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Abstract

“Experts algorithms” constitute a methodology for choosing actions repeatedly, when
the rewards depend both on the choice of action and on the unknown current state of the
environment. An experts algorithm has access to a set of strategies (“experts”), each of
which may recommend which action to choose. The algorithm learns how to combine the
recommendations of individual experts so that, in the long run, for any fixed sequence of
states of the environment, it does as well as the best expert would have done relative to the
same sequence. This methodology may not be suitable for situations where the evolution
of states of the environment depends on past chosen actions, as is usually the case, for
example, in a repeated non-zero-sum game.

A general exploration-exploitation experts method is presented along with a proper
definition of value. The new method is quite different from previously proposed experts
algorithms. It represents a shift from the paradigms of regret minimization and myopic op-
timization to consideration of the long-term effect of a player’s actions on the environment.
The importance of this shift is demonstrated by the fact that this algorithm is capable
of inducing cooperation in the repeated Prisoner’s Dilemma game, whereas previous ex-
perts algorithms converge to the suboptimal non-cooperative play. The method is shown to
asymptotically perform as well as the best available expert. Several variants are analyzed
from the viewpoint of the exploration-exploitation tradeoff, including explore-then-exploit,
polynomially vanishing exploration, constant-frequency exploration, and constant-size ex-
ploration phases. Complexity and performance bounds are proven.

Keywords: Sequential decision making, experts algorithms, reactive environments,
exploration-exploitation tradeoffs, complexity and performance bounds.

1. Introduction

Real-world environments require agents to choose actions sequentially. For example, a
driver has to choose everyday a route from one point to another, based on past experience
and perhaps some current information. In another example, an airline company has to set
prices dynamically, also based on past experience and current information. One important
difference between these two examples is that the effect of the driver’s decision on the future
traffic patterns is negligible, whereas prices set by one airline can affect future market prices
significantly. In this sense the decisions of the airlines are made in a reactive environment,
whereas the driver performs in a non-reactive one. For this reason, the driver’s problem is
essentially a problem of prediction while the airline’s problem has an additional element of
control.
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In the decision problems we consider, an agent has to repeatedly choose currently feasible
actions. The agent then observes a reward, which depends both on the chosen action and
the current state of the environment. The state of the environment may depend both
on the agent’s past choices and on choices made by the environment independent of the
agent’s current choice. There are various known approaches to sequential decision making
under uncertainty. In this paper we focus on the so-called experts algorithm approach.
An “expert” (or “oracle”) is simply a particular strategy recommending actions based on
the past history of the process. An experts algorithm is a method that combines the
recommendations of several given “experts” (or “oracles”) into another strategy of choosing
actions (e.g., Littlestone and Warmuth 1994; Auer et al. 2000; Freund and Schapire 1999).
It directs the agent with regard to which expert to follow in the next stage, based on the
past history of actions and rewards.

A popular criterion in the design and analysis of experts algorithms is called minimum
regret (MR). Regret is defined as the difference between the reward that could have been
achieved, given the observed sequence of states of the environment, and what was actually
achieved. An expert selection rule is said to minimize regret if it yields an average reward as
large as that of any single expert, against any fixed sequence of states of the environment.
Indeed, certain experts algorithms, which at each stage choose an expert from a probability
distribution that is related to the reward accumulated by the expert prior to that stage,
have been shown to minimize regret (Auer et al., 2000; Freund and Schapire, 1999).

It is crucial to note that, since the experts are compared on a sequence-by-sequence
basis, the MR criterion ignores the possibility that different experts may induce different
sequences of states in the environment. Thus, MR makes sense only under the assump-
tion that the state of the environment evolves independently from the agent’s choices. As
pointed out in the airline pricing example, this assumption is not satisfied in reactive en-
vironments. Ignoring the potential impact of the agent’s actions on the environment may
lead to substantial loss of performance. This is illustrated with an example involving the
Prisoner’s Dilemma game.

The Prisoner’s Dilemma. In the single-stage Prisoner’s Dilemma (PD) game, each
player can either cooperate (C) or defect (D). Defecting is better than cooperating regardless
of what the opponent does, but it is better for both players if both cooperate than if both
defect. Consider the repeated PD. Suppose the row player consults with a set of experts,
including the “defecting expert,” who recommends defection all the time. Let the strategy
of the column player in the repeated game be fixed. In particular, the column player may be
very patient and cooperative, willing to wait for the row player to become cooperative, but
eventually becoming non-cooperative if the row player does not seem to cooperate. Since
defection is a dominant strategy in the stage game, the defecting expert achieves in each
step a reward as high as any other expert against any sequence of choices of the column
player, so the row player learns with the experts algorithm to defect all the time. This seems
to minimize regret, since for any fixed sequence of actions by the column player, constant
defection is the best response. However, constant defection is not the best response in the
repeated game against many possible strategies of the column player. For instance, the row
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player would regret very much using the experts algorithm if he were told later that the
column player had been playing a strategy such as Tit-for-Tat.1

In this paper, we propose and analyze a new experts method, denoted Exploration-
Exploitation Experts Method (EEE), which is especially designed for learning in reactive
environments. EEE follows experts judiciously, attempting to maximize the long-term av-
erage reward. It differs from previous approaches in at least two ways. First, each time an
expert is selected, it is followed for multiple time stages rather than a single one. Second,
EEE takes into account only the rewards that were actually achieved by an expert in the
stages it was followed, rather than the reward that could have been obtained in any stage.
EEE enjoys the same appealing simplicity of the previous experts algorithms, yet it leads
to a qualitatively different behavior and improved average reward. The effectiveness of
EEE is demonstrated by its performance in the repeated PD game, namely, it is capable of
identifying the opponent’s willingness to cooperate and it induces cooperative behavior.

We provide results about the convergence of several variants of EEE. We develop per-
formance guarantees showing that the method achieves average reward comparable to that
achieved by the best expert. We characterize convergence rates that hold both in ex-
pected value and with high probability. Many learning algorithms can be interpreted as
“exploration-exploitation” methods. Roughly speaking, such algorithms blend choices of ex-
ploration, aimed at acquiring knowledge, and exploitation that capitalizes on accumulated
knowledge to maximize rewards. In particular, some experts algorithms can be interpreted
as alternating between testing all experts and following the ones that achieved best per-
formance in the past. An important aspect of our results is that they provide an explicit
characterization of the tradeoff between exploration and exploitation.

Another contribution of this paper is the introduction of a definition for the long-term
value of an expert. Appropriate notions of value are required to guide the design and
analysis of experts algorithms in reactive environments. In particular, they must capture
the reactions of the environment to the expert’s actions, as well as the fact that any learning
algorithm commits mistakes. We propose a notion of value that satisfies these properties
and characterize how fast EEE learns the value of each expert.

The paper is organized as follows. The method is described in section 2. We analyze
a variant of the method where experts are followed for “phases” comprising an increasing
number of time stages in sections 3 through 6. Convergence rates based on actual expert
performance are presented in section 3. In section 4, we present a notion of the long-
run value of an expert. This definition gives rise to question of how fast EEE learns the
experts’ values, which is answered in section 5. In section 6, we analyze and compare several
exploration schemes. Finally, in section 7 we analyze a different variant of the method where
experts are followed for “phases” with a constant number of time stages.

2. The Exploration-Exploitation Method

The problem we consider in this paper can be described as follows. At each time stage
s = 1, 2, . . ., an agent has to choose actions as ∈ A. At the same time the environment

1. The Tit-for-Tat strategy is to play C in the first stage, and later play in every stage whatever the
opponent played in the preceding stage.
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also “chooses” a state bs ∈ B, and the agent receives a reward R(as, bs). The choices of the
environment may depend on various factors, including the past choices of the agent.

Let Hs denote the set of all histories up to stage s, i.e., the set of all sequences of the
form hs = (a1, b1, . . . , as−1, bs−1). Let H denote the set of all finite histories: H = ∪∞s=1Hs.
Let ∆(A) denote the set of probability distributions over A. A strategy σ for the agent is
a mapping from H to A. It prescribes a (randomized) action σ(hs) at each time t.

We assume that a finite set {1, . . . , r} of experts is given. Each expert e is uniquely
identified with a strategy σe. An experts algorithm provides a rule for deciding, at each
stage s, which expert should be followed. An intuitive and popular experts method found
in the literature is as follows. Denote by Me(s− 1) the average reward achieved by expert
e prior to time stage s2. Then, a reasonable rule is to follow expert e in stage s with a
probability that is proportional to some monotone function of Me(s − 1). In particular,
when this probability is proportional to exp{ηsMe(s − 1)}, for a certain choice of ηs, this
algorithm is known to minimize regret (Auer et al., 2000; Freund and Schapire, 1999).
Specifically, let bs (s = 1, 2, . . .) denote the observed states of the environment up to stage
s, and let σX denote the strategy induced by the experts algorithm. Then we have (Auer
et al., 2000)

s∑
s′=1

E[R(a, bs′) : a ∼ σX(hs′)] ≥ sup
e

1
s

s∑
s′=1

E[R(a, bs′) : a ∼ σe(hs′)]−O

(
|A| ln r

s

)
, (1)

where |A| denotes the cardinality of A and a ∼ σX(hs′) indicates that action a is distributed
according to σX(hs′). The main deficiency of the regret minimization approach is that it
fails to consider the influence of chosen actions of an agent on the future states of the
environment — the inequality (1) holds for any fixed sequence (bs) of states, but does not
account for the fact that different choices of actions by the agent may induce different state
sequences. This subtlety is also missing in the experts algorithm we described above. At
each time stage, the selection of expert is based solely on how well various experts have,
or could have, done up to that point, given the state sequence. There is no notion of
learning how an expert’s actions affect the environment. For instance, in the repeated PD
game described in the introduction, assuming that the opponent is playing Tit-for-Tat, the
algorithm is unable to establish the connection between the opponent’s cooperative moves
and his own.

