following subsections, we present three examples

involving choices of Lyapunov functions in queueing prob-
lems. The intention is to illustrate more concretely how
Lyapunov functions might be chosen and that reasonable
choices lead to practical error bounds that are independent
of the number of states, as well as the number of state
variables. The first example involves a single autonomous
queue. A second generalizes this to a context with controls.
A final example treats a network of queues. In each case,
we study the three terms enumerated above and how they
scale with the number of states and/or state variables.

5.1. An Autonomous Queue

Our first example involves a model of an autonomous (i.e.,
uncontrolled) queueing system. We consider a Markov pro-
cess with states 0�1� � � � �N −1, each representing a possi-
ble number of jobs in a queue. The system state xt evolves
according to

xt+1 =
{
min�xt+1�N −1�� with probability p�

max�xt−1�0�� otherwise�

and it is easy to verify that the steady-state probabilities
,�0�� � � � �,�N −1� satisfy

,�x�= ,�0�
(

p

1−p
)x
�
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If the state satisfies 0 < x < N − 1, a cost g�x� = x2 is
incurred. For the sake of simplicity, we assume that costs
at the boundary states 0 and N − 1 are chosen to ensure
that the cost-to-go function takes the form

J ∗�x�= -2x2+-1x+-0�

for some scalars -0, -1, -2 with -0 > 0 and -2 > 0; it is
easy to verify that such a choice of boundary conditions is
possible.
We assume that p < 1/2 so that the system is “stable.”

Stability here is taken in a loose sense indicating that the
steady-state probabilities are decreasing for all sufficiently
large states.
Suppose that we wish to generate an approximation to

the optimal cost-to-go function using the linear program-
ming approach. Further suppose that we have chosen the
state-relevance weights c to be the vector , of steady-state
probabilities and the basis functions to be 
1�x� = 1 and

2�x�= x2.
How good can we expect the approximate cost-to-go

function �r̃ generated by approximate linear programming
to be as we increase the number of states N ? First note that

min
r

�J ∗ −�r�1� c � �J ∗ − �-0
1+-2
2��1� c

=
N−1∑
x=0
,�x��-1�x

= �-1�
N−1∑
x=0
,�0�

(
p

1−p
)x
x

� �-1�
p/�1−p�

�1−p�/�1−p��

for all N . The last inequality follows from the fact that the
summation in the third line corresponds to the expected
value of a geometric random variable conditioned on its
being less than N . Hence, minr �J ∗ −�r�1� c is uniformly
bounded over N . One would hope that �J ∗−�r̃�1� c, with r̃
being an outcome of the approximate LP, would be sim-
ilarly uniformly bounded over N . It is clear that Theo-
rem 2 does not offer a uniform bound of this sort. In par-
ticular, the term minr �J ∗ −�r�� on the right-hand side
grows proportionately with N and is unbounded as N
increases. Fortunately, this situation is remedied by The-
orem 3, which does provide a uniform bound. In partic-
ular, as we will show in the remainder of this section,
for an appropriate Lyapunov function V = �v, the values
of minr �J ∗ −�r���1/V �1/�1−'V �, and cT V are all uni-
formly bounded over N , and together these values offer a
bound on �J ∗ −�r̃�1� c that is uniform over N .
We will make use of a Lyapunov function

V �x�= x2+ 2
1−��

which is clearly within the span of our basis functions 
1

and 
2. Given this choice, we have

min
r

�J ∗ −�r���1/V �max
x�0

�-2x2+-1x+-0−-2x2−-0�
x2+2/�1−��

=max
x�0

�-1�x
x2+2/�1−��

�
�-1�

2
√
2/�1−�� �

Hence, minr �J ∗ −�r���1/V is uniformly bounded over N .
We next show that 1/�1− 'V � is uniformly bounded

over N . To do that, we find bounds on HV in terms of V .
For 0< x < N −1, we have

��HV ��x�= �
[
p

(
x2+2x+1+ 2

1−�
)

+ �1−p�
(
x2−2x+1+ 2

1−�
)]

