Evaluation of H2RG stability for infrared Earth-observing systems

P. W. Sullivana, W. K. Edensa, E. H. Darlingtonb, D. O. Neilb

aJohns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd. Laurel, MD, USA
bNASA Langley Research Center, Hampton, VA, USA

ABSTRACT

Although originally developed for astronomical applications, the space qualification and availability of the Teledyne HAWAII detector make it appealing for high-precision Earth-observing systems such as the carbon monoxide correlation radiometer required for GEO-CAPE. In this shot noise-limited application, the signal-to-noise ratio of a co-averaged measurement is driven by the detector's temporal stability. To assess the stability, we operated the H2RG under monitored blackbody illumination. The Teledyne SIDECAR ASIC provided 16-bit digitization and clocking for integration times faster than the frame conversion time. With proper application of reference signals, the co-averaging of hundreds of frames is possible. Integrations of one-quarter of the full well depth can attain precision to the 200 ppm level in the co-averaged result. For integrations above three-quarters the well depth, the precision reaches 111 ppm.

Keywords: H2RG, SIDECAR, HgCdTe, infrared array, stability, bias drift, GEO-CAPE

1. INTRODUCTION

The 2007 NRC decadal survey Earth Science and Applications from Space prescribed the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission to measure air quality and coastal pollution with the continuous spatial and temporal coverage afforded by geostationary orbit. Part of the mission would be carried out by an infrared gas correlation radiometer to measure carbon monoxide (CO), which traces the transport of pollution due to its relatively short atmospheric lifetime of a few weeks. As an imaging instrument, the correlation radiometer would enable simultaneous spatial coverage over much of North America including the lower 48 contiguous states. GEO-CAPE requires measurements of CO column density with accuracy and precision of 10%, nadir spatial resolution of 7 km, and a temporal resolution of one hour.

In order to perform a simultaneous multispectral retrieval of CO column density, two imaging bands are required: one centered at the fundamental 4.6-micron CO feature and one at the 2.3-micron harmonic. The 4.6-micron band is primarily sensitive to CO in the upper troposphere due to thermal emission, which is feasible during both day and night. The 2.3-micron band senses reflected solar radiation and is uniformly sensitive from the surface through the troposphere. Besides improving the column density retrieval, the two bands provide some vertical resolution for CO in the troposphere. A simultaneous multispectral retrieval has recently been implemented with the low Earth orbit Terra/MOPITT instrument,1 but neither CO band has been measured from geostationary orbit. Since detecting CO through the weaker 2.3 micron harmonic is more difficult than at 4.6 microns, this band was selected for a risk-reduction study under the NASA Earth Science Technology Office’s Instrument Incubator Program.

Within the 2.3 micron band, the gas correlation radiometer operates by measuring the relative difference between two optical channels viewing Earth. One channel passes the incoming radiation through a gas cell containing CO while a reference channel measures all of the incoming scene radiation. The CO-containing cell filters out the scene spectral radiance that lies within the characteristic CO absorption features, but the reference channel can still detect the absorption features due to atmospheric CO. The difference between the radiance measured by the two channels therefore varies with the atmospheric CO column density. At 2.3 microns, the requirement of 10% precision in the column density retrieval translates to a precision in the individual channel measurements of only 0.014% to 0.025% due to the low atmospheric concentration of CO and weak absorption by the harmonic. Many sources of error—including scene variability over the co-averaging time, spacecraft pointing error, and drifts in the detector responsivity—could single-handedly consume the error budget. Here, we will determine whether the detector alone can deliver radiometric measurements to this level of precision within one hour of co-averaging time.

1 Current email: pwsully@mit.edu
Achieving 140 ppm stability in the detector response is no trivial task. However, the measurement is relative between the CO and reference channels, so the detector only has to remain stable for the averaging period of time over which one relative measurement is taken. The measurements from multiple periods would then be averaged to reach the required precision. The GEO-CAPE correlation radiometer might be realized with two gas cells sharing the same optical path, and a filter wheel would swap the gas cell in the optical path halfway through the co-averaging period. In this implementation, the detector's frame-to-frame persistence (measured at the 1% level) will introduce crosstalk between the two optical channels. To avoid waiting for the persistence to decay, it is necessary to minimize the number gas cell rotations and determine the maximum stability time of the detector.