We present a new experts method that is especially tailored to deal with reactive envi-
ronments. The Exploration-Exploitation Experts method (EEE) follows chosen experts for
multiple stages rather than picking a different expert each stage. A maximal set of consec-
utive stages during which the same expert is followed is called a phase. Phase numbers are
denoted by i. The number of phases during which expert e has been followed is denoted by
Ne, the total number of stages during which expert e has been followed is denoted by Se,
and the average reward from phases in which expert e has been followed is denoted by Me.
The general method is stated as follows.

2. In different variants of the algorithm and depending on what information is available to the agent,
Me(s−1) could be either an estimate of the average reward based on the reward achieved by expert e in
the stages it was followed, or the reward it could have obtained, had it been played in all stages against
the same sequence of states of the environment.
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• Exploration. An exploration phase consists of picking a random expert e (i.e., from
the uniform distribution over {1, . . . , r}), and following e’s recommendations for a
certain number of stages depending on the variant of the method.

• Exploitation. An exploitation phase consists of picking an expert e with maximum
Me, breaking ties at random, and following e’s recommendations for a certain number
of stages depending on the variant of the method.

A general Exploration-Exploitation Experts Method:

1. Initialize Me = Ne = Se = 0 (e = 1, . . . , r) and i = 1.

2. With probability pi, perform an exploration phase, and with probability 1−pi perform
an exploitation phase; denote by ei the expert chosen to be followed and by ni the
number of stages chosen for the current phase.

3. Follow expert ei’s instructions for the next ni stages. Increment Nei = Nei + 1 and
update Sei = Sei + ni. Denote by R̃ the average reward accumulated during the
current phase of ni stages and update

Mei = Mei +
ni

Sei

(R̃−Mei) .

4. Increment i = i + 1 and go to step 2.

Note that two sets of parameters in the general method must be chosen to specify a
particular experts algorithm: the exploration probabilities pi, and the phase lengths ni, for
i = 1, 2, . . ..

Throughout the paper, s will denote a stage number, and i will denote a phase num-
ber. We denote by M1(i), . . . ,Mr(i) the values of the registers M1, . . . ,Mr, respectively,
at the end of phase i. Similarly, we denote by N1(i), . . . , Nr(i) the values of the registers
N1, . . . , Nr, respectively, at the end of phase i. Thus, Me(i) and Ne(i) are, respectively, the
average reward accumulated by expert e and the total number of phases this expert was
followed on or before phase i. We will also let M(s) and M(i) denote, without confusion,
the average reward accumulated by the algorithm in the first s stages or i phases.

In sections 3 through 6, we consider the case where the length of the phase is ni = Nei .
In section 7 we consider the case where ni = L for a fixed L.

3. Performance Bounds Based on Actual Expert Performance

EEE keeps track of the average reward Me(i) achieved by each available expert e. This
average reward represents an estimate of the value of that expert. In this section, we
compare the average reward M(i) achieved by EEE with the averages achieved by the
various experts. We present several bounds characterizing the relationship between M(i)
and Me(i). These bounds are valuable in several ways:

• they provide worst-case guarantees about the performance of EEE;

• they provide a starting point for analyzing the behavior of the algorithm under various
assumptions about the environment;
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• they quantify the relationship between amount of exploration, expressed by the ex-
ploration probabilities pi, and performance loss. In section 5, we present bounds that
quantify the relationship between amount of exploration and the rate at which EEE
learns the value of each expert. Putting both bounds together allows for an explicit
characterization of the tradeoff between exploration and exploitation.

Throughout the paper, we let Ze,j be an indicator variable of the event “phase j is an
exploration phase and expert e is followed,” i.e., Ze,j = 1 if this statement is true, and 0
otherwise. Let Zj =

∑
e Ze,j . Define

Z̄i0,i ≡ E

 i∑
j=i0+1

Zj

 =
i∑

j=i0+1

pi.

Note that Z̄i0,i denotes the expected number of exploration phases between phases i0 and
i.

The first theorem establishes that EEE has performance comparable to that of the best
expert after a finite number of iterations with high probability.

Theorem 1 For all i0, i and ε such that Z̄i0,i ≤ iε2

16
√

ru2 − i0ε
8u , we have

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− ε

)
≤ exp

(
− 1

2i

(
iε2

16
√

ru2
− i0ε

8u
− Z̄i0,i

)2
)

.

We can also characterize the expected difference between the average reward of EEE
and that of the best expert.

Theorem 2 For all i0 ≤ i and ε > 0, we have

E
[
M(i)−max

e
min

i0+1≤j≤i
Me(i)

]
≥ −ε− u

i0(i0 + 1)
i
(

i
r + 1

) − 2u

(
3u + 2ε

ε

)2 Z̄i0,i

i
.

It follows from Theorem 1 that, under certain assumptions on the exploration probabil-
ities, EEE performs at least as well as the expert that did best, asymptotically.

Corollary 3 If

lim
i→∞

Z̄0,i

i
= 0 ,

then

Pr
(

lim inf
s→∞

M(s) ≥ max
e

lim inf
i→∞

Me(i)
)

= 1 . (2)

Although the claim of Corollary 3 seems very close to regret minimization, there is an
essential difference in that we compare the average reward of our algorithm with the average
reward actually achieved by each expert in the stages when it was played, as opposed to the
estimated average reward based on the whole sequence of states of the environment.

In Theorems 1 and 2 the average reward M(i) achieved by EEE until phase i is com-
pared with maxe mini0+1≤j≤i Me(j). Hence an expert is considered ‘good’ at phase i only if
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L R
U
D

v v

0 R

Table 1: Row player rewards for Example 1

its average performance has been consistently good since earlier phases. This may be coun-
terintuitive and leads to a striking difference between the results in this section and more
traditional no-regret properties such as (1). Indeed, no-regret analysis usually involves a
comparison between average rewards M(i) and Me(i) experienced by the experts algorithm
and each of the experts in the same phase (or stage). A simple counterexample shows that
the bound (2) cannot be improved into a guarantee that M(i) will eventually approach
maxe Me(i).

Example 1 Consider a repeated game whose row player’s payoffs are given in Table 1, with
0 < v < R. Suppose that there are two experts: AU and AD, corresponding to the pure
strategies that always play action U and always play action D, respectively. Consider the
following strategy for the opponent, where 0 < ε < R− v and γ = 1

1.1

√
(R− v − ε)/R :

• Start by playing L.

• Switch from playing L to playing R when ND(i) ≤ γNU (i) and MD(i) < v.

• Switch from playing R to playing L when MD(i) ≥ v + ε.

We will show that M(i) ≤ MD(i)− ε/2 infinitely many times.
The first observation is that the opponent alternates infinitely many times between play-

ing L and playing R. Suppose instead that it plays L forever, starting at some phase i0. Then
MD(i) < MU (i) = v for all large enough i. In this case, expert D is followed only during
exploration phases, and ND(i) ≤ γNU (i) for some sufficiently large phase number i, with
probability one. After this phase, the opponent must switch to playing R, and we conclude
that it cannot play L forever. Similarly the opponent does not play R forever, because after
a sufficiently long sequence of R, necessarily, MD(i) > v + ε, and the opponent must switch
to playing L.

Denote by I1 < I2 < . . . the phases when the opponent switches from L to R and by
J1 < J2 < . . . the phases when it switches from R to L. Note that I1 < J1 < I2 < J2 < . . ..
We will show that for all sufficiently large k, ND(Jk) ≤ NU (Jk). Note that MD(Jk) ≥ v + ε
and MD(Jk − 1) < v, from the definition of Jk. The total reward at the end of phase Jk is
given by

0.5MD(Ik)ND(Ik)(ND(Ik) + 1) + 0.5R [ND(Jk)(ND(Jk) + 1)−ND(Ik)(ND(Ik) + 1)] .