= �
[
x2+ 2

1−� +1+2x�2p−1�
]

� �

(
x2+ 2

1−� +1
)

= V �x�
(
�+ �

V �x�

)
� V �x�

(
�+ 1

V �0�

)
= V �x�1+�

2
�

For x = 0, we have

��HV ��0�= �
[
p

(
1+ 2

1−�
)
+ �1−p� 2

1−�
]

= �p+� 2
1−�

� V �0�
(
�+ 1−�

2

)
= V �0�1+�

2
�

Finally, we clearly have

��HV ��N −1�� �V �N −1�� V �N −1�
1+�
2

�

because the only possible transitions from state N − 1 are
to states x � N − 1 and V is a nondecreasing function.
Therefore, 'V � �1+ ��/2 and 1/�1− 'V � is uniformly
bounded on N .
We now treat cT V . Note that for N � 1,

cT V =
N−1∑
x=0
,�0�

(
p

1−p
)x(

x2+ 2
1−�

)

= 1−p/�1−p�
1− #p/�1−p�$N

N−1∑
x=0

(
p

1−p
)x(

x2+ 2
1−�

)
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�
1−p/�1−p�
1−p/�1−p�

�∑
x=0

(
p

1−p
)x(

x2+ 2
1−�

)
= 1−p
1−2p

(
2

1−� +2
p2

�1−2p�2
+ p

1−2p

)
�

so cT V is uniformly bounded for all N .

5.2. A Controlled Queue

In the previous example, we treated the case of an
autonomous queue and showed how the terms involved in
the error bound of Theorem 3 are uniformly bounded on the
number of states N . We now address a more general case
in which we can control the queue service rate. For any
time t and state 0< xt < N −1, the next state is given by

xt+1 =


xt−1� with probability q�xt��

xt+1� with probability p�

xt� otherwise.

From state 0, a transition to state 1 or 0 occurs with prob-
abilities p or 1−p, respectively. From state N −1, a tran-
sition to state N − 2 or N − 1 occurs with probabilities
q�N−2� or 1−q�N−2�, respectively. The arrival probabil-
ity p is the same for all states and we assume that p < 1/2.
The action to be chosen in each state x is the departure
probability or service rate q�x�, which takes values in a
finite set !qi, i= 1� � � � �A". We assume that qA= 1−p >p,
therefore the queue is “stabilizable.” The cost incurred at
state x if action q is taken is given by

g�x� q�= x2+m�q��
where m is a nonnegative and increasing function.
As discussed before, our objective is to show that the

terms involved in the error bound of Theorem 3 are uni-
formly bounded over N . We start by finding a suitable
Lyapunov function based on our knowledge of the prob-
lem structure. In the autonomous case, the choice of the
Lyapunov function was motivated by the fact that the opti-
mal cost-to-go function was a quadratic. We now proceed
to show that in the controlled case, J ∗ can be bounded
above by a quadratic

J ∗�x�� -2x
2+-1x+-0

for some -0 > 0, -1 and -2 > 0 that are constant inde-
pendent of the queue buffer size N − 1. Note that J ∗ is
bounded above by the value of a policy �̄ that takes action
q�x�= 1−p for all x, hence it suffices to find a quadratic
upper bound for the value of this policy. We will do so by
making use of the fact that for any policy � and any vector
J , T�J � J implies J � J�. Take

-2 =
1

1−��

-1 =
�#2-2�2p−1�$

1−� �

-0 =max
(
�p�-2+-1�

1−� �
m�1−p�+�#-2+-1�2p−1�$

1−�
)
�

For any state x such that 0< x <N −1, we can verify that

J �x�− �T�̄J ��x�
= -0�1−��−m�1−p�−�#-2+-1�2p−1�$

�
m�1−p�+�#-2+-1�2p−1�$

1−� �1−��
−m�1−p�−�#-2+-1�2p−1�$

= 0�

For state x = N − 1, note that if N > 1−-1/2-2 we have
J �N � > J �N −1� and

J �N −1�− �T�̄J ��N −1�

= J �N −1�− �N −1�2−m�1−p�
−�#�1−p�J �N −2�+pJ �N −1�$ (12)