We selected the Teledyne HAWAII-2RG, or H2RG (developed primarily for the James Webb Space Telescope) for this project.\(^2\) Using it to look at the Earth in reflected solar radiance rather than at faint astronomical sources requires several changes to how it is normally operated. However, it was the only space-qualified detector available off-the-shelf that offered the pixel count, quantum efficiency, and dark current we required. Furthermore, Teledyne offers the space-qualified SIDECAR ASIC to provide clocking and analog biases to the H2RG and conversion of its 32 analog outputs to a single stream of 16-bit digital data.\(^3\) After making required modifications to the H2RG and SIDECAR operation, we set out to determine the maximum achievable co-averaging time and the signal-to-noise of the resulting co-averaged measurement. In doing so, we investigated whether the removal of instabilities correlated with reference signals can extend the co-averaging time.

2. METHODOLOGY

2.1 SIDECAR implementation

This application required us to reduce the H2RG exposure time below the time it takes to convert one frame. We expect a maximum flux of 10^6 photons per second per pixel, and keeping the integrated number of photoelectrons near 15% of the well depth of 10^5 electrons requires exposure times on the range of 15 ms. This nominal well depth of 15% reserves dynamic range for unusually bright features in a pixel's footprint. At the same time, 16-bit analog-to-digital conversion (ADC) is desired, which the SIDECAR traditionally performs at 100 kHz. The conversion gain was measured to be 2.3 electrons per ADU. With all 32 outputs of the H2RG each accessing a 64 x 2K strip of pixels simultaneously digitized with the SIDECAR, a frame of 2K x 2K pixels can be converted within 1.7 s when taking into account overhead in the clocking pattern. Since “snapshot” exposures cannot be implemented with the H2RG, a rolling shutter must be used. The row selection for the readout must follow the row selection for the reset by the exposure time of 15 ms, which corresponds to the conversion time of 23 rows. The default SIDECAR firmware resets an entire row of pixels at a time, which for short exposures would result in a non-uniform exposure time from column to column. Therefore, pixel-by-pixel reset was implemented in the SIDECAR firmware to reset the pixels at a fixed time ahead of their readout.

The signal-to-noise ratio of the correlation radiometer is dominated by photon shot noise (of 130 electrons at 15% well depth) and not by the detector's read noise (of 10 electrons). Shot noise can only be overcome by averaging multiple measurements, so we sought to maximize the number of frames which can be co-averaged in a given period of time. We were able to increase the frame rate by increasing the ADC rate from 100 kHz to 250 kHz; turning up the bias currents in the SIDECAR preamplifiers was necessary to make the last bits of the ADC settle. The power consumption of the SIDECAR consequently increased by 45%, which the thermal design of a flight instrument should take into account. Increasing the sampling rate also required opening the bandwidth of the preamplifier filters by a similar factor, which increased the read noise by 9.9%. This side-effect is outweighed by the reduction in the read noise (as well as the shot noise) through the co-averaging of 2.5 times as many frames in a given period of time.

Furthermore, we did not find it advantageous to perform digital correlated double sampling. While this technique can subtract the switching noise of the reset transistor from the final pixel value, a double-sampled image takes twice as long to convert and its read noise is increased by a factor of $\sqrt{2}$. We measured the reset noise to be 65 electrons, which is half the shot noise. Rather than subtract the reset noise with double sampling, it is more effective to take two read frames and co-average them to decrease both the reset noise and shot noise by a factor of $\sqrt{2}$.\(^2\)
2.2 Experiment
The responsivity of a detector system is defined by the entire curve mapping the number of incident photons to the outputted digital number. We obtained data sets of 6000 frames at two points of this curve, the reset level and at 78% of the full well depth, to examine the stability of the responsivity while the detector stared at a blackbody. Such an experiment would ideally be carried out with perfect stability in the blackbody, atmosphere, and temperatures to isolate instabilities in the detector and SIDECAR system. A practical system, however, must tolerate instabilities within a reasonable range, so we recorded all relevant parameters in order to remove variations correlated with the detector response after the fact.