We conclude that ND(Jk) is the least n such that

MD(Ik)ND(Ik)(ND(Ik) + 1) + R [n(n + 1)−ND(Ik)(ND(Ik) + 1)] ≥ (v + ε)n(n + 1) .
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We first show that ND(Jk) ≤ n̄ =
√

R
R−v−ε (ND(Ik) + 1), as follows.

n̄ =

√
R

R− v − ε
(ND(Ik) + 1)

⇒ n̄2 =
R

R− v − ε
(ND(Ik) + 1)2

⇒ n̄(n̄ + 1) ≥ R

R− v − ε
ND(Ik)(ND(Ik) + 1)

⇒ (R− v − ε)n̄(n̄ + 1) ≥ RND(Ik)(ND(Ik) + 1)
⇒ MD(Ik)ND(Ik)(ND(Ik) + 1) + R [n̄(n̄ + 1)−ND(Ik)(ND(Ik) + 1)]

≥ (v + ε)n̄(n̄ + 1)
⇒ ND(Jk) ≤ n̄ .

We conclude that, for all sufficiently large k,

ND(Jk) ≤
√

R

R− v − ε
· (ND(Ik) + 1)

≤
√

R

R− v − ε
· (γNU (Ik) + 1)

≤ NU (Ik)/1.1 +

√
R

R− v − ε

≤ NU (Jk)/1.1 +

√
R

R− v − ε
≤ NU (Jk).

The fourth inequality follows from Ik < Jk, so that NU (Ik) ≤ NU (Jk).
We conclude that, for all large enough k, ND(Jk) ≤ NU (Jk) and MD(Jk) ≥ v + ε =

MU (Jk) + ε. Hence

M(Jk) ≤ MU (Jk) + MD(Jk)
2

≤ MD(Jk)− ε/2,

and M(i) < MD(i)− ε/2 infinitely many times.

4. The Value of an Expert

Theorems 1 and 2 and Corollary 3 are statements about the ability of EEE to exploit —
provided that exploration is not too large, EEE achieves expected reward that is close to
the best average reward observed for any expert. Another important aspect is the ability of
EEE to explore and learn the potential value of each expert. The following example shows
that the bounds in the previous section may be vacuous without proper consideration of
the behavior of the average rewards Me(i).

Example 2 Suppose that pi = 0 for all i and R(a, b) > 0 for all a and b. It is easy to show
that EEE will choose the same expert in every phase. Indeed, let e1 be the expert chosen at
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H T
H
T

−1 1
1 −1

Table 2: Row player rewards for Example 3

phase 1; then we have M(1) = Me1(1) > Me(1) = 0 for all e 6= e1, and expert e1 is selected
again at phase 2. We can show by induction that the same holds for every phase:

M(i) = Me1(i) > Me(i) = 0 ∀i, ∀e 6= e1.

In this case we have the apparently stronger (but meaningless) bound on M(i):

M(i) = max
e

Me(i) (i = 1, 2, . . .) .

The main issue in the previous example is that Me(i) is not representative of the actual
value of each expert e. In order to obtain a more complete understanding of the behavior
of EEE, it is necessary to characterize how it explores and learns the value of each expert
through the estimates Me(i). In this and the next section, we will formally define the value
of an expert, and provide results characterizing how fast EEE is able to learn those values,
as a function of the amount of exploration it performs.

We start with a definition of a “learnable value” of an expert, in reactive environments.
In the regret minimization setting, the value concept, which is used for comparing experts, is
the average reward that the expert could have achieved against the (fixed) observed sequence
of states of the environment. In reactive environments, this definition is not appropriate. A
more suitable definition for the value of an expert is the expected average reward it could
achieve, if it were followed exclusively in all time stages. However, it is easy to show that it
is impossible for a learning algorithm to guarantee, for all reactive environments, a reward
that is close to what the best available expert could have achieved, if played exclusively.
The following example illustrates this impossibility.

Example 3 (Password Matching Pennies) In the Matching Pennies (MP) game, the
row and column players have to choose either H (“Heads”) or T (“Tails”). If the choices
match, the row player loses 1; otherwise, he wins 1. Consider the following password
strategy for the column player in the repeated MP game:

Adversary: Fix a positive integer s and a string σs ∈ {H,T}s. In each of the first s
stages, play the 50:50 mixed strategy. In each of the stages s + 1, s + 2, . . . , if the sequence
of choices of the player during the first s stages coincided with the string σs, then play T ;
otherwise, play the 50:50 mixed strategy.

Suppose that the row player is using an experts algorithm, and each available expert e
corresponds to a strategy of the form:

Expert: Fix a string σe ∈ {H,T}s. During the first s stages play according to σe. In
each of the stages s + 1, s + 2, . . . , play H.

Suppose that an expert e∗ with σe∗ = σs is available. Then, in order for an experts
algorithm to achieve at least the reward of e∗, it needs to precisely follow the string σs
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during the first s stages. Of course, without knowing what σs is, the algorithm cannot play
it with probability one, nor can it learn anything about it during the play.

The password MP example illustrates the need for a refined notion of the value of
an expert. An algorithm that attempts to learn what the best expert would achieve if
followed exclusively cannot avoid committing fatal “mistakes.” As demonstrated by the
MP example, in certain environments, any reasonable learning algorithm must commit
such fatal mistakes. Hence, such mistakes cannot, in general, be considered necessarily a
weakness of the algorithm. A more realistic notion of the value of an expert is desirable for
an adequate assessment and comparison of learning algorithms. Bearing this in mind, we
introduce the notion of τ -value of an expert. The τ -value is defined with respect to the law
π for the evolution of states in the environment. π is a mapping from the set of histories H
to a probability distribution over the set of states B.

Definition 4 Given an expert e and an environment π, denote for any stage s0, any possible
history hs0 at stage s0 and any number of stages s,

F (s0, hs0 , s) = E
[

1
s

∑s0+s
s=s0+1R(ae(s), b(s)) : ae(s) ∼ σe(hs), b(s) ∼ π(hs)

]
and let

G(s) = inf{F (s0, hs0 , s) : s0, hs0} .

The τ -value µτ
e of expert e with respect to the environment π is defined as

µτ
e = sup

c
inf
s
{G(s) + c/sτ} (3)

In words, a value µ is achievable by expert e if the expert can secure an expected average
reward during the s stages between stage s0 and stage s0 + s that is at least as much as

E
[

1
s

∑s0+s
s=s0+1R(ae(s), b(s)) : ae(s) ∼ σe(hs), b(s) ∼ π(hs)

]
≥ µ− cτ

sτ
,

for some constant cτ , regardless of the history prior to stage s0. Note that, asymptotically,
the expert is guaranteed to achieve at least as much as the τ -value.

In a previous version of this paper (de Farias and Megiddo, 2004), we introduced the
notion of flexibility as a way of reasoning about the value of an expert and when it can
be learned. We can view the flexibility assumption and previous results as special cases of
the results of this paper and of the definition of a τ -value. We now introduce the following
definition of flexibility, which holds under weaker conditions than the original definition
given in (de Farias and Megiddo, 2004):

Definition 5 (Flexibility)

(i) An environment with state evolution law π(s) is said to be flexible with respect to
expert e if there exist constants µe, τ > 0.25 and c such that for every stage s0, every
possible history hs0 at stage s0 and any number of stages s,∣∣ E

[
1
s

∑s0+s
s=s0+1R(ae(s), b(s))− µe : ae(s) ∼ σe(hs), b(s) ∼ π(hs)

] ∣∣ ≤ c

sτ
.
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(ii) Flexibility with respect to a set of experts is defined as flexibility with respect to every
member of the set.

In words, the expected average reward during the s stages between stage s0 and stage s0 +s
converges (as s tends to infinity) to a limit that does not depend on the history of the play
prior to stage s0. The interest in flexibility arises from the fact that, if the environment
is flexible with respect to an expert, the τ -value for that expert actually coincides with
the expected average reward that could be achieved by the expert, if it had been followed
exclusively. Although as we have seen with the password MP example this does not hold
in general, certain classes of strategies lead to flexibility.

Example 4 (: Finite Automata) In the literature on “bounded rationality”, agents are
often modelled as finite automata. A probabilistic automaton strategy (PAS) is specified
by a tuple A = 〈M,O,A, σ, P 〉, where M = {1, . . . ,m} is the finite set of internal states
of the automaton, A is the set of possible actions, O is the set of possible outcomes, σi(a)
is the probability of choosing action a while in state i (i = 1, . . . ,m) and P o = (P o

ij)
(1 ≤ i, j ≤ m) is the matrix of state transition probabilities, given an outcome o ∈ O. Thus,
at any time stage, the automaton picks an action from a probability distribution associated
with its current state and transitions into a new state, according to a probability distribution
which depends on action of the agent. If both the environment and an expert follow PASs,
then a Markov chain is induced over the set of pairs of the respective internal states. If this
Markov chain has a single class of recurrent states, then the flexibility assumption holds.
Note that we do not limit the size of the automata; a larger set of internal states implies
a slower convergence of the average rewards, but does not affect the asymptotic results for
EEE.