� J �N −1�− �N −1�2−m�1−p�
−�#�1−p�J �N −2�+pJ �N�$ (13)

= -0�1−��−m�1−p�−�#-2+-1�2p−1�$

� 0�

Finally, for state x = 0 we have

J �0�− �T�̄J ��0�= �1−��-0−�p�-2+-1�

� �1−���p�-2+-1�
1−� −�p�-2+-1�

= 0�

It follows that J � T�J , and for all N > 1−-1/2-2,
0� J ∗ � J�̄ � J = -2x2+-1x+-0�
A natural choice of Lyapunov function is, as in the previ-

ous example, V �x�= x2+C for some C > 0. It follows that

min
r

�J ∗ −�r���1/V � �J ∗���1/V

�max
x�0

-2x
2+-1x+-0
x2+C

< -2+
-1

2
√
C

+ -0
C
�

Now note that

��HV ��x�� �
[
p�x2+2x+1+C�+ �1−p��x2+C�]

= V �x�
(
�+ �p�2x+1�

x2+C
)
�

and for C sufficiently large and independent of N , there
is ' < 1 also independent of N such that �HV � 'V and
1/�1−'� is uniformly bounded on N .
It remains to be shown that cT V is uniformly bounded

on N . For that, we need to specify the state-relevance
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vector c. As in the case of the autonomous queue, we might
want it to be close to the steady-state distribution of the
states under the optimal policy. Clearly, it is not easy to
choose state-relevant weights in that way because we do
not know the optimal policy. Alternatively, we will use the
general shape of the steady-state distribution to generate
sensible state-relevance weights.
Let us analyze the infinite buffer case and show that,

under some stability assumptions, there should be a
geometric upper bound for the tail of steady-state distribu-
tion; we expect that results for finite (large) buffers should
be similar if the system is stable, because in this case most
of the steady-state distribution will be concentrated on rela-
tively small states. Let us assume that the system under the
optimal policy is indeed stable—that should generally be
the case if the discount factor is large. For a queue with infi-
nite buffer the optimal service rate q�x� is nondecreasing
in x (Bertsekas 1995), and stability therefore implies that

q�x�� q�x0� > p

for all x� x0 and some sufficiently large x0. It is easy then
to verify that the tail of the steady-state distribution has an
upper bound with geometric decay because it should satisfy

,�x�p = ,�x+1�q�x+1��

and therefore
,�x+1�
,�x�

�
p

q�x0�
< 1�

for all x � x0. Thus a reasonable choice of state-relevance
weights is c�x�= ,�0�3x, where ,�0�= �1−3�/�1−3N �
is a normalizing constant making c a probability distribu-
tion. In this case,

cT V = E#X2+C � X < N$

� 2
32

�1−3�2 +
3

1−3 +C�
where X represents a geometric random variable with
parameter 1 − 3. We conclude that cT V is uniformly
bounded on N .

5.3. A Queueing Network

Both previous examples involved one-dimensional state
spaces and had terms of interest in the approximation error
bound uniformly bounded over the number of states. We
now consider a queueing network with d queues and finite
buffers of size B to determine the impact of dimensionality
on the terms involved in the error bound of Theorem 3.
We assume that the number of exogenous arrivals

occuring in any time step has expected value less than or
equal to Ad, for a finite A. The state x ∈�d indicates the
number of jobs in each queue. The cost per stage incurred
at state x is given by

g�x�= �x�
d

= 1
d

d∑
i=1
xi�

the average number of jobs per queue.

