GPos-class {GenomicRanges}R Documentation

Memory-efficient representation of genomic positions

Description

The GPos class is a container for storing a set of genomic positions where most of the positions are typically (but not necessarily) adjacent. Because genomic positions can be seen as genomic ranges of width 1, the GPos class extends the GenomicRanges virtual class. Note that even though a GRanges instance can be used for storing genomic positions, using a GPos object will be much more memory-efficient, especially when the object contains long runs of adjacent positions in ascending order.

Usage

GPos(pos_runs)  # constructor function

Arguments

pos_runs

A GRanges object (or any other GenomicRanges derivative) where each range is interpreted as a run of adjacent ascending genomic positions on the same strand. If pos_runs is not a GenomicRanges derivative, GPos() first tries to coerce it to one with as(pos_runs, "GenomicRanges", strict=FALSE).

Value

A GPos object.

Accessors

Getters

GPos objects support the same set of getters as other GenomicRanges derivatives (i.e. seqnames(), ranges(), start(), end(), strand(), mcols(), seqinfo(), etc...), plus the pos() getter which is equivalent to start() or end(). See ?GenomicRanges for the list of getters supported by GenomicRanges derivatives.

IMPORTANT NOTES:

  1. ranges() returns an IPos object instead of the IRanges object that one gets with other GenomicRanges derivatives. To get an IRanges object, you need to call ranges() again on the IPos object i.e. do ranges(ranges(x))) on GPos object x.

  2. Note that a GPos object cannot hold names i.e. names() always returns NULL on it.

Setters

Like GRanges objects, GPos objects support the following setters:

However, there is no pos() setter for GPos objects at the moment (although one might be added in the future).

Coercion

From GenomicRanges to GPos: A GenomicRanges derivative x in which all the ranges have a width of 1 can be coerced to a GPos object with as(x, "GPos"). The names on x are not propagated (a warning is issued if x has names on it).

From GPos to GRanges: A GPos object x can be coerced to a GRanges object with as(x, "GRanges"). However be aware that the resulting object can use thousands times (or more) memory than x! See "MEMORY USAGE" in the Examples section below.

From GPos to ordinary R objects: Like with any other GenomicRanges derivative, as.character(), as.factor(), and as.data.frame() work on a GPos object x. Note however that as.data.frame(x) returns a data frame with a pos column (containing pos(x)) instead of the start, end, and width columns that one gets with other GenomicRanges derivatives.

Subsetting

A GPos object can be subsetted exactly like a GRanges object.

Combining

GPos objects can be combined (a.k.a. appended) with c() or append().

Splitting and Relisting

Like with any other GRanges object, split() and relist() work on a GPos object.

Note

Like for any Vector derivative, the length of a GPos object cannot exceed .Machine$integer.max (i.e. 2^31 on most platforms). GPos() will return an error if pos_runs contains too many genomic positions.

Internal representation of GPos objects has changed in GenomicRanges 1.29.10 (Bioc 3.6). Update any old object x with: x <- updateObject(x, verbose=TRUE).

Author(s)

Hervé Pagès; based on ideas borrowed from Georg Stricker georg.stricker@in.tum.de and Julien Gagneur gagneur@in.tum.de

See Also

Examples

## ---------------------------------------------------------------------
## BASIC EXAMPLES
## ---------------------------------------------------------------------

## Example 1:
gpos1 <- GPos(c("chr1:44-53", "chr1:5-10", "chr2:2-5"))
gpos1

length(gpos1)
seqnames(gpos1)
pos(gpos1)  # same as 'start(gpos1)' and 'end(gpos1)'
strand(gpos1)
as.character(gpos1)
as.data.frame(gpos1)
as(gpos1, "GRanges")
as.data.frame(as(gpos1, "GRanges"))
gpos1[9:17]

## Example 2:
pos_runs <- GRanges("chrI", IRanges(c(1, 6, 12, 17), c(5, 10, 16, 20)),
                    strand=c("+", "-", "-", "+"))
gpos2 <- GPos(pos_runs)
gpos2

strand(gpos2)

## Example 3:
gpos3A <- gpos3B <- GPos(c("chrI:1-1000", "chrI:1005-2000"))
npos <- length(gpos3A)

mcols(gpos3A)$sample <- Rle("sA")
sA_counts <- sample(10, npos, replace=TRUE)
mcols(gpos3A)$counts <- sA_counts

mcols(gpos3B)$sample <- Rle("sB")
sB_counts <- sample(10, npos, replace=TRUE)
mcols(gpos3B)$counts <- sB_counts

gpos3 <- c(gpos3A, gpos3B)
gpos3

## Example 4:
library(BSgenome.Scerevisiae.UCSC.sacCer2)
genome <- BSgenome.Scerevisiae.UCSC.sacCer2
gpos4 <- GPos(seqinfo(genome))
gpos4  # all the positions along the genome are represented
mcols(gpos4)$dna <- do.call("c", unname(as.list(genome)))
gpos4