Example 5 (: Bounded dependence on the history) The number of possible histo-
ries at stage s grows exponentially with s. Thus, it is reasonable to assume that the choice
of action would be based not on the exact detail of the history but rather on the empirical
distribution of past actions or patterns of actions. If the environment is believed not to be
stationary, then discounting previous observations by recency may be sensible. For instance,
if the frequency of each state b of the environment is relevant, the agent might condition
his choice at stage s + 1 on the quantities τb =

∑s
s′=1 βs−s′δbbs where β < 1 and δ is the

Kronecker delta. In this case, only actions bs at stages s that are relatively recent have a
significant impact on τb. Therefore strategies based on τb should exhibit behavior similar to
that of bounded history, and lead to flexibility in the same circumstances as the latter.

5. Performance Bounds Based on Expected Expert Performance

In this section we present a theorem characterizing how fast EEE learns the τ -value of each
expert. Combining this result with Theorem 1, we can also derive the rate at which the
average reward achieved by EEE approaches the τ -value of the best expert.

Theorem 6 Denote τ̄ = min(τ, 1). For all ε > 0 and i, if

4r

3

(
4cτ

ε(2− τ̄)

)1/τ̄

≤ Z̄0,i ,

11



then

Pr
(

inf
j≥i

Me(j) < µτ
e − ε

)
≤ 33u2

ε2
exp

(
− ε2Z̄0,i

43u2r

)
.

Corollary 7 For all ε > 0, i0 and i, if

1.
4r

3

(
12cτ

ε(2− τ̄)

)1/τ̄

≤ Z̄0,i0 , and

2. Z̄i0,i ≤
iε2

36
√

ru2
− i0ε

12u
,

then

Pr
(
M(i) ≤ max

e
µτ

e − ε
)
≤ 297u2

ε2
exp

(
− ε2Z̄0,i0

387u2r

)
+exp

(
− 1

2i

(
iε2

36
√

ru2
− i0ε

12u
− Z̄i0,i

)2
)

.

(4)

Corollary 7 explicitly quantifies the tradeoff between exploration and exploitation. In par-
ticular, we would like to choose exploration probabilities pj such that Z̄0,i0 is large enough
to make the first term in the bound small, and Z̄i0,i is as small as possible. In Section 6,
we analyze several exploration schemes and their effect on the convergence rate of EEE.

We can also derive from Theorems 1 and 6 asymptotic guarantees for EEE.

Corollary 8
If

lim
i→∞

Z̄0,i = ∞ ,

then

Pr
(

lim inf
i→∞

Me(i) ≥ µτ
e

)
= 1 .

The following is an immediate result from Corollaries 3 and 8:

Corollary 9
If

lim
i→∞

Z̄0,i = ∞

and

lim
i→∞

Z̄0,i

i
= 0 ,

then

Pr
(

lim inf
i→∞

M(i) ≥ max
e

µτ
e

)
= 1 .

Note that all results presented thus far are stated in terms of phases of the algorithm.
Since the ratio between the number of stages in phase i and the total number of phases up
to phase i decreases to zero at a rate of at least 1/i, comparisons between average rewards
achieved at the end of each phase can easily be extended to average rewards at any time
stage.

12



Example 6 (: Repeated Prisoner’s Dilemma revisited) Consider playing the repeated
PD game against an opponent who plays Tit-for-Tat, and suppose that “Always defect” (AD)
and “Always cooperate” (AC) are in the set of experts. Thus, AC induces cooperation in
every stage and has a greater τ -value than AD, which induces defection in every stage of
the game except for the first one. Indeed, the τ -value of AC corresponds to the highest
average reward achievable by any strategy against Tit-for-Tat, and Corollary 9 implies that
EEE achieves this reward and induces cooperation. By contrast, as mentioned in the intro-
duction, in order to minimize regret, the standard experts algorithm must play D in almost
every stage of the game, and therefore achieves a lower reward.

6. Exploration Schemes

The results of the previous sections hold under generic choices of the exploration probabili-
ties pi. In particular, as long as there is infinite exploration and the fraction of exploration
phases converges to zero, EEE is able to learn the value of each expert and approach the
performance of the best expert. However, different exploration schemes satisfying these
properties may lead to substantially different behavior for EEE. In this section, we analyze
and compare several exploration schemes from the standpoint of speed of convergence and
adaptability.

We apply Corollary 7 to derive an explicit measure for the speed of convergence of EEE
as follows. We fix tolerance parameters ε and δ and consider the number of phases i required
to ensure that:

Pr
(
M(i) ≤ max

e
µτ

e − ε
)
≤ β. (5)

We use the upper bound given in Corollary 7 to compare exploration schemes. Indeed,
define

U(i0, i) =
297u2

ε2
exp

(
− ε2Z̄0,i0

387u2r

)
+ exp

(
− 1

2i

[
max

(
iε2

36
√

ru2
− i0ε

12u
− Z̄i0,i, 0

)]2
)

.

Then, provided that the conditions of Corollary 7 are satisfied, we have Pr (M(i) ≤ maxe µτ
e − ε) ≤

U(i0, i). For clarity of exposition, we will focus on the case of τ ≥ 0.5. Lower values of τ
lead to different convergence rates that can be determined via similar analysis.

6.1 Explore-then-Exploit

We first consider an exploration scheme that minimizes U(i0, i). In this scheme, all explo-
ration takes place before any exploitation. Indeed, according to expression (4), for any fixed
number of iterations i, it is optimal to let Z̄0,i0 = i0 (i.e., pj = 1 for all j ≤ i0) and Z̄i0,i = 0
(i.e., pj = 0 for all j > i0).

Theorem 10 In the explore-than-exploit scheme, for all τ ≥ 0.5 the smallest number of
phases i such that Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β satisfies

i = Ω
(

u3r
√

r

ε3
log

u2

ε2β

)
13



and

i = O

(
max

[
u3r

√
r

ε3
log

u2

ε2β
,
u4r

ε4
log

1
β

])
.

Note that the number of phases grows polynomially in 1/ε, u, and r. More precisely, it
is on the order of O(r1.5), where r is the total number of experts.

The main drawback of explore-then-exploit is its inability to adapt to changes in the
environment — since all exploration occurs first, any change that occurs after exploration
has ended cannot be learned. Moreover, the choice of the last exploration phase i0 depends
on parameters of the problem that may not be observable. Finally, it requires fixing i, β
and ε a priori, and can only achieve optimality within these tolerance parameters.

6.2 Polynomially Decreasing Exploration

In (de Farias and Megiddo, 2004), we have provided asymptotic results equivalent to Corol-
laries 3 and 9 when pj = 1/j. With this choice, the total number of phases required to
satisfy U(i0, i) ≤ β grows exponentially in 1/ε, u, and r.

Theorem 11 If pj = 1/j, for all τ ≥ 0.5 the smallest number of phases i such that
Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β satisfies

i = Ω
(

exp
(

387u2r

ε2
log

297u2

ε2β
− 1
))

.

An alternative scheme, leading to polynomial complexity, can be developed by choosing
pj = j−α, for some α ∈ (0, 1).

Theorem 12 If pj = 1/jα and α < 1, for all τ ≥ 0.5 the smallest number of phases i such
that Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β satisfies

i = Ω

(
max

[
u

3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(
log

u2

ε2β

) 1
1−α

,
u

2
α r

1
2α

ε
2
α

])
,

and

i = O

(
max

[
u

3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(
log

u2

ε2β

) 1
1−α

,
u

2
α r

1
2α

ε
2
α

,
ru4

ε4
log

1
β

])
.

6.3 Constant-Rate Exploration

The previous exploration schemes have the property that the frequency of exploration van-
ishes as the number of phases grows. This property is required in order to achieve the
asymptotic optimality results described in Corollaries 3 and 9. However, it also makes EEE
increasingly slower in tracking changes in the environment. An alternative approach is to
use a constant frequency η ∈ (0, 1) of exploration, i.e., pj = η. Constant-rate exploration
does not satisfy the conditions of Corollaries 3 and 9. However, for any given tolerance level
ε, we can choose η so that

Pr
(

lim inf
i→∞

M(i) ≥ max
e

µτ
e − ε

)
= 1 .

14



Theorem 13 Suppose that

pj =
ε2

16
√

ru2
(j = 1, 2, . . .).

Then for all τ ≥ 0.5 the smallest number of phases i such that Pr (M(i) ≤ maxe µτ
e − ε) ≤

U(i0, i) ≤ β satisfies

i = O

(
r2u5

ε5
log

u2

ε2β

)
.

Constant-rate exploration yields complexity results only slightly worse than the explore-
then-exploit scheme. We can also compare it with the polynomially decreasing exploration
scheme. If α is chosen to minimize the dependence on u or ε, we have

i = Ω
(

u4.56r2.28

ε4.56

)
.

If α is chosen to minimize the dependence on the number of experts r, we have

i = Ω
(

u7.46r1.86

ε7.46

)
.

Hence polynomially decreasing exploration does not offer significant improvement in con-
vergence rate over constant-rate exploration.