Let us first consider the optimal cost-to-go function J ∗

and its dependency on the number of state variables d.
Our goal is to establish bounds on J ∗ that will offer some
guidance on the choice of a Lyapunov function V that keeps
the error minr �J ∗ −�r���1/V small. Because J ∗ � 0, we
will derive only upper bounds.
Instead of carrying the buffer size B throughout

calculations, we will consider the infinite buffer case. The
optimal cost-to-go function for the finite buffer case should
be bounded above by that of the infinite buffer case, as
having finite buffers corresponds to having jobs arriving at
a full queue discarded at no additional cost.
We have

Ex#�xt�$� �x�+Adt�
because the expected total number of jobs at time t cannot
exceed the total number of jobs at time 0 plus the expected
number of arrivals between 0 and t, which is less than or
equal to Adt. Therefore, we have

Ex

[ �∑
t=0
�t�xt�

]
=

�∑
t=0
�tEx#�xt�$

�

�∑
t=0
�t��x�+Adt�

= �x�
1−� + Ad

�1−��2 � (14)

The first equality holds because �xt� � 0 for all t; by the
monotone convergence theorem, we can interchange the
expectation and the summation. We conclude from (14) that
the optimal cost-to-go function in the infinite buffer case
should be bounded above by a linear function of the state;
in particular,

0� J ∗�x��
-1
d
�x�+-0�

for some positive scalars -0 and -1 independent of the num-
ber of queues d.
As discussed before, the optimal cost-to-go function in

the infinite buffer case provides an upper bound for the
optimal cost-to-go function in the case of finite buffers of
size B. Therefore, the optimal cost-to-go function in the
finite buffer case should be bounded above by the same
linear function regardless of the buffer size B.
As in the previous examples, we will establish bounds

on the terms involved in the error bound of Theorem 3.
We consider a Lyapunov function V �x�= �1/d��x�+C for
some constant C > 0, which implies

min
r

�J ∗ −�r���1/V � �J ∗���1/V

�max
x�0

-1�x�+d-0
�x�+dC

� -1+
-0
C
�
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and the bound above is independent of the number of
queues in the system.
Now let us study 'V . We have

��HV ��x�� �

( �x�+Ad
d

+C
)

� V �x�

(
�+ �A

��x�/d�+C
)

� V �x�

(
�+ �A

C

)
�

and it is clear that, for C sufficiently large and inde-
pendent of d, there is a ' < 1 independent of d such
that �HV � 'V , and therefore 1/�1− 'V � is uniformly
bounded on d.
Finally, let us consider cT V . We expect that under some

stability assumptions, the tail of the steady-state distribution
will have an upper bound with geometric decay (Bertsimas
et al. 2001), and we take c�x�= ��1−3�/�1−3B+1��d3�x�.
The state-relevance weights c are equivalent to the con-
ditional joint distribution of d independent and identically
distributed geometric random variables conditioned on the
event that they are all less than B+1. Therefore,

cT V = E
[
1
d

d∑
i=1
Xi+C

∣∣∣Xi < B+1� i = 1� � � � � d

]
< E#X1$+C
= 3

1−3 +C�
where Xi, i= 1� � � � � d are identically distributed geometric
random variables with parameter 1−3. It follows that cT V
is uniformly bounded over the number of queues.

6. APPLICATION TO CONTROLLED
QUEUEING NETWORKS

In this section, we discuss numerical experiments involv-
ing application of the linear programming approach to con-
trolled queueing problems. Such problems are relevant to
several industries including manufacturing and telecom-
munications and the experimental results presented here
suggest approximate linear programming as a promising
approach to solving them.
In all examples, we assume that at most one event

(arrival/departure) occurs at each time step. We also choose
basis functions that are polynomial in the states. This
is partly motivated by the analysis in the previous sec-
tion and partly motivated by the fact that, with linear
(quadratic) costs, our problems have cost-to-go functions
that are asymptotically linear (quadratic) functions of the
state. Hence, our approach is to exploit the problem struc-
ture to select basis functions. It may not be straightfor-
ward to identify properties of the cost-to-go function in
other applications; in §7, we briefly discuss an alternative
approach.
The first example illustrates how state-relevance weights

influence the solution of the approximate LP.