We selected the Oriel 67000 series blackbody for its stability (advertised as ±0.02% of full scale over 24 hours) but monitored it with a single-pixel InAs detector supplied by Teledyne Judson. A sapphire flat split the blackbody flux into both the blackbody monitor and into the H2RG. The H2RG and SIDECAR were held in a vacuum dewar and cooled with liquid nitrogen; no active temperature control was used. The detector equilibrated at 80 K, its cold shield at 100 K, and the SIDECAR at 154 K. Silicon diode temperature sensors from LakeShore were used to monitor these cryogenic temperatures as well as the dewar's external temperature at 287 K. The blackbody monitor and four temperatures were stored in the header of the FITS file holding each image read out from the H2RG.

Additional reference signals are derived from the H2RG itself. The reference pixels along the perimeter of the silicon multiplexer can help monitor the pixel reset voltage and preamplifier drifts, and their utility has been demonstrated at frequencies higher than the frame rate by Moseley et al. In addition, the cold shield vignetted the corners of the active area of the detector from the blackbody, so these pixels can help track the stability of the photodiode bias voltage. These “dark” pixels collected 23% of full well depth during the acquisition of read frames from stray light and thermal emission from the cold shield. With the exception of the blackbody monitor, all of the reference signals employed here would be available in a flight instrument. Even the dark pixels are representative of the pixels which would have a view of deep space since the disk of Earth does not fill the instrument's entire field of view from geostationary orbit. However, the detector in a flight instrument would likely be operated at 120 K or higher and not 80 K.

Figure 1. Experimental setup used to determine the stability characteristics of the H2RG
3. DATA

We selected a contiguous square region of 4096 pixels measuring 64 x 64 pixels for the analysis of stability. None of the pixels in the region showed excessive noise or popcorn behavior. A zone of 4 x 64 reference pixels at the top of the multiplexer is connected to the same SIDECAR preamplifier as the region of interest, and two zones of 64 x 4 pixels on the sides of the multiplexer sample the reset voltage at the same time as the region of interest (although through different preamplifiers). The spatial mean of the top zone and the side zones of pixels were considered in the regression analysis to reduce the noise in the reference pixels. Similarly, we took the spatial mean of the vignetted dark pixels. Hence, the four temperatures, blackbody monitor, dark pixels, and two reference pixel zones make a total of eight available reference signals shown in Figure 2.

In general, the blackbody monitor and temperature trends enable one to minimize the instabilities induced in the detector data by the particular experimental setup, and the reference and dark pixels on the detector help to reduce instabilities intrinsic to the H2RG and SIDECAR. However, we are ultimately interested in the residual instability in the detector signal after all available references have been applied, so they will be considered together. Our approach to removing the variations in the references correlated with the active pixels is linear regression. The coefficient $B_{act,i}$ relating the ith reference time series x_i to each active pixel time series y_{act} is given by the least-squares solution to the linear relationship

$$y_{act} - <y_{act}> = B_{act,i}(x_i - <x_i>)$$

Removing the appropriate amount of the reference time series to produces the corrected result y_{cor}:

$$y_{cor} = y_{act} - <y_{act}> - B_{act,i}(x_i - <x_i>)$$

Since the B_{act} coefficients are calculated for each active pixel, the repeatability of the technique can be assessed by examining the pixel-to-pixel variation in B_{act}. However, cross-correlations in the reference signals allow the solutions for B_{act} to swing between the valid linear combinations of the correlated components. In order to produce a more robust result, a principal component analysis was performed on the reference signals to project them onto an orthogonal basis of eigenvectors and reduce the dimensionality. Then, we re-calculated the corrected time series y_{cor} using only the eigenvectors selected for their repeatability. Due to pixel-to-pixel variability, we expect a standard deviation of at least a few percent in B_{act}.

