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Abstract This paper discusses choice set generation and route choice model estimation for

large-scale urban networks. Evaluating the effectiveness of Advanced Traveler Information

Systems (ATIS) requires accurate models of how drivers choose routes based on their aware-

ness of the roadway network and their perceptions of travel time. Many of the route choice

models presented in the literature pay little attention to empirical estimation and validation

procedures. In this paper, a route choice data set collected in Boston is described and the

ability of several different route generation algorithms to produce paths similar to those ob-

served in the survey is analyzed. The paper also presents estimation results of some route

choice models recently developed using the data set collected.

Keywords Route choice · Choice set · Model estimation · Logit models

Introduction

This paper discusses choice set generation and route choice model estimation for large-

scale urban networks. Recent Intelligent Transportation Systems (ITS) applications have

highlighted the need for better models of the behavioral processes involved in route choice.

In particular, the desire to provide route guidance based on real-time traffic information to

drivers highlights the fact that drivers have imperfect knowledge of traffic conditions and
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limited information processing ability. Given these limitations, it is not surprising to observe

drivers making sub-optimal (from the individual point of view) route choices. Further, drivers

also exhibit a wide range of knowledge of network topology and route selection criteria, such

as minimizing time or stress, or maximizing the aesthetic experience of a trip.

Route choice modeling is typically divided into a two-stage process. First, possible al-

ternative routes are generated to form the choice set. Then the probability a given route is

chosen from a specified choice set is calculated. These two procedures may correspond to

non-compensatory and compensatory decision rules. The two-step methodology presented

has the advantage that by explicitly specifying the set of available routes, we can exam-

ine possible selection criteria, and reduce computational time by not generating unrealistic

routes. With a finite, known choice set, theoretically-based corrections for route overlapping

can be applied.

This paper is organized as follows. First, several methods for generating unique alternative

routes are described, and how these methods may be compared. Then a particular network

database is described and a set of route generation algorithms using route choice data from

Boston is examined. Properties of the final choice set are summarized. Next, the well-known

Logit and Probit route choice models are discussed, and several recent models that have been

proposed to overcome the overlapping problem are outlined. The paper selects two route

choice models to illustrate the different model structures. Finally, some estimates of route

choice model coefficients based on the Boston data are presented.

1. Choice set generation algorithms

In a roadway network, there may be numerous alternative routes. However, many of these

possible routes may be overly circuitous, or otherwise unsuitable for a particular origin-

destination pair. Since our modeling task is to predict route choice from among the routes

that a particular traveler considers, we would like to identify all the routes that any traveler

might consider. Specifically, we want to be able to identify algorithmic rules for generating

the observed routes to avoid introducing biases in the estimation procedure, and to have

useful algorithms for navigation systems. Such algorithms should be able to reflect drivers’

knowledge of the transportation network and their perceptions of travel times and other

network variables. Further, there is no benefit to enumerating routes that no traveler would

consider. That is, computational effort is one criterion by which to evaluate potential path

generation algorithms.

The effectiveness of different path generation techniques is defined in terms of the gen-

erated routes’ coverage of the observed routes. Ideally, a generated route would match the

observed route link-for-link; in this case, the algorithm has replicated the survey route. Other

routes may not be replicated, so the distance that the generated route shares in common with

the survey route is considered. Thus, the overlap typically is expressed as a percentage of

the survey route distance. Finally, coverage is defined as the percentage of observations for

which an algorithm or set of algorithms has generated a route that meets a particular threshold

for overlap.

There are many dimensions in which a path generation algorithm may be designed. A

well-known method, known as the K-shortest Path algorithm, generates the first “k” shortest

paths for a given origin-destination pair. Two popular heuristics may be classified as link
penalty and link elimination methods. Both techniques proceed iteratively after identifying a

shortest path. In a link penalty heuristic (see for example De La Barra, Perez, and Anez, 1993),

the impedance of all links on the shortest path is gradually increased. In a link elimination
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technique, links on the shortest paths are removed from the network in sequence to generate

new routes.

The labeling approach of Ben-Akiva et al. (1984) exploits the availability of multiple link

attributes, such as travel time, distance and functional class to formulate different “generalized

cost” functions that produce alternative routes. These routes may be labeled according to the

criteria such as “minimize time,” “minimize distance,” “maximize use of expressways,” etc.,

that yielded it.