6.1. Single Queue with Controlled Service Rate

In §5.2, we studied a queue with a controlled service rate
and determined that the bounds on the error of the approx-
imate LP were uniform over the number of states. That
example provided some guidance on the choice of basis
functions; in particular, we now know that including a
quadratic and a constant function guarantees that an appro-
priate Lyapunov function is in the span of the columns
of �. Furthermore, our analysis of the (unknown) steady-
state distribution revealed that state-relevance weights of
the form c�x�= �1−3�3x are a sensible choice. However,
how to choose an appropriate value of 3 was not discussed
there. In this section, we present results of experiments with
different values of 3 for a particular instance of the model
described in §5.2. The values of 3 chosen for experimen-
tation are motivated by ideas developed in §3.
We assume that jobs arrive at a queue with probability

p= 0�2 in any unit of time. Service rates/probabilities q�x�
are chosen from the set !0�2�0�4�0�6�0�8". The cost in-
curred at any time for being in state x and taking action q
is given by

g�x� q�= x+60q3�

We take the buffer size to be 49�999 and the discount
factor to be �= 0�98. We select basis functions 
1�x�= 1,

2�x� = x, 
3�x� = x2, 
4�x� = x3, and state-relevance
weights c�x� = �1− 3�3x. The approximate LP is solved
for 3 = 0�9 and 3 = 0�999 and we denote the solution of the
approximate LP by r3 . The numerical results are presented
in Figures 2, 3, 4, and 5.
Figure 2 shows the approximations �r3 to the cost-to-go

function generated by the approximate LP. Note that the
results agree with the analysis developed in §3; small states
are approximated better when 3 = 0�9 whereas large states
are approximated almost exactly when 3 = 0�999.
In Figure 3 we see the greedy action with respect to

�r3 . We get the optimal action for almost all “small” states

Figure 2. Approximate cost-to-go function for the
example in §6.1.
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Figure 3. Greedy action for the example in §6.1.
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with 3 = 0�9. On the other hand, 3 = 0�999 yields optimal
actions for all relatively large states in the relevant range.
The most important result is illustrated in Figure 4,

which depicts the cost-to-go functions associated with the
greedy policies. Note that despite taking suboptimal actions
for all relatively large states, the policy induced by 3 = 0�9
performs better than that generated with 3 = 0�999 in the
range of relevant states, and it is close in value to the
optimal policy even in those states for which it does not
take the optimal action. Indeed, the average cost incurred
by the greedy policy with respect to 3 = 0�9 is 2.92, rel-
atively close to the average cost incurred by the optimal
(discounted cost) policy, which is 2.72. The average cost
incurred when 3 = 0�999 is 4.82, which is significantly
higher.
Steady-state probabilities for each of the different greedy

policies, as well as the corresponding (rescaled) state-
relevance weights are shown in Figure 5. Note that setting 3
to 0.9 captures the relative frequencies of states, whereas
setting 3 to 0.999 weights all states in the relevant range
almost equally.

Figure 4. Cost-to-go function for the example in §6.1.
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Figure 5. Steady-state probabilities for the example
in §6.1.
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6.2. A Four-Dimensional Queueing Network

In this section, we study the performance of the approx-
imate LP algorithm when applied to a queueing network
with two servers and four queues. The system is depicted
in Figure 6 and has been previously studied in Chen and
Meyn (1999), Kumar and Seidman (1995), and Rybko and
Stolyar (1992). Arrival (7) and departure (�i, i = 1� � � � �4)
probabilities are indicated. We assume a discount factor
� = 0�99. The state x ∈ �4 indicates the number of jobs
in each queue and the cost incurred in any period is
g�x�= �x�, the total number of jobs in the system. Actions
a ∈ !0�1"4 satisfy a1+ a4 � 1, a2+ a3 � 1, and the non-
idling assumption, i.e., a server must be working if any of
its queues is nonempty. We have ai = 1 iff queue i is being
served.
Constraints for the approximate LP are generated by

sampling 40,000 states according to the distribution given
by the state-relevance weights c. We choose the basis func-
tions to span all of the polynomials in x of degree 3; there-
fore, there are(
4
0

)
+
(
4
1

)
+
[(

4
1

)
+
(
4
2

)]
+
[(

4
1

)
+2

(
4
2

)
+
(
4
3

)]
= 35

basis functions. The terms in the above expression denote
the number of basis functions of degree 0, 1, 2, and 3,
respectively.
We choose the state-relevance weights to be c�x� =