The reference corrections were performed in two similar stages according to the frequency content of the references. The detector, cold shield, and dewar temperatures are piecewise linear over timescales of at least 1000 frames, so their spectra show strong low-frequency components. On the other hand, the blackbody monitor, dark pixels, and reference pixels show stronger spectral features with periods of tens to hundreds of frames. The SIDECAR temperature shows the lower-frequency characteristic from its linear trends, but it also exhibits a sawtooth pattern repeating every 150 frames. The SIDECAR is programmed to acquire frames in groupings of 150, and the short pause in between groups is sufficient for it to cool slightly. Therefore, we constructed two reference signals from the SIDECAR temperature; one was high-pass filtered to recover the effect of frame grouping and one was low-pass filtered to recover the slower trends. The blackbody monitor displays its own 1/f noise that does not appear to be correlated with the active pixels, so the low-frequency components of the monitor’s signal were filtered out. The bandpass of the filter was chosen to maximize the correlation between the active pixels and the blackbody monitor since the true blackbody fluctuations should be detected by both.

The detector pixels show correlation with the temperature trends, but the degrees of correlation (and anti-correlation) differ between the active, dark, and reference pixels. The dark pixels, which sit just behind the cold shield, are more strongly correlated with the temperature of the cold shield than are the active pixels. The active pixels are positively correlated with detector temperature (presumably due to dark current), but the reference pixels (which lack a HgCdTe photodiode and its dark current) are anti-correlated with the detector temperature. The anti-correlation between temperature and the reset level is consistent with the anomalously low pixel values associated with pixel self-heating in the H2RG, which was originally labeled “reset anomaly.”
In order to remove the variations in the higher-frequency references correlated with the active pixels without reintroducing systematic error, the low-frequency temperature drifts were first corrected in all of the higher-frequency references and active pixels. The principal components of the temperature variations x were simultaneously removed from the reference time series y_{ref} and active pixel time series y_{act} by finding linear least-squares solutions for B_{ref} and B_{act} respectively. Table 1 shows that the first two principal components (ranked by eigenvalue) are the most reliable tracers of thermal variations in the active pixels; the other two components were not included in the later analysis of the stability.

![Graphs showing temperature variations](image)

Figure 2. Lower-frequency reference signals (left column) and higher-frequency references (right column) recorded during the acquisition of 6,000 frames. The dark and reference pixels have been temperature-corrected, and the blackbody monitor has been high-pass filtered.
Table 1. Reliability of the principal components of the low-frequency thermal reference signals

<table>
<thead>
<tr>
<th>Thermal Principal Component</th>
<th>Included in Regression?</th>
<th>Pixel-wise std. dev. in (B_{\text{act}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>7.00%</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>11.87%</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>60.29%</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>56.96%</td>
</tr>
</tbody>
</table>

Once the higher-frequency references and active pixels had their temperature-induced variations removed, we found a least-squares solution for the correlation coefficients between the corrected higher-frequency references and the active pixels. Strong correlations existed among the reference pixels on the sides and top of the detector and the dark active pixels, so again finding the principal components improves the repeatability of the least-squares solution from pixel to pixel. Conversely, the blackbody monitor and the SIDECAR high-frequency thermal variations were largely independent from the reference pixels prior to the orthogonalization, so they are represented by principal components 1 and 5, respectively.

In addition to examining the pixel-to-pixel variability in the components of \(B_{\text{act}} \) (shown in Table 2), we also assessed the reliability of the principal components by splitting the time series into two halves and calculating the \(B_{\text{act}} \) solution on these two disparate subsets of data. (This test is less meaningful for the lower-frequency temperature references that only vary monotonically over the entire 6000-frame data set.) This subset variation is also tabulated. The pixel-wise variability of principal component 4 and the subset variability of component 5 excluded them from later analyses.