7. Constant Phase Lengths

So far, we have only considered versions of EEE where the number of stages per phase
increases linearly as a function of the number of phases during which the same expert has
been followed previously. This growth was used to ensure that, as long as the environment
exhibits some regularity, that regularity is captured by the algorithm. For instance, if the
environment exhibits cyclic behavior, then EEE correctly learns the long-term value of each
expert, regardless of the lengths of the cycles. However, for practical purposes, it may be
necessary to slow down the growth of phase lengths in order to achieve good performance
in reasonable time. In this section, we consider the possibility of a constant number L of
stages in each phase. Following the same steps that we took to prove Theorems 1, 2 and 6,
we can derive the following results:

Theorem 14 Suppose EEE is implemented with phases of fixed length L. Then for all i0,
i and ε such that Z̄i0,i ≤ iε2

8u2 − i0ε
4u , we have

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− ε

)
≤ exp

(
− 1

2i

(
iε2

8u2
− i0ε

4u
− Z̄i0,i

)2
)

.

We can also characterize the expected difference between the average reward of EEE
and that of the best expert.

15



Theorem 15 If EEE is implemented with phases of fixed length L, then for all i0 ≤ i and
ε > 0,

E
[
M(i)−max

e
min

i0+1≤j≤i
Me(i)

]
≥ −ε− u

i0
i
− 2u2

ε

Z̄i0,i

i
.

Theorem 16 If EEE is implemented with phases of fixed length L, then for all ε > 0,

Pr
(

inf
j≥i

Me(j) < µτ
e −

cτ

Lτ
− ε

)
≤ 3u2

ε2
exp

(
− Z̄0,i0ε

2

8ru2

)
.

An important qualitative difference between fixed-length phases and increasing-length
ones is the absence of the number of experts r in the bound given in Theorem 14. This
implies that, in the explore-then-exploit or constant-rate exploration schemes, the algorithm
requires a number of phases that grows only linearly with r to ensure that

Pr(M(i) ≤ max
e

M τ
e − c/Lτ − ε) ≤ β .

Note, however, that we cannot ensure performance better than maxe µτ
e − cτ/Lτ .

Appendix A. Proof of Results for Linearly Increasing Phases

A.1 Preliminary Analysis

We first define the following random variables with respect to a given pair i0 < i:

V = max
e

min
i0+1≤j≤i

Me(j),

E1 = {e : max
i0+1≤j≤i

Me(j) < V }, (6)

E2 = {e : max
i0+1≤j≤i

Me(j) ≥ V,Me(i) < V − ε}, (7)

and

je =
{

i0 if e ∈ E1

max{j : j ≤ i,Me(j) ≥ V } if e ∈ E2 .

Throughout the proofs, we also make use of a function δ(·) over the set of logical propo-
sitions defined in the following way:

δ(x) =
{ 1 if x is true

0 if x is false .

The first lemma shows that, if the average reward of an expert drops considerably between
any two phases i and i′, then the expert must have been followed for several phases during
this interval.

Lemma 17 For every ε > 0, any expert e and any two phases i < i′, if

Me(i′) ≤ Me(i)− ε ,

then
Ne(i′)−Ne(i) ≥

Ne(i)ε
3u

.
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Proof Fix ε > 0, e and i < i′. For simplicity, denote

N = Ne(i),

and
v = Me(i).

Let I0 = i, and i < I1 < Ik < . . . < Ik = i′, denote the phases when expert e is followed
between phases i and i′. It follows that Ne(Ij) = N + j . Since all rewards are nonnegative,
we have

Me(Ij) ≥ Me(Ij−1)
(N + j − 1)(N + j)
(N + j)(N + j + 1)

.

A simple induction argument yields

Me(Ik) ≥ v
N(N + 1)

(N + k)(N + k + 1)
. (8)

By hypothesis, we also have
v − ε ≥ Me(Ik) . (9)

Combining (8) and (9) and rearranging terms, we conclude that k must satisfy

k2 + k (2N + 1)− ε

v − ε
N(N + 1) ≥ 0 . (10)

Let k̄ = εN/3u. Then,

k̄2 + k̄(2N + 1) − ε

v − ε
N(N + 1) ≤(a) k̄2 + k̄(2N + 1)− ε

u
N(N + 1)

=
( ε

u

)2 N2

9
+

ε

u
· N(2N + 1)

3
− ε

u
N(N + 1)

≤(b) ε

u
·N
(

N

9
+

2N + 1
3

− (N + 1)
)
≤ 0 .

Inequality (a) follows from v ≤ u, and inequality (b) follows from ε ≤ u, which holds without
loss of generality since all rewards are between 0 and u . Since the left-hand side of (10) is
an increasing function on k ≥ 0, we conclude that k ≥ k̄ for k that satisfies (10), and the
lemma follows. �

The next lemma establishes a lower bound on the total number of stages played up to
phase i.

Lemma 18 For every phase i, we have

i(i/r + 1) ≤
r∑

e=1

Ne(i)(Ne(i) + 1) ≤ i(i + 1) .

17



Proof At each phase i, Ne(i) must satisfy∑
e

Ne(i) = i.

Therefore,
∑r

e=1 Ne(i)(Ne(i) + 1) is bounded from below by the value of the following
quadratic minimization problem:

Minimize
∑

e

xe(xe + 1)

subject to
∑

e

xe = i

x ≥ 0 .

Convexity and symmetry imply that the symmetric solution xe = i/r (for every e) is optimal.
On the other hand,

r∑
e=1

Ne(i)(Ne(i) + 1) ≤
r∑

e=1

Ne(i)

(
r∑

e=1

Ne(i) + 1

)
= i(i + 1) .

�

A.2 Proof of Theorem 1

Theorem 1 For all i0, i and ε such that Z̄i0,i ≤ iε2

16
√

ru2 − i0ε
8u , we have

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− ε

)
≤ exp

(
− 1

2i

(
iε2

16
√

ru2
− i0ε

8u
− Z̄i0,i

)2
)

.

Proof For simplicity, let
γ =

ε√
ru

.

We first develop an upper bound on

Pr

(∑
e

Ne(i)δ(Me(i) < V − ε) ≥ γi

)
.

We have

Pr

(∑
e

Ne(i)δ(Me(i) < V − ε) ≥ γi

)
≤ Pr

 ∑
e∈E1∪E2

Ne(i) ≥ γi


= Pr

 ∑
e∈E1∪E2

[Ne(je) + (Ne(i)−Ne(je))] ≥ γi

 .

18



Note that, for all e ∈ E1 ∪ E2, we have

Ne(i)−Ne(je) =
i∑

j=je+1

Ze,j .

Moreover, for all e ∈ E2, since Me(je) ≥ V and Me(i) < V − ε, by Lemma 17 we conclude
that

Ne(je) ≤
3u

ε
[Ne(i)−Ne(je)] =

3u

ε

i∑
j=je+1

Ze,j . (11)

Hence

Pr

 ∑
e∈E1∪E2

[Ne(je) + (Ne(i)−Ne(je))] ≥ γi


= Pr

∑
e∈E1

Ne(i0) +
i∑

j=i0+1

Ze,j

+
∑
e∈E2

Ne(je) +
i∑

j=je+1

Ze,j

 ≥ γi


≤ Pr

i0 +
∑
e∈E1

i∑
j=i0+1

Ze,j +
(

3u

ε
+ 1
)∑

e∈E2

i∑
j=je+1

Ze,j ≥ γi


≤ Pr

3u + ε

ε

∑
e∈E1∪E2

i∑
j=i0+1

Ze,j ≥ γi− i0


≤ Pr

 i∑
j=i0+1

Zj ≥
ε(γi− i0)

3u + ε


≤ exp

(
− 1

2(i− i0)

(
ε(γi− i0)

3u + ε
− Z̄i0,i

)2
)

.

The first inequality follows from
∑

e∈E1 Ne(i0) ≤ i0 and (11). The last step is an application
of Hoeffding’s inequality (Hoeffding, 1963).

Now, suppose that ∑
e

Ne(i)δ(Me(i) < V − ε) ≤ γi.

Then following the same reasoning of Lemma 18, we conclude that∑
e

Ne(i)(Ne(i) + 1)δ(Me(i) < V − ε) ≤ γi(γi + 1),

and we have

M(i) =
∑

e Ne(i)(Ne(i) + 1)Me(i)∑
e Ne(i)(Ne(i) + 1)

≥ V − ε− (V − ε)
∑

e Ne(i)(Ne(i) + 1)δ(Me(i) < V − ε)∑
e Ne(i)(Ne(i) + 1)
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≥ V − ε− (V − ε)
γi(γi + 1)
i(i/r + 1)

≥ V − ε− (V − ε) max(γ2r, γ)

= V − ε− (V − ε) max
(

ε2

u2
,

ε

u
√

r

)
= V − ε− (V − ε)

ε

u
≥ V − 2ε.

In the second inequality, we have used the lower bound on
∑

e Ne(i)(Ne(i) + 1) given in
Lemma 18.

We conclude that

Pr (M(i) ≤ V − 2ε) ≤ Pr

(∑
e

Ne(i)δ(Me(i) < V − ε) ≤ γi

)

≤ exp

(
− 1

2i

(
ε(γi− i0)

3u + ε
− Z̄i0,i

)2
)

.