�1− 3�43�x�. Experiments were performed for a range of
values of 3. The best results were generated when 0�95 �
3 � 0�99. The average cost was estimated by simulation
with 50,000,000 iterations, starting with an empty system.
We compare the average cost obtained by the greedy pol-

icy with respect to the solution of the approximate LP with
that of several different heuristics, namely, first-in-first-out
(FIFO), last-buffer-first-served (LBFS), and a policy that
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Figure 6. System for the example in §6.2.
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always serves the longest queue (LONGEST). Results are
summarized in Table 1 and we can see that the approxi-
mate LP yields significantly better performance than all of
the other heuristics.

6.3. An Eight-Dimensional Queueing Network

In our last example, we consider a queueing network with
eight queues. The system is depicted in Figure 7, with
arrival (7i, i= 1�2) and departure (�i, i= 1� � � � �8) proba-
bilities indicated.
The state x ∈ �8 represents the number of jobs in each

queue. The cost-per-state is g�x� = �x�, and the discount
factor � is 0.995. Actions a∈ !0�1"8 indicate which queues
are being served; ai = 1 iff a job from queue i is being
processed. We consider only nonidling policies and, at each
time step, a server processes jobs from one of its queues
exclusively.
We choose state-relevance weights of the form c�x� =

�1−3�83�x�. The basis functions are chosen to span all poly-
nomials in x of degree at most 2; therefore, the approxi-
mate LP has 47 variables. Because of the relatively large
number of actions per state (up to 18), we choose to sam-
ple a relatively small number of states. Note that we take a
slightly different approach from that proposed in de Farias
and Van Roy (2001) and include constraints relative to
all actions associated with each state in the system. Con-
straints for the approximate LP are generated by sampling
5,000 states according to the distribution associated with
the state-relevance weights c. Experiments were performed
for 3 = 0�85, 0�9, and 0�95, and 3 = 0�9 yielded the policy
with smallest average cost. We do not specify a maximum
buffer size. The maximum number of jobs in the system for
states sampled in the LP was 235, and the maximum single
queue length, 93. During simulation of the policy obtained,
the maximum number of jobs in the system was 649, and
the maximum number of jobs in any single queue, 384.

Table 1. Performance of different poli-
cies for example in §6.2.

Policy Average Cost

3 = 0�95 33�37
LONGEST 45�04
FIFO 45�71
LBFS 144�1

Average cost estimated by simulation after
50,000,000 iterations, starting with empty system.

To evaluate the performance of the policy generated by
the approximate LP, we compare it with first-in-first-out
(FIFO), last-buffer-first-serve (LBFS), and a policy that
serves the longest queue in each server (LONGEST). LBFS
serves the job that is closest to leaving the system; for
example, if there are jobs in queue 2 and in queue 6, a job
from queue 2 is processed since it will leave the system
after going through only one more queue, whereas the job
from queue 6 will still have to go through two more queues.
We also choose to assign higher priority to queue 3 than to
queue 8 because queue 3 has higher departure probability.
We estimated the average cost of each policy with

50,000,000 simulation steps, starting with an empty sys-
tem. Results appear in Table 2. The policy generated by the
approximate LP performs significantly better than each of
the heuristics, yielding more than 10% improvement over
LBFS, the second best policy. We expect that even better
results could be obtained by refining the choice of basis
functions and state-relevance weights.
The constraint generation step took 74.9 seconds, and the

resulting LP was solved in approximately 3.5 minutes of
CPU time with CPLEX 7.0 running on a Sun Ultra Enter-
prise 5500 machine with Solaris 7 operating system and a
400-MHz processor.