The components showing the greatest reliability were selected (as shown in Tables 1 and 2) for inclusion in the final regression analysis of the active pixel time series. The proportions of the original reference signals employed by the principal components in the final correction are listed in Table 3. Because the blackbody monitor has its own gain and ADC, its coefficient cannot be directly compared to the others. The reference pixels at the top of the array that share the same preamplifier as the active pixels are strongly correlated with the frame-to-frame variations in the active pixels, which shows that preamplifier drifts in the SIDECAR are significant on this time scale. While Moseley et al.\(^4\) found the reference pixel correlation coefficient to be less than one at frequencies higher than the frame rate, we find it to be greater than one at frame-to-frame frequencies. Either way, the conclusion remains that it is advantageous to sample the active and reference pixels separately with single-ended preamplifier inputs rather than tying the preamplifier reference input to a reference pixel and assuming a correlation coefficient of one.

Table 2. Reliability of the principal components of the high-frequency thermal and reference pixel signals

<table>
<thead>
<tr>
<th>Reference Principal Component</th>
<th>Included in Regression?</th>
<th>Pixel-wise standard deviation in (B_{\text{act}})</th>
<th>Subset difference in (B_{\text{act}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Blackbody monitor)</td>
<td>Yes</td>
<td>19.63%</td>
<td>13.18%</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>13.63%</td>
<td>0.08%</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>19.55%</td>
<td>3.59%</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>139.15%</td>
<td>46.99%</td>
</tr>
<tr>
<td>5 (SIDECAR high-frequency)</td>
<td>No</td>
<td>10.44%</td>
<td>133.95%</td>
</tr>
</tbody>
</table>
Table 3. Contribution of each reference signal to the active pixel correction

<table>
<thead>
<tr>
<th></th>
<th>Thermal contribution coefficients (ADU/K)</th>
<th>High-frequency contribution coefficients (ADU/ADU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>44.91</td>
<td>Blackbody</td>
</tr>
<tr>
<td>Cold Shield</td>
<td>51.39</td>
<td>Top reference pixels</td>
</tr>
<tr>
<td>SIDECAR (low-frequency)</td>
<td>-225.6</td>
<td>Side reference pixels</td>
</tr>
<tr>
<td>Dewar</td>
<td>454.4</td>
<td>Dark pixels</td>
</tr>
</tbody>
</table>

4. RESULTS

We can now investigate the achievable co-averaging time and attempt to extend it with the corrections described above. We quantified the stable co-averaging time by dividing the data set into blocks and comparing the average difference between the means of each block to the standard deviation in the mean of each block. If the mean block-to-block difference exceeds twice the block standard deviation, then by this criterion, the stability time has been exceeded and neighboring blocks are in statistically different states. Graphically, this occurs when the 1σ error bars of neighboring blocks no longer overlap. The ratio is plotted for uncorrected, temperature-corrected, and fully-corrected data in Figure 3 for varying block lengths. Table 4 shows the co-averaging length at which this ratio is met.

The data set of 6000 reset frames was reduced in an identical fashion to the 6000 read frames, and the results are also shown in Table 4. In addition, the dark pixels from the 6000 read frames were analyzed by treating them individually as active pixels and not in aggregate as reference pixels. With one fewer high-frequency reference, the number of high-frequency reference principal components was reduced from three to two. The mean reset value, 3973 ADU, is used to normalize the σ(N) for the reset frames, and the mean read value minus the mean reset value is used to normalize the σ(N) for the read frames, which is 39998 ADU for the illuminated pixels and 11903 for the dark pixels. Since the reset level is ten percent of the exposed value and the dark pixels are thirty percent the exposed value, the fully-corrected reset and dark pixels take longer to achieve the same level of relative precision as the fully-corrected read frames. However, the available co-averaging time is nearly three times longer for the reset frames and nearly fifty percent longer for the dark pixels.

![Figure 3](image.png)

Figure 3. Ratio of block-to-block differences in the mean to the standard deviation in the mean per block. Once the higher-frequency reference corrections are made, the breakdown in stability is delayed until 452 frames are co-averaged.
Table 4. The number of co-averaged frames (N) for which the mean block-to-block difference is less than twice the standard deviation in the block mean \(\sigma \) at N. To find the acquisition time in seconds, the frame rate is 1.5 Hz.