Simulation methods produce alternative feasible paths by drawing impedances from dif-

ferent probability distributions. The distribution type (for example, Gaussian, Gumbel, Pois-

son), distribution parameters, number of draws and the seed of the pseudo-random number

generator are design variables. In this paper, we used a Gaussian distribution with a mean

and standard deviation calculated from travel times. (The choice of the Gaussian distribution

was primarily for computational convenience, rather than for any theoretical reason.) Up to

48 draws were simulated for each observation, as this was estimated to take roughly the same

computational time as the link elimination and link penalty algorithms.

2. The Boston data set

We have performed route generation experiments using a highway network database devel-

oped by Central Transportation Planning Staff (CTPS), the Metropolitan Planning Organi-

zation (MPO) for the Boston region. The highway network covers an area of approximately

2,800 square miles where about 4 million inhabitants reside. The network consists of over

800 zones, about 13,000 nodes, and about 34,000 one-way links.

Link attributes in the database include distance, free-flow time, estimated time (that is,

the output of the CTPS traffic assignment model), capacity, number of lanes, tolls, assigned

volume, functional class, presence of government-numbered signage (e.g., Interstate 93, U.S.

Route 1, Massachusetts Route 16), and indicators of security such as neighborhood income

and employment. With these attributes, it is possible to construct many different labels. Of

course, many attributes will be correlated—such as distance, free-flow time and estimated

time.

Route choice data come from a 1997 Transportation Survey of Faculty and Staff conducted

by the MIT Planning Office. Drivers were asked to provide a written description of their

habitual route. When route descriptions contained gaps, the least-distance path was used to

connect known portions of the survey respondent’s route. We omitted observations where

the respondent made stops along the way, or did not provide enough information from which

to construct a coherent route. A total of 188 respondents met the screening criteria and

thus formed the origin-destination pairs on which the various route generation algorithms

described above were performed.

3. Evaluation of choice set generation algorithms

Several variations of the four broad types of route generation algorithms described above

were examined: labeling, link elimination, link penalty and simulation. Table 1 shows the

coverage results of individual labels. That is, each algorithm generates exactly one route

by minimizing a particular label. In the instances where a label has parameters, such as the

trade-off between time and distance, the set of parameters producing the greatest coverage

was used.
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Table 1 Coverage of individual single-route generation algorithms for Boston

Overlap required for coverage

Algorithm description and parameters 100% 90% 80%

1. Least time 64 34% 69 37% 84 45%

2. Least free-flow time 63 34% 70 37% 87 46%

3. Minimize Generalized Cost 62 33% 67 36% 77 41%

Minimize 0.4 ∗ Time + 0.4 ∗ Distance + 0.2 ∗ Toll

4. Minimize V/C-weighted time 61 32% 67 36% 81 43%

Minimize CC Time + 0.8 Time 1(V/C = 0)

+ Time 1(0 < V/C < 0.9) + 0.9 Time 1(V/C ≥ 0.9)

5. Minimize left turns path 58 31% 66 35% 81 43%

Double or triple left turn penalty

6. Maximize capacity-weighted time path 55 29% 64 34% 74 39%

7. Maximize time in secure neighborhoods 55 29% 60 32% 76 40%

Weighted by median income

8. Maximize high capacity roads path 45 24% 50 27% 65 35%

Min (High Cap + 2 Low Cap + CC) Time

9. Turn-penalty hierarchy path 42 22% 49 26% 63 34%

(1.5 min for one level higher or lower)

10. Maximize freeways path 38 20% 46 24% 56 30%

Minimize (Freeway + 2 Expressway + 4 Arterial

+ 4 Local + CC) Time

11. Least distance 38 20% 42 22% 53 28%

12. Minimize number of links 33 18% 55 29% 57 30%

13. Maximize expressways path 33 18% 34 18% 43 23%

Minimize (2 Freeway + Expressway + 2 Arterial

+ 2 Local + CC) Time

14. Maximize arterials path 27 14% 27 14% 30 16%

Minimize (4 Freeway + 2 Expressway + Arterial

+ Local + CC) Time

15. Minimize tolls and turn penalties 18 10% 19 10% 28 15%

16. Minimize stop lights 15 8% 17 9% 26 14%

Combination of all above algorithms 136 72% 143 76% 160 85%

Notes: 188 observations total. Algorithms are sorted in descending order of coverage at the 100 percent overlap
threshold.

From Table 1, we can note that no single label performs very well. Minimizing free-flow

time produces the best results, and even then, less than one-half the respondents appear to

choose a minimum-free-flow-time path. Even fewer appear to follow a minimum-distance

path.

