| ocat {mgcv} | R Documentation | 
Family for use with gam or bam, implementing regression for ordered categorical data.
A linear predictor provides the expected value of a latent variable following a logistic distribution. The 
probability of this latent variable lying between certain cut-points provides the probability of the ordered 
categorical variable being of the corresponding category. The cut-points are estimated along side the model 
smoothing parameters (using the same criterion). The observed categories are coded 1, 2, 3, ... up to the 
number of categories. 
ocat(theta=NULL,link="identity",R=NULL)
theta | 
 cut point parameter vector (dimension   | 
link | 
 The link function: only   | 
R | 
 the number of catergories.  | 
Such cumulative threshold models are only identifiable up to an intercept, or one of the cut points. 
Rather than remove the intercept, ocat simply sets the first cut point to -1. Use predict.gam with 
type="response" to get the predicted probabilities in each category.
An object of class extended.family.
Simon N. Wood simon.wood@r-project.org
Wood, S.N., N. Pya and B. Saefken (2016), Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association 111, 1548-1575 http://dx.doi.org/10.1080/01621459.2016.1180986
library(mgcv)
## Simulate some ordered categorical data...
set.seed(3);n<-400
dat <- gamSim(1,n=n)
dat$f <- dat$f - mean(dat$f)
alpha <- c(-Inf,-1,0,5,Inf)
R <- length(alpha)-1
y <- dat$f
u <- runif(n)
u <- dat$f + log(u/(1-u)) 
for (i in 1:R) {
  y[u > alpha[i]&u <= alpha[i+1]] <- i
}
dat$y <- y
## plot the data...
par(mfrow=c(2,2))
with(dat,plot(x0,y));with(dat,plot(x1,y))
with(dat,plot(x2,y));with(dat,plot(x3,y))
## fit ocat model to data...
b <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=ocat(R=R),data=dat)
b
plot(b,pages=1)
gam.check(b)
summary(b)
b$family$getTheta(TRUE) ## the estimated cut points
## predict probabilities of being in each category
predict(b,dat[1:2,],type="response",se=TRUE)