<table>
<thead>
<tr>
<th></th>
<th>Uncorrected</th>
<th>Temperature-corrected</th>
<th>Fully-corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (frames)</td>
<td>(\sigma (N)) (ppm)</td>
<td>N (frames)</td>
</tr>
<tr>
<td>Illuminated Pixels (78% full well)</td>
<td>152</td>
<td>193</td>
<td>169</td>
</tr>
<tr>
<td>Dark Pixels (23% full well)</td>
<td>107</td>
<td>503</td>
<td>514</td>
</tr>
<tr>
<td>Reset Frames</td>
<td>36</td>
<td>883</td>
<td>36</td>
</tr>
</tbody>
</table>

The autocorrelation function of the active pixel time series also illustrates the effectiveness of the reference corrections. Here, an autocorrelation length of 4700 frames is used, and the maximum delay is 700 frames. By definition, the autocorrelation function is normalized to unity at zero frame delay (not shown). The functions are calculated for each pixel and then averaged across pixels, so the uncorrelated shot noise on the pixel reduces the autocorrelation functions below 0.04 at a frame delay of one. However, the relative values of the autocorrelations show that the data with only temperature correction has a larger autocorrelation than that of the fully-corrected data at delays of less than 100 frames. We attribute this to uncorrelated noise in the reference signals that is introduced by the full correction process. Above 150 frames, the autocorrelation of the temperature-corrected data falls off much more quickly due to the lack of corrections from the reference pixels and blackbody monitor. The rise in the temperature-corrected autocorrelation reflects the periodicity in the residual signal which is removed by the higher-frequency reference signals. In contrast, the relative flatness of the fully corrected signal from 200 to 500 frames confirms the above result that co-averaging up to 452 fully-corrected read frames near full-well exposure is possible.

Figure 4. Autocorrelation functions for the temperature-corrected and fully-corrected active pixel signals. After 200 frames, the full corrections become highly advantageous.
5. CONCLUSIONS

When the H2RG is exposed to near the full well depth (78%), the co-averaging of 452 frames is possible before the H2RG detector drifts to a statistically different state. This number of frames can be acquired in approximately five minutes, and the resulting mean has a standard deviation of 111 ppm. For the 15% of full well depth baselined for GEO-CAPE, we can estimate from the dark pixels exposed to 23% well depth that the stable co-averaging time is 660 frames, which results in a standard deviation in the mean of 200 ppm. In the filter-wheel implementation described above, 320 frames would be acquired through each gas cell to allow 10 frame periods for the cells to rotate and detector persistence to decay within the 660-frame co-averaging time. The two channel measurements would each have a standard deviation in the mean of 288 ppm. By averaging five pairs of channel means, better than140 ppm precision can be achieved within 37 minutes, which is well within the requirement of one hour for GEO-CAPE.

In other applications which are not temporally relative, high precision beyond the 111 ppm limit found here might be achieved in spatially relative measurements. For instance, the Kepler mission uses reference stars in the field of view to perform exoplanet transit photometry to even higher levels of precision using CCDs in the visible.\(^6\) We have not examined the possibility of using active pixels (other than the dark pixels) as reference signals, but Moseley et al.\(^4\) have demonstrated their utility at higher frequencies. In addition, the frame-to-frame reference correction techniques described here might also be effective in up-the-ramp sampling, which would be quite applicable to the astronomical applications of the H2RG. Indeed, the study of exoplanet atmospheres through transits and secondary eclipses holds many parallel challenges to those presented by the GEO-CAPE correlation radiometer. Whether looking outward at exoplanet atmospheres or downward at the processes within Earth's atmosphere, the H2RG and SIDECAR show promising performance for high-precision, time-resolved infrared radiometry.

ACKNOWLEDGMENTS

We would like to thank the contributions of the other IRCR team members at JHU/APL including David Grant, Jeng-Hwa Yee, John Boldt, Bryon Hargis, Matthew Noble, W. Jeffrey Lees, and Mary Keller. We would also like to acknowledge the assistance of Mark Farris, Jing Chen, Michael Eads, and Richard Blank at Teledyne Scientific Imaging in our implementation of the H2RG and SIDECAR system. This work has been funded from the Earth Science Technology Office at NASA Goddard Space Flight Center through the Instrument Incubator Program.

REFERENCES