7. CLOSING REMARKS AND OPEN ISSUES

In this paper, we studied the linear programming approach
to approximate dynamic programming for stochastic
control problems as a means of alleviating the curse of
dimensionality. We provided an error bound for a variant of
approximate linear programming based on certain assump-
tions on the basis functions. The bounds were shown to
be uniform in the number of states and state variables in
certain queueing problems. Our analysis also led to some
guidelines in the choice of the so-called “state-relevance
weights” for the approximate LP.
An alternative to the approximate LP are temporal-

difference (TD) learning methods (Bertsekas and Tsitsiklis
1996; Dayan 1992; de Farias and Van Roy 2000; Sutton
1988; Sutton and Barto 1998; Tsitsiklis and Van Roy
1997; Van Roy 1998, 2000). In such methods, one tries
to find a fixed point for an “approximate dynamic pro-
gramming operator” by simulating the system and learning
from the observed costs and state transitions. Experimen-
tation is necessary to determine when TD can offer bet-
ter results than the approximate LP. However, it is worth
mentioning that because of its complexity, much of TD’s
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Figure 7. System for the example in §6.3.
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behavior is still to be understood; there are no conver-
gence proofs or effective error bounds for general stochas-
tic control problems. Such poor understanding leads to
implementation difficulties; a fair amount of trial and error
is necessary to get the method to perform well or even to
converge. The approximate LP, on the other hand, benefits
from the inherent simplicity of linear programming: its
analysis is simpler, and error bounds such as those pro-
vided here provide guidelines on how to set the algorithm’s
parameters most efficiently. Packages for large-scale linear
programming developed in the recent past also make the
approximate LP relatively easy to implement.
A central question in approximate linear programming

not addressed here is the choice of basis functions. In the
applications to queueing networks, we have chosen basis
functions polynomial in the states. This was largely moti-
vated by the fact that with linear/quadratic costs, it can be
shown in these problems that the optimal cost-to-go func-
tion is asymptotically linear/quadratic. Reasonably accurate
knowledge of structure the cost-to-go function may be diffi-
cult in other problems. An alternative approach is to extract
a number of features of the states which are believed to be
relevant to the decision being made. The hope is that the
mapping from features to the cost-to-go function might be
smooth, in which case certain sets of basis functions such
as polynomials might lead to good approximations.
We have motivated many of the ideas and guidelines for

choice of parameters through examples in queueing prob-
lems. In future work, we intend to explore how these ideas
would be interpreted in other contexts, such as portfolio
management and inventory control.
Several other questions remain open and are the object

of future investigation: Can the state-relevance weights in

Table 2. Average number of jobs in the system for the
example in §6.3, after 50,000,000 simulation
steps.

Policy Average Cost

ALP 136�67
LBFS 153�82
FIFO 163�63
LONGEST 168�66

the objective function be chosen in some adaptive way?
Can we add robustness to the approximate LP algorithm to
account for errors in the estimation of costs and transition
probabilities, i.e., design an alternative LP with meaning-
ful performance bounds when problem parameters are just
known to be in a certain range? How do our results extend
to the average cost case? How do our results extend to the
infinite-state case?
Finally, in this paper we utilize linear architectures

to represent approximate cost-to-go functions. It may
be interesting to explore algorithms using nonlinear
representations. Alternative representations encountered in
the literature include neural networks (Bishop 1995, Haykin
1994) and splines (Chen et al. 1999, Trick and Zin 1997),
among others.

APPENDIX A: PROOFS

Lemma 1. A vector r̃ solves

max cT�r�

s�t� T �r ��r�

if and only if it solves

min �J ∗ −�r�1� c�
s�t� T �r ��r�

Proof. It is well known that the dynamic programming
operator T is monotonic. From this and the fact that T is
a contraction with fixed point J ∗, it follows that for any J
with J � TJ , we have

J � TJ � T 2J � · · ·� J ∗�
Hence, any r that is a feasible solution to the optimization
problems of interest satisfies �r � J ∗. It follows that

�J ∗ −�r�1� c =
∑
x∈�

c�x��J ∗�x�− ��r��x��

= cT J ∗ − cT�r�
and maximizing cT�r is therefore equivalent to minimizing
�J ∗ −�r�1� c. �
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Lemma 2. �u�� is a probability distribution.