�

A.3 Proof of Theorem 2

Theorem 2 For all i0 ≤ i and ε > 0, we have

E
[
M(i)−max

e
min

i0+1≤j≤i
Me(i)

]
≥ −ε− u

i0(i0 + 1)
i
(

i
r + 1

) − 2u

(
3u + 2ε

ε

)2 Z̄i0,i

i
.

Proof We have

E

[
M(i)−max

e
min

i0+1≤j≤i
Me(i)

]
= E

[∑
e Ne(i)(Ne(i) + 1)Me(i)∑

e Ne(i)(Ne(i) + 1)
− V

]

≥ E

[
V − ε− (V − ε)

∑
e Ne(i)(Ne(i) + 1)δ(Me(i) < V − ε)

i
(

i
r + 1

) − V

]

≥ −ε− u
E [
∑

e Ne(i)(Ne(i) + 1)δ(Me(i) < V − ε)]
i
(

i
r + 1

) . (12)

By the definitions of E1 and E2, (see (6) and (7)),

E

[∑
e

Ne(i)(Ne(i) + 1)δ(Me(i) < V − ε)

]

≤ E

 ∑
e∈E1∪E2

Ne(je) +
i∑

j=je+1

Ze,j

Ne(je) +
i∑

j=je+1

Ze,j + 1

 . (13)
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Note that

E

∑
e∈E1

Ne(je)(Ne(je) + 1)

 = E

∑
e∈E1

Ne(i0)(Ne(i0) + 1)

 ≤ i0(i0 + 1) . (14)

The inequality follows from Lemma 18. Moreover,

E

∑
e∈E1

Ne(je)
i∑

j=je+1

Ze,j

 = E

∑
e∈E1

Ne(i0)
i∑

j=i0+1

Ze,j


≤ E

∑
e

Ne(i0)
i∑

j=i0+1

Ze,j


= E

[∑
e

Ne(i0)

]
·E

 i∑
j=i0+1

Z1,j


≤ i0

r
Z̄i0,i .

(15)

For all e ∈ E2, by Lemma 17 we have

Ne(i)−Ne(je) ≥
εNe(je)

3u

so that

Ne(je) ≤
3u

ε

i∑
j=je+1

Ze,j ,

and

E

∑
e∈E2

Ne(je) +
i∑

j=je+1

Ze,j

Ne(je) +
i∑

j=je+1

Ze,j + 1


≤ E

∑
e∈E2

3u + ε

ε

i∑
j=je+1

Ze,j

3u + ε

ε

i∑
j=je+1

Ze,j + 1

 .

(16)

Finally, for every expert e,

E

 i∑
j=i0+1

Ze,j

2 =
i∑

j=i0+1

E
[
Z2

e,j

]
+

i∑
j=i0+1

i∑
k=i0+1,k 6=j

E [Ze,jZe,k]

=
i∑

j=i0+1

E [Ze,j ] +
i∑

j=i0+1

E [Ze,j ]
i∑

k=i0+1,k 6=j

E [Ze,k]

≤
i∑

j=i0+1

E [Ze,j ] +
i∑

j=i0+1

E [Ze,j ]
i∑

k=i0+1

E [Ze,k]

=
1
r
Z̄i0,i +

1
r2

Z̄2
i0,i . (17)
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From (13), (14), (15),(16) and (17) we conclude that

E

[∑
e

Ne(i)(Ne(i) + 1)δ(Me(i) < V − ε)

]

≤ E

∑
e∈E1

Ne(i0)(Ne(i0 + 1)

+ 2E

∑
e∈E1

Ne(i0)
i∑

j=i+1

Ze,j


+ E

∑
e∈E1

i∑
j=i0+1

Ze,j

 i∑
j=i0+1

Ze,j + 1


+ E

∑
e∈E2

i∑
j=i0+1

3u + ε

ε
Ze,j

 i∑
j=i0+1

3u + ε

ε
Ze,j + 1


≤ i0(i0 + 1) +

2i0
r

Z̄i0,i +
3u + ε

ε
·E

∑
e

i∑
j=i0+1

Ze,j


+

(3u + ε)2

ε2
·E

∑
e

 i∑
j=i0+1

Ze,j

2
≤ i0(i0 + 1) +

2i0
r

Z̄i0,i +
3u + ε

ε
Z̄i0,i

+
(3u + ε)2

ε2

(
Z̄i0,i +

1
r
Z̄2

i0,i

)
≤ i0(i0 + 1) +

1
r

(
3u + ε

ε

)2

(i0 + Z̄i0,i)Z̄i0,i +
(

3u + 2ε

ε

)2

Z̄i0,i . (18)

It follows from (12) and (18) that

E

[
M(i)−max

e
min

i0+1≤j≤i
Me(j)

]

≥− ε− u
i0(i0 + 1) + 1

r

(
3u+ε

ε

)2 (i0 + Z̄i0,i)Z̄i0,i +
(

3u+2ε
ε

)2
Z̄i0,i

i
(

i
r + 1

)
≥− ε− u

i0(i0 + 1)
i
(

i
r + 1

) − u

(
3u + ε

ε

)2 i
r Z̄i0,i

i
(

i
r + 1

) − u

(
3u + 2ε

ε

)2 Z̄i0,i

i

≥− ε− u
i0(i0 + 1)
i
(

i
r + 1

) − 2u

(
3u + 2ε

ε

)2 Z̄i0,i

i
.

�
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A.4 Proof of Corollary 3

Corollary 3 If Z̄0,i

i converges to zero, we have

Pr
(

lim inf
s→∞

M(s) ≥ max
e

lim inf
i→∞

Me(i)
)

= 1 . (19)

Proof Let ε > 0 and i0 = iε/(2
√

ru). From Theorem 1,

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− 2ε

)
≤ exp

(
− 1

2(i− i0)

(
ε(iε− i0

√
ru)

3
√

ru2 +
√

ruε
− Z̄i0,i

)2
)

≤ exp

(
− 1

2(i− i0)

(
ε2i

6
√

ru2 + 2
√

ruε
− Z̄i0,i

)2
)

≤ exp

(
− i

2

(
ε2

6
√

ru2 + 2
√

ruε
− Z̄i0,i

i

)2
)

.

Since limi→∞ Z̄i0,i/i = 0, it follows that
∞∑
i=1

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− 2ε

)
< ∞,

and by the Borel-Cantelli Lemma (Feller, 1971), with probability 1 there is a (random)
phase I0 < ∞ such that

M(i) ≥ max
e

min
i0+1≤j≤i

Me(j)− 2ε

for all i ≥ I0. Moreover, with probability 1 there is also a (random) phase I1 < ∞ such
that, for all experts e,

min
i0+1≤j≤i

Me(j) ≥ lim inf
i′→∞

Me(i′)− ε,

for all i ≥ I1. We conclude that, with probability one,

M(i) ≥ max
e

lim inf
i′→∞

Me(i′)− 3ε,

for all i ≥ max(I0, I1). Since ε is arbitrary, the corollary follows. �

A.5 Proof of Theorem 6

Theorem 6 Let τ̄ = min(τ, 1). For all ε > 0 and i such that

4r

3

(
4cτ

ε(2− τ̄)

)1/τ̄

≤ Z̄0,i,

we have

Pr
(

inf
j≥i

Me(j) < µτ
e − ε

)
≤ 33u2

ε2
exp

(
− ε2Z̄0,i

43u2r

)
.

We will start with two auxiliary lemmas.
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Lemma 19 For all k ≤ Z̄0,i/r, we have

Pr (Ne(i) < k) ≤ exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]
.

Proof Recall the definition of Ze,i. Then

E

 i∑
j=1

Ze,j

 =
Z̄0,i

r
.

Now note that

Ne(i) ≥
i∑

j=1

Ze,j .

It follows that

Pr (Ne(i) < k) ≤ Pr

 i∑
j=1

Ze,j < k


≤ exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]
.

The second inequality is an application of the multiplicative Chernoff bound (Chernoff,
1952) �

Lemma 20 Denote by I1, I2, . . . the phases during which expert e is followed, and denote
τ̄ = min(τ, 1). For all ε > 0 and k ≥ (4cτ/(ε(2− τ̄)))1/τ̄ ,

Pr (Me(Ik) < µτ
e − ε) ≤ exp

(
− kε2

32u2

)
. (20)

Proof Let hk denote the history before phase Ik. Let R̃k denote the average reward achieved
by expert e during phase Ik, and

R̂k = E [R̃k | hk] .

Denote

Sk = kMe(Ik) =
k∑

j=1

2j

k + 1
· R̃j

and

Ŝk =
k∑

j=1

2j

k + 1
R̂j .
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Then,

Ŝk − kµτ
e =

k∑
j=1

2j

k + 1
·E [R̃j | hj ] − kµτ

e

=
k∑

j=1

2j

k + 1
·E [R̃j − µτ

e | hj ]

≥ −
k∑

j=1

2j

k + 1
· cτ

jτ

≥ −
k∑

j=1

2j

k + 1
· cτ

j τ̄

≥ −2cτk
1−τ̄

2− τ̄

≥ −kε

2
.