## Note however that, like for any Vector derivative, the length of a
## GPos object cannot exceed '.Machine$integer.max' (i.e. 2^31 on most
## platforms) so the above only works with a "small" genome.
## For example it doesn't work with the Human genome:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
## Not run: 
  GPos(seqinfo(TxDb.Hsapiens.UCSC.hg19.knownGene))  # error!

## End(Not run)

## You can use isSmallGenome() to check upfront whether the genome is
## "small" or not.
isSmallGenome(genome)
isSmallGenome(TxDb.Hsapiens.UCSC.hg19.knownGene)

## ---------------------------------------------------------------------
## MEMORY USAGE
## ---------------------------------------------------------------------

## Coercion to GRanges works...
gr4 <- as(gpos4, "GRanges")
gr4
## ... but is generally not a good idea:
object.size(gpos4)
object.size(gr4)  # 8 times bigger than the GPos object!

## Shuffling the order of the positions impacts memory usage:
gpos4r <- rev(gpos4)
object.size(gpos4r)  # significantly
gpos4s <- sample(gpos4)
object.size(gpos4s)  # even worse!

## AN IMPORTANT NOTE: In the worst situations, GPos still performs as
## good as a GRanges object.
object.size(as(gpos4r, "GRanges"))  # same size as 'gpos4r'
object.size(as(gpos4s, "GRanges"))  # same size as 'gpos4s'

## Best case scenario is when the object is strictly sorted (i.e.
## positions are in strict ascending order).
## This can be checked with:
is.unsorted(gpos4, strict=TRUE)  # 'gpos4' is strictly sorted

## ---------------------------------------------------------------------
## USING MEMORY-EFFICIENT METADATA COLUMNS
## ---------------------------------------------------------------------
## In order to keep memory usage as low as possible, it is recommended
## to use a memory-efficient representation of the metadata columns that
## we want to set on the object. Rle's are particularly well suited for
## this, especially if the metadata columns contain long runs of
## identical values. This is the case for example if we want to use a
## GPos object to represent the coverage of sequencing reads along a
## genome.

## Example 5:
library(pasillaBamSubset)
library(Rsamtools)  # for the BamFile() constructor function
bamfile1 <- BamFile(untreated1_chr4())
bamfile2 <- BamFile(untreated3_chr4())
gpos5 <- GPos(seqinfo(bamfile1))
library(GenomicAlignments)  # for "coverage" method for BamFile objects
cov1 <- unlist(coverage(bamfile1), use.names=FALSE)
cov2 <- unlist(coverage(bamfile2), use.names=FALSE)
mcols(gpos5) <- DataFrame(cov1, cov2)
gpos5

object.size(gpos5)  # lightweight

## Keep only the positions where coverage is at least 10 in one of the
## 2 samples:
gpos5[mcols(gpos5)$cov1 >= 10 | mcols(gpos5)$cov2 >= 10]

## ---------------------------------------------------------------------
## USING A GPos OBJECT IN A SummarizedExperiment OBJECT
## ---------------------------------------------------------------------
## Because the GPos class extends the GenomicRanges virtual class, a GPos
## object can be used as the rowRanges component of a SummarizedExperiment
## object.

## As a 1st example, we show how the counts for samples sA and sB in
## 'gpos3' can be stored in a SummarizedExperiment object where the rows
## correspond to unique genomic positions and the columns to samples:
library(SummarizedExperiment)
counts <- cbind(sA=sA_counts, sB=sB_counts)
mcols(gpos3A) <- NULL
rse3 <- SummarizedExperiment(list(counts=counts), rowRanges=gpos3A)
rse3
rowRanges(rse3)
head(assay(rse3))

## Finally we show how the coverage data from Example 5 can be easily
## stored in a lightweight SummarizedExperiment object:
cov <- mcols(gpos5)
mcols(gpos5) <- NULL
rse5 <- SummarizedExperiment(list(cov=cov), rowRanges=gpos5)
rse5
rowRanges(rse5)
assay(rse5)

## Keep only the positions where coverage is at least 10 in one of the
## 2 samples:
rse5[assay(rse5)$cov1 >= 10 | assay(rse5)$cov2 >= 10]

[Package GenomicRanges version 1.30.1 Index]