Proof. Let e be the vector of all ones. Then we have∑
x∈�

�u���x�= �1−���T
�∑
t=0
�tP tue

= �1−���T
�∑
t=0
�te

= �1−���T �1−��−1e
= 1�

and the claim follows. �

Theorem 1. Let J � � �→� be such that TJ � J . Then

�JuJ − J ∗�1� � �
1

1−��J − J
∗�1��uJ �� �

Proof. We have

JuJ − J = �I −�PuJ �−1guJ − J
= �I −�PuJ �−1#guJ − �I −�PuJ �J $
= �I −�PuJ �−1�guJ +�PuJ J − J �
= �I −�PuJ �−1�TJ − J ��

Because J � TJ , we have J � TJ � J ∗ � JuJ . Hence,

�JuJ − J ∗�1� � = �T �JuJ − J ∗�
� �T �JuJ − J �
= �T �I −�PuJ �−1�TJ − J �

= 1
1−��

T
uJ � �
�TJ − J �

�
1

1−��
T
uJ � �
�J ∗ − J �

= 1
1−��J

∗ − J�1��uJ �� � �

Lemma 3. For any J and J̄ ,

�TJ −T J̄ �� �max
u
Pu�J − J̄ ��

Proof. Note that, for any J and J̄ ,

TJ −T J̄ =min
u
!gu+�PuJ "−min

u
!gu+�PuJ̄ "

= guJ +�PuJ J −guJ̄ −�PuJ̄ J̄
� guJ̄ +�PuJ̄ J −guJ̄ −�PuJ̄ J̄
� �max

u
Pu�J − J̄ �

� �max
u
Pu�J − J̄ ��

where uJ and uJ̄ denote greedy policies with respect to
J and J̄ , respectively. An entirely analogous argument
gives us

T J̄ −TJ � �max
u
Pu�J − J̄ ��

and the result follows. �

Lemma 4. For any vector V with positive components and
any vector J ,

TJ � J − ��HV +V ��J ∗ − J���1/V �
Proof. Note that

�J ∗�x�− J �x��� �J ∗ − J���1/V V �x��
By Lemma 3,

��TJ ∗��x�− �TJ ��x��
� �max

a

∑
y∈�
Pa�x� y��J ∗�y�− J �y��

� ��J ∗ − J���1/V max
a∈�x

∑
y∈�
Pa�x� y�V �y�

= ��J ∗ − J���1/V �HV ��x��
Letting � = �J ∗ − J���1/V , it follows that
�TJ ��x�� J ∗�x�−���HV ��x�

� J �x�− �V �x�−���HV ��x��
The result follows. �

Lemma 5. Let v be a vector such that �v is a Lyapunov
function, r be an arbitrary vector, and

r̄ = r−�J ∗ −�r���1/�v
(

2
1−'�v

−1
)
v�

Then,

T�r̄ ��r̄�

Proof. Let � = �J ∗ −�r���1/�v. By Lemma 3,
��T �r��x�− �T �r̄��x��

=
∣∣∣∣∣�T �r��x�−

(
T

[
��r− �

(
2

1−'�v
−1

)
�v

])
�x�

∣∣∣∣∣
� �max

a

∑
y∈�
Pa�x� y��

(
2

1−'�v
−1

)
��v��y�

= ��
(

2
1−'�v

−1
)
�H�v��x��

because �v is a Lyapunov function and therefore 2/
�1−'�v�−1> 0. It follows that

T�r̄ � T�r−��
(

2
1−'�v

−1
)
H�v�

By Lemma 4,

T�r ��r− ���H�v+�v��
and therefore

T�r̄ ��r− ���H�v+�v�−��
(

2
1−'�v

−1
)
H�v

=�r̄− ���H�v+�v�
+ �

(
2

1−'�v
−1

)
��v−�H�v�

��r̄− ���H�v+�v�+ ���v+�H�v�
=�r̄�
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where the last inequality follows from the fact that �v−
�H�v > 0, and

2
1−'�v

−1= 2
1−maxx ���H�v��x��/���v��x��

−1

=max
x

��v��x�+��H�v��x�
��v��x�−��H�v��x� � �
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