Thus, for all θ > 0,

E [exp(θ(−Sk + kµτ
e))] = E

[
exp(θ(−Sk + Ŝk − Ŝk + kµτ

e))
]

≤ E
[
exp(θ(−Sk + Ŝk))

]
· exp

(
θkε

2

)
. (21)

We now have

E
[
exp(θ(−Sk+Ŝk))

]
= E

[
E
[
exp(θ(−Sk + Ŝk)) | hk

]]
= E

E
exp

 k∑
j=1

2j

k + 1
θ(R̂j − R̃j)

 | hk


= E

E [exp
(

2k

k + 1
θ(R̂k − R̃k)

)
| hk

]
· exp

k−1∑
j=1

2j

k + 1
θ(R̂j − R̃j)


= E

[
Πk

j=1E
[
exp

(
2j

k + 1
θ(R̂j − R̃j)

)
| hj

]]
.

(22)
We have E[R̂j − R̃j | hj ] = 0 and |R̂j − R̃j |2j/(k + 1) ≤ 2u, hence (Williams, 1991)

E
[
exp

(
2j

k + 1
θ(R̂j − R̃j)

)
| hj

]
≤ exp(2u2θ2). (23)

It follows from (22) and (23) that

E
[
exp(θ(−Sk + Ŝk))

]
≤ exp(2u2θ2k) . (24)
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We have

exp(θkε) Pr (−Sk + kµτ
e > kε) ≤ E [exp(θ(−Sk + kµτ

e))] ≤ exp
(

2u2θ2k +
θkε

2

)
,

where the last inequality follows from (21) and (24). It follows that

Pr (Me(Ik) < µτ
e − ε) = Pr (−Sk + kµτ

e > kε) ≤ exp
(
−θkε

2
+ 2u2θ2k

)
.

Minimizing over θ > 0 yields (20). �

We are now poised to prove Theorem 6.
Proof Denote

k =
(
1− ε

4u

) Z̄0,i

r
. (25)

Then,

k ≥ 3Z̄0,i

4r
≥
(

4cτ

ε(2− τ̄)

)1/τ̄

. (26)

Now we have

Pr
(

inf
j≥i

Me(j) < µτ
e − ε

)
≤ Pr

(
inf
j≥i

Me(j) < µτ
e − ε,Ne(i) ≥ k

)
+ Pr (Ne(i) < k)

≤ Pr
(

inf
j≥k

Me(Ij) < µτ
e − ε

)
+ Pr (Ne(i) < k)

≤
∞∑

j=k

Pr (Me(Ij) < µτ
e − ε) + Pr (Ne(i) < k)

≤
∞∑

j=k

exp
(
− jε2

32u2

)
+ exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]

≤ 32u2

ε2
exp

(
− kε2

32u2

)
+ exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]
. (27)

The fourth inequality follows from Lemmas 19 and 20, which holds since k satisfies (26).
By the definition of k (25),

kε2

32u2
=

(
1− ε

4u

) Z̄0,i

r

ε2

32u2

≥ 3Z̄0,iε
2

128u2r

≥ Z̄0,iε
2

43u2r
(28)

and (
1− kr

Z̄0,i

)2 Z̄0,i

2r
=

Z̄0,iε
2

32u2r
. (29)
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Combining (27), (28) and (29) yields

Pr
(

inf
j≥i

Me(j) < µτ
e − ε

)
≤ 32u2

ε2
exp

(
− kε2

32u2

)
+exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]

≤ 32u2

ε2
exp

(
− Z̄0,iε

2

43u2r

)
+ exp

(
− Z̄0,iε

2

32u2r

)
≤ 33u2

ε2
exp

(
− Z̄0,iε

2

43u2r

)
.

�

A.6 Proof of Corollary 7

Corollary 7 For all ε > 0, i0 and i satisfying:

1.
4r

3

(
12cτ

ε(2− τ̄)

)1/τ̄

≤ Z̄0,i0 , and

2. Z̄i0,i ≤
iε2

36
√

ru2
− i0ε

12u
,

then

Pr
(
M(i) ≤ max

e
µτ

e − ε
)
≤ 297u2

ε2
exp

(
− ε2Z̄0,i0

387u2r

)
+exp

(
− 1

2i

(
iε2

36
√

ru2
− i0ε

12u
− Z̄i0,i

)2
)

.

Proof Let e∗ correspond to an expert with µτ
e∗ = maxe µτ

e . Now we have

Pr (M(i) ≤ µτ
e∗ − 3ε) ≤ Pr

(
M(i) ≤ µτ

e∗ − 3ε, inf
j≥i0

Me∗(j) ≥ µτ
e∗ − ε

)
+Pr

(
inf
j≥i0

Me∗(j) ≤ µτ
e∗ − ε

)
≤ Pr

(
M(i) ≤ inf

j≥i0
Me∗(j)− 2ε

)
+ Pr

(
inf
j≥i0

Me∗(j) ≤ µτ
e∗ − ε

)
≤ Pr

(
M(i) ≤ max

e
min

i0≤j≤i
Me(j)− 2ε

)
+ Pr

(
inf
j≥i0

Me∗(j) ≤ µτ
e∗ − ε

)
.

The result then follows from application of Theorems 1 and 6. �
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A.7 Proof of Corollary 8

Corollary 8 If limi→∞ Z̄0,i = ∞, we have

Pr
(

lim inf
i→∞

Me(i) ≥ µτ
e

)
= 1.

Proof For any ε > 0 and i ,

Pr
(

lim inf
j→∞

Me(j) < µτ
e − ε

)
≤ Pr

(
inf
j≥i

Me(j) < µτ
e − ε

)
≤ 33u2

ε2
exp

(
− Z̄0,iε

2

43u2r

)
.

Letting i tend to infinity, for every ε > 0,

Pr
(

lim inf
j→∞

Me(j) < µτ
e − ε

)
= 0 ,

hence,

Pr
(

lim inf
j→∞

Me(j) < µτ
e

)
= 0 .

�

Appendix B. Proof of Results on Exploration Schemes

The following lemma provides basic bounds on the values of i0 and i required to ensure that
U(i0, i) ≤ β.

Lemma 21

(i) If

Z̄0,i0 ≤
297u2r

ε2
log

387u2

ε2β
(30)

or

i ≤
(

i0ε

12u
+ Z̄i0,i

)
36
√

ru2

ε2
, (31)

then U(i0, i) > β .

(ii) If

Z̄0,i0 ≥ max

[
387u2r

ε2
log

594u2

ε2β
,
4r

3

(
12cτ

ε(2− τ̄)

)1/τ̄
]

(32)

and

i ≥ max
[(

i0ε

12u
+ Z̄i0,i

)
72
√

ru2

ε2
,
10368ru4

ε4
log

2
β

]
, (33)

then Pr (M(i) ≤ maxe µτ
e − ε) ≤ U(i0, i) ≤ β.
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Proof Recall that

U(i0, i) =
297u2

ε2
exp

(
− ε2Z̄0,i0

387u2r

)
+ exp

(
− 1

2i

[
max

(
iε2

36
√

ru2
− i0ε

12u
− Z̄i0,i, 0

)]2
)

.

If (30) holds, we have

U(i0, i) ≥ 297u2

ε2
exp

(
− ε2Z̄0,i0

387u2r

)
≥ β.

If (31) holds, we have

U(i0, i) ≥ exp

(
− 1

2i

[
max

(
iε2

36
√

ru2
− i0ε

12u
− Z̄i0,i, 0

)]2
)

≥ 1.

Now suppose that (32) holds. Then

297u2

ε2
exp

(
− ε2Z̄0,i0

387u2r

)
≤ β

2
.

Moreover, if (33) holds, then

exp

(
− 1

2i

[
max

(
iε2

36
√

ru2
− i0ε

12u
− Z̄i0,i, 0

)]2
)
≤ β

2
.

We conclude that U(i0, i) ≤ β. Note that, under (32) and (33), the conditions of Corollary
7 are satisfied. It follows that Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β. �

Theorem 10 In the explore-than-exploit scheme, for all τ ≥ 0.5 the smallest number of
phases i such that Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β satisfies

i = Ω
(

u3r
√

r

ε3
log

u2

ε2β

)
and

i = O

(
max

[
u3r

√
r

ε3
log

u2

ε2β
,
u4r

ε4
log

1
β

])
.

Proof The lower bound follows from (30) and (31). The upper bound follows from (32)
and (33). �

Theorem 11 If pj = 1/j, for all τ ≥ 0.5 the smallest number of phases i such that
Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β satisfies

i = Ω
(

exp
(

387u2r

ε2
log

297u2

ε2β
− 1
))

.
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Proof When pj = 1/j, we have

Z̄0,i0 ≤ log(i0) + 1 .

It follows from (30) that i0 must satisfy

i0 > exp
(

387u2r

ε2
log

297u2

ε2β
− 1
)

.

