| vcov.gam {mgcv} | R Documentation | 
 Extracts the Bayesian posterior covariance matrix of the
parameters or frequentist covariance matrix of the parameter estimators 
from a fitted gam object.
## S3 method for class 'gam' vcov(object, freq = FALSE, dispersion = NULL,unconditional=FALSE, ...)
object | 
  fitted model object of class   | 
freq | 
  
  | 
dispersion | 
 a value for the dispersion parameter: not normally used.  | 
unconditional | 
  if   | 
... | 
 other arguments, currently ignored.  | 
 Basically, just extracts object$Ve or object$Vp from a gamObject.
 A matrix corresponding to the estimated frequentist covariance matrix
of the model parameter estimators/coefficients, or the estimated posterior
covariance matrix of the parameters, depending on the argument freq.
Henric Nilsson. Maintained by Simon N. Wood simon.wood@r-project.org
Wood, S.N. (2006) On confidence intervals for generalized additive models based on penalized regression splines. Australian and New Zealand Journal of Statistics. 48(4): 445-464.
require(mgcv) n <- 100 x <- runif(n) y <- sin(x*2*pi) + rnorm(n)*.2 mod <- gam(y~s(x,bs="cc",k=10),knots=list(x=seq(0,1,length=10))) diag(vcov(mod))