The analyst may be tempted to combine paths generated by multiple labels in hopes

of achieving coverage equal to the sum of each label’s coverage. Unfortunately, this result

requires a very special case. Since link attributes are likely correlated, for some OD pairs, the

least time path might be identical to the least generalized cost path; for another OD pair, the

least free-flow time path might be identical to the Maximize Freeways path. Therefore, the

coverage of multiple labels will be at least the maximum of the individual labels’ coverage,

and at most the sum of each label’s coverage.

It can further be noted that combining the 16 algorithms presented in Table 1 does not

produce a satisfying result, as 15 to 25 percent of observations do not have sufficient overlap
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Table 2 Coverage of multiple-route generation algorithms for Boston

Overlap required for coverage

Algorithm description and parameters 100% 90% 80%

Combination of all labeling algorithms (From Table 1) 136 72% 143 76% 160 85%

Combination of min. distance, free-flow time and time 74 39% 82 44% 97 52%

K-Shortest paths–link penalty 40 unique routes 102 57% 120 67% 143 80%

K-Shortest paths–link penalty 15 unique routes 101 56% 118 66% 139 78%

K-Shortest paths–link elimination 113 60% 119 63% 134 71%

Combination of all above algorithms 156 83% 164 87% 175 93%

Minimize simulated time 48 draws 94 50% 120 64% 148 79%

Minimize simulated time 32 draws 92 49% 115 61% 143 76%

Minimize simulated time 16 draws 82 44% 106 56% 133 71%

Minimize simulated time 8 draws 71 38% 95 51% 121 64%

Combination of all above algorithms 157 84% 165 88% 177 94%

Notes: 188 observations total. Algorithms are sorted by type, and then in descending order of coverage at the
100 percent overlap threshold.

with any of the generated routes, depending on the threshold chosen. Therefore, we examine

algorithms that specifically generate multiple paths, such as the link elimination and link

penalty K-Shortest Path heuristics, and simulation. Results of these algorithms are compared

with labeling in Table 2.

The distributional parameters used for simulating travel times were calculated similarly

to the parameters of generalized cost labels. We found good coverage results when we drew

link travel times from a distribution having a standard deviation twice that of the mean.

Table 2 shows that the K-Shortest Path heuristics do increase coverage over labeling alone.

As expected, the simulation approach shows diminishing returns with respect to the number

of draws. At 48 draws, simulation provides better coverage than the three labels that require

no parameters: distance, free-flow time and estimated time. However, simulation does not

do better than any individual K-Shortest Path heuristics, or the labeling approach with all

16 labels.

In evaluating route choice generation algorithms, we also need to consider computational

performance. An algorithm that yields a five percent increase in the number of observations

covered may not be cost-effective if it takes months to run, for example. The results of

computational time experiments are shown in Table 3 below. Minimizing one label is the

fastest, as this simply requires a call to the built-in shortest-path routine. Minimizing a

Table 3 Computational time of alternative algorithms

Algorithm description Time for 1 OD pair Time for 188 OD pairs

Minimize one label 32 s∗ 1 h 40 min

Minimize a random draw 35 s∗ 1 h 50 min

Minimize 48 random draws 3 min 20 s∗ 10 h 30 min

Link elimination (DynaMIT) 7 min 22 h∗

Link penalty (De la Barra) for 15 unique routes 25 min 3 d 6 h∗

Link penalty (De la Barra) for 40 unique routes 1 h 40 min 13 d∗

Notes: ∗ Indicates a calculated quantity. Computational experiments were conducted using TransCAD
3.1 on a 400 MHz Pentium II workstation with 256 MB RAM running Windows NT 4.0.
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random draw is almost as fast; time must be allowed to make the draws of random travel

time before constructing the shortest paths. The link elimination and link penalty heuristics,

which involve multiple shortest-path calls, take successively longer.

All algorithms were run with conventional transportation software (TransCAD), which is a

GIS platform. Therefore, the results shown may be affected by the GIS file structure. The link

penalty approach seems to perform particularly poorly because updating the costs on a few

links requires re-writing the whole network database. In comparison, the link elimination

heuristic can be fairly efficiently implemented—a “link in use” bit can be turned on or

off.

The long computational times of the link penalty approach disqualified it from further

consideration. We also had reservations about the realism of paths generated by the link

elimination approach. Since we eliminated only one link at a time, it was feared the other

generated paths would closely resemble the original shortest path, with the exception of a

brief deviation. We were pleased with the computational time of the simulation algorithm,

and its ease of implementation. By considering both coverage and computational time, we

decided to use simulation with 48 draws and labeling with the three parameter-free objective

functions for our “final” choice set generation. Other labels produced paths similar to those

from minimizing distance, free-flow time or estimated time.