Since i ≥ i0, the result follows. �

Theorem 12 If pj = 1/jα and α < 1, for all τ ≥ 0.5 the smallest number of phases i such
that Pr (M(i) ≤ maxe µτ

e − ε) ≤ U(i0, i) ≤ β satisfies

i = Ω

(
max

[
u

3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(
log

u2

ε2β

) 1
1−α

,
u

2
α r

1
2α

ε
2
α

])
,

and

i = O

(
max

[
u

3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(
log

u2

ε2β

) 1
1−α

,
u

2
α r

1
2α

ε
2
α

,
ru4

ε4
log

1
β

])
.

Proof For all i we have

(i + 1)1−α

1− α
− 1 =

∫ i+1

1

1
jα

dj

≤ Z̄0,i

≤
∫ i

1

1
jα

dj + 1

≤ i1−α

1− α
.

From (32) and (33), we have the following sufficient conditions on i0 and i to ensure that
U(i0, i) ≤ β:

(i0 + 1)1−α

1− α
− 1 ≥ max

[
387u2r

ε2
log

594u2

ε2β
,
4r

3

(
12cτ

ε(2− τ̄)

)1/τ̄
]

and

i ≥ max
[(

i0ε

12u
+

i1−α

1− α

)
72
√

ru2

ε2
,
10368ru4

ε4
log

2
β

]
.

We conclude that

i0 = O

(
u

2
1−α r

1
1−α

ε
2

1−α

(
log

u2

ε2β

) 1
1−α

)
.
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Furthermore, a sufficient value of i is given by

i = max
(

2
i0ε

12u

72
√

ru2

ε2
, 2

i1−α

1− α

72
√

ru2

ε2
,
10368ru4

ε4
log

2
β

)
We conclude that the smallest number of phases that guarantees that U(i0, i) ≤ β is on

the order of

i = O

(
max

[
u

3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(
log

u2

ε2β

) 1
1−α

,
u

2
α r

1
2α

ε
2
α

,
128ru4

ε4
log

1
β

])
.

We can use similar steps and bounds (30) and (31) to conclude that, in order to have
U(i0, i) ≤ β, i must also satisfy

i = Ω

(
max

[
u

3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(
log

u2

ε2β

) 1
1−α

,
u

2
α r

1
2α

ε
2
α

])
.

�

Theorem 13 Suppose that

pj =
ε2

16
√

ru2
(j = 1, 2, . . .).

Then for all τ ≥ 0.5 the smallest number of phases i such that Pr (M(i) ≤ maxe µτ
e − ε) ≤

U(i0, i) ≤ β satisfies

i = O

(
r2u5

ε5
log

u2

ε2β

)
.

Proof The result follows directly from (30) and (31). �

Appendix C. Proof of Results for Fixed Length Phases

Lemma 22 For any expert e, let i′ > i and suppose that Me(i′) ≤ Me(i)− ε. Then we have

Ne(i′)−Ne(i) ≥
Ne(i)ε

u
.

Proof We have

Me(i)Ne(i) ≤ Me(i′)Ne(i′)
≤ (Me(i)− ε)Ne(i′).

It follows that

Ne(i′)−Ne(i) ≥ Ne(i)ε
Me(i)− ε

≥ Ne(i)ε
u

.
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Theorem 14 Suppose EEE is implemented with phases of fixed length L. Then for all i0,
i and ε such that Z̄i0,i ≤ iε2

8u2 − i0ε
4u , we have

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− ε

)
≤ exp

(
− 1

2i

(
iε2

8u2
− i0ε

4u
− Z̄i0,i

)2
)

.

Proof We follow the same steps as in the proof of Theorem 1. For simplicity, let

γ =
ε

u
.

Recall the definitions of E1 and E2. Note that, for all e ∈ E1 ∪ E2, we have

Ne(i)−Ne(je) =
i∑

j=je+1

Ze,j .

Moreover, for all e ∈ E2, since Me(je) ≥ V and Me(i) < v − ε, applying Lemma 22 we
conclude that

Ne(je) ≤
u

ε
[Ne(i)−Ne(je)] =

u

ε

i∑
j=je+1

Ze,j . (34)

Following the same steps used in Theorem 1, we conclude that

Pr

(∑
e

Ne(i)δ(Me(i) < V − ε) ≤ γi

)
≤ exp

(
− 1

2(i− i0)

(
ε(γi− i0)

u + ε
− Z̄i0,i

)2
)

.

Now suppose that ∑
e

Ne(i)δ(Me(i) < V − ε) ≤ γi.

Then we have

M(i) =
∑

e Ne(i)Me(i)∑
e Ne(i)

≥ V − ε− (V − ε)
∑

e Ne(i)δ(Me(i) < V − ε)∑
e Ne(i)

≥ V − ε− (V − ε)
γi

i
≥ V − 2ε.

We conclude that

Pr (M(i) ≤ V − 2ε) ≤ Pr

(∑
e

Ne(i)δ(Me(i) < V − ε) ≤ γi

)

≤ exp

(
− 1

2(i− i0)

(
ε(γi− i0)

u + ε
− Z̄i0,i

)2
)

≤ exp

(
− 1

2(i− i0)

(
ε(γi− i0)

2u
− Z̄i0,i

)2
)

.
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Theorem 15 Suppose EEE is implemented with phases of fixed length L. Then for all
i0 ≤ i and ε > 0, we have

E
[
M(i)−max

e
min

i0+1≤j≤i
Me(i)

]
≥ −ε− u

i0
i
− 2u2

ε

Z̄i0,i

i
.

Proof We have

E
[
M(i)−max

e
min

i0+1≤j≤i
Me(i)

]
= E

[∑
e Ne(i)Me(i)∑

e Ne(i)
− V

]
≥ E

[
V − ε− (V − ε)

∑
e Ne(i)δ(Me(i) < V − ε)

i
− V

]
≥ −ε− u

E [
∑

e Ne(i)δ(Me(i) < V − ε)]
i

. (35)

Recall the definitions of E1 (6) and E2 (7). Then we have

E

[∑
e

Ne(i)δ(Me(i) < V − ε)

]

≤ E

∑
e∈E1

Ne(i0) +
i∑

j=i0+1

Ze,j

+
∑
E2

Ne(je) +
i∑

j=je+1

Ze,j


≤ i0 + E

(u

ε
+ 1
) i∑

j=i0+1

Zj


≤ i0 +

2u

ε
Z̄i0,i. (36)

The theorem follows from (35) and (36). �

Theorem 16 Suppose EEE is implemented with phases of fixed length L. For all ε > 0, we
have

Pr
(

inf
j≥i

Me(j) < µτ
e −

cτ

Lτ
− ε

)
≤ 2L2u2

ε2
exp

(
− ε2Z̄0,i

4L2u2r

)
.

Proof Let I1, I2, . . . denote the phase numbers when expert e is followed. Note that

Me(Ik) =
1
k

k∑
j=1

R̃j .

Let R̂k = E
[
R̃k|hk

]
. Let

Se(Ik) =
k∑

j=1

(R̃j − R̂j).
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Note that E
[
R̃j − R̂j |hj

]
= 0 and |R̃j − R̂j | ≤ u. It follows from Hoeffding’s inequality

(Hoeffding, 1963) that

Pr (Se(Ik) ≤ −εk) ≤ exp
(
−2ε2

u2

)
.

Note that
R̂k ≥ µτ

e −
cτ

Lτ
.

We conclude that, for all k,

Pr
(
Me(Ik) ≤ µτ

e −
cτ

Lτ
− ε
)

= Pr

 k∑
j=1

[
R̃j −

(
µτ

e −
cτ

Lτ

)]
≤ −εk


≤ Pr (Se(Ik) ≤ −εk)

≤ exp
(
−2ε2

u2

)
.

We now follow the same steps as in the proof of Theorem 6. Let

k =
(
1− ε

2u

) Z̄0,i

r
.

Note that

k ≥ Z̄0,i

2r
.

Now we have

Pr
(

inf
j≥i

Me(j) < µτ
e − ε

)
≤ Pr

(
inf
j≥i

Me(j) < µτ
e − ε,Ne(i) ≥ k

)
+ Pr (Ne(i) < k)

≤ Pr
(

inf
j≥k

Me(Ij) < µτ
e − ε

)
+ Pr (Ne(i) < k)

≤
∞∑

j=k

Pr (Me(Ij) < µτ
e − ε) + Pr (Ne(i) < k)

≤
∞∑

j=k

exp
(
− jε2

2u2

)
+ exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]

≤ 2u2

ε2
exp

(
− kε2

2u2

)
+ exp

[
−
(

1− kr

Z̄0,i

)2 Z̄0,i

2r

]

≤ 2u2

ε2
exp

(
− Z̄0,i0ε

2

4ru2

)
+ exp

[
− Z̄0,iε

2

8ru2

]
≤ 3u2

ε2
exp

(
− Z̄0,i0ε

2

8ru2

)
.

The sixth inequality follows from k =
(
1− ε

2u

) Z̄0,i

r ≥ Z̄0,i

2r . �
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