Practitioners may be concerned that the simulation algorithm we selected may still be

to slow for realistic applications. Fortunately, path generation needs only be run once for

each estimation data set; paths can be stored, making it much quicker to calculate path

attributes from “new” link variables. Similarly, for forecasting, it is only necessary to gen-

erate paths once per network configuration. When considering highway construction al-

ternatives, path sets for build alternatives can be created efficiently by generating paths

that are encouraged (through strategic choice of label or link attribute values) or con-

strained to use the new links, and combining this new set of paths with the base case path

set.

The choice set generation procedure selected for route choice estimation generated up to

51 alternative routes: from three deterministic labels and 48 random draws. Some origin-

destination pairs would have fewer alternatives available, as some labels or draws might

yield duplicate paths. The distribution of the number of unique paths in the choice sets of the

188 auto users in our sample is shown in Figure 1. It can be seen that the median size of the

generated choice set is about 30 routes, and that about one-quarter of the observations have

a choice set with 40 or more feasible routes.

Also notice that some observations have a very small choice set. These observations

generally correspond to employees who live close to the MIT campus. The density of streets

in the network is such that these people have few reasonable alternative routes to MIT. That is,

the nearest parallel facility may be quite far from the best route, when considered in relation

to the total distance between origin and destination. After eliminating observations with only

a single route in the choice set, 159 observations were selected to compose the estimation

data set.

Figure 2 shows the distribution of the number of links in the choice sets of the

159 respondents used to estimate route choice models. The number of links is an impor-

tant statistic because it determines the complexity of some of the route choice models,

as explained further in this paper. The observation using the greatest number of links has

856 links in its choice set. The smallest choice set among the 159 respondents has 19

links.

The large variation in the number of links is heavily dependent on the distance between

the origin and destination. All observations have a common destination (MIT), but a variety
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Fig. 1 Cumulative distribution of choice set size

Fig. 2 Distribution of links in choice sets

of origins. Thus, a more distant origin will have a larger number of links in its choice set for

two reasons: (1) because it is more distant, a driver will need to traverse more links to reach

his or her destination; and (2) because of the greater distance between origin and destination,

the driver will likely have more alternative paths available.
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4. Route choice models

The deterministic shortest path is the simplest route choice model, which is used in deter-

ministic traffic assignment models. The multinomial Logit (MNL) and Probit models were

proposed long ago as generalizations to the deterministic model. Probit is based on the normal

(or Gaussian) distribution, and thus requires simulation. In comparison, MNL is based on

the Gumbel distribution and has a well-known analytical form. However, the MNL model is

not suitable to model route choice, because it cannot account for similarities among routes.

Several types of models have been recently proposed to overcome the MNL drawbacks.

These models represent modifications or generalizations of the Logit structure. C-Logit,

proposed by Cascetta et al. (1996) and Path-Size Logit (PSL) presented in Ben-Akiva and

Bierlaire (1999) may be considered modifications to the MNL model, as they add a correction

term to path utilities but maintain the MNL model structure. Thus, they can be estimated

using existing Logit software.

The Cross-Nested Logit (CNL) model of Vovsha (1997) and the Paired Combinatorial

Logit (PCL) model of Chu (1989) were adapted for route choice situation in Prashker

and Bekhor (1998). Gliebe, Koppelman, and Ziliaskopoulos (1999) also adapted the PCL

model for route choice. These models have a more general (and therefore more com-

plex) error structure. These models are members of the Generalized Extreme Value (GEV)

family of models developed by McFadden (1978), which also includes MNL and Nested

Logit.

Some researchers have examined the suitability of the Probit model for route choice.

Because the Probit model is based on error terms having a multivariate normal distribution—

as opposed to a Type I Extreme Value distribution as assumed in MNL and other GEV

models—an arbitrary covariance structure may be specified. Daganzo and Sheffi (1977)

were the firsts to use the Multinomial Probit (MNP) to model route choice.

Yai, Iwakura, and Morichi (1997) provide a recent example of an application of the

MNP route choice model in Japan. The authors assume the covariance of route utilities is

proportional to overlap length. Routes are also assumed to have heteroskedastic error terms

where variance is proportional to route length or impedance.

Choice models with combinations of Gaussian and Type I Extreme Value error terms have

been proposed by researchers such as McFadden and Train (1998), who call the resulting

model Mixed Logit, and by Ben-Akiva and Bolduc (1996), who refer to the resulting system

as Multinomial Probit with Logit Kernel, or simply Logit Kernel. These models are specified

so that if cross-alternative correlations are estimated to be zero, the model reduces to MNL.

Bekhor, Ben-Akiva, and Ramming (2002) presented an adaptation of the Logit Kernel model

to route choice.

The following sections present in brief two route choice models: the Path-Size Logit

Model and the Cross-Nested Logit model. These two models were purposely selected to

exemplify the differences in the model structures. Furthermore, estimation results of these

models will be compared against the simple MNL model. For a full review on the different

route choice models, see Ramming (2001).

5. The path-size logit model

The Path-Size Logit model is similar to C-Logit in that a correction term is added to a path’s

utility. However, PS-Logit has a different theoretical basis. The notion of “size” comes from

the theory of aggregate alternatives, which was first employed for destination and residence
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choice. However, unlike destination choice, where zones may have a size representing thou-

sands of elemental destinations (e.g., workplaces), the largest size a path may have is one.

The log of the path size is added to the path utility to form the Path-Size Logit model from

MNL:

P(i |Cn) = eVin+ln PSin∑
j∈Cn

eVjn+ln PS jn
= PSin eVin∑

j∈Cn
PS jn eVjn

(1)

Where: PSin is the size of path i for person n; Vin is the utility of path i for person n; Cn is

the path-set for person n.

A path with no overlapping links needs no utility adjustment and has a size of one. The

extreme case of two paths being created by “duplicating” or “splitting an existing path down

the middle” results in each having a size of one-half. Path sizes may be calculated based on

the length of links within a path, and the relative lengths of paths that share a link. Therefore,

the calculation of path sizes is dependent on the specification of the choice set. We propose

the following definition for the Path-Size as follows:

PSin =
∑
a∈�i

(
la

Li

)
1∑

j∈Cn

Lγ

i

Lγ

j
δaj

(2)

Where: a indexes links (arc); �i is the set of links in path i; la is the length of link a; Li is

the length of path i, so Li = ∑
a∈�i

la ; δaj = 1 if path j uses link a and 0 otherwise; γ is a

parameter to be calibrated.

Note that when γ = 1 is similar to the Ben-Akiva and Bierlaire (1999) definition:

PSin =
∑
a∈�i

(
la

Li

)
1∑

j∈Cn

L∗
Cn

L j
δaj

(3)

Where: L∗
Cn

= mink∈Cn Lk , that is, the length of the shortest path in Cn .

6. The cross-nested logit model

The Cross-Nested Logit model is a member of the broad Generalized Extreme Value (GEV)

model. Assumptions and properties of the GEV model are discussed in Ben-Akiva and

Lerman (1985), and are beyond the scope of this discussion. The Cross-Nested Logit model

differs from the well-known Nested Logit model in that lower-level alternatives may belong

to more than one nest. That is, we define a set of parameters αmi for each alternative i and

each nest m (0 < αmi < 1), which represents the degree of “membership” or the inclusion

weight of alternative i in nest m. The sum of αmi over all nests is generally normalized to one

for each lower-level alternative, i. The choice probabilities of the Cross-Nested Logit model

are as follows:

Pi = eVi
∑

m αim
(∑

i αim eVi
)μ−1∑

m

(∑
i αim eVi

)μ (4)
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Where μ is the nesting coefficient. As with the Nested Logit model, when the nesting coef-

ficient is equal to 1, the model collapses to the simple MNL model. It is possible to rewrite

the expression for the choice probability as follows:

Pi =
∑

m

Pi |m · Pm (5)

Where the conditional probability of a route i being chosen in link (nest) m is:

Pi |m = αim eVi∑
i αim eVi

(6)

And the marginal probability of a nest m being chosen is:

Pm =
(∑

i αim eVi
)μ∑

m

(∑
i αim eVi

)μ (7)

The CNL model is adapted to route choice situation by suitably defining the inclusion coef-

ficients as dependent on network topology as follows:

αmi =
(

lm

Li

)γ

δmi (8)

Where γ is parameter to be calibrated. In this paper, we assumed γ = 1 for convenience.

Note that the dimension of this parameter may be quite large for real size networks. Recall

that in the data set used in this paper, the dimension of this parameter is 856 (maximum

number of links for a single observation) times 51 (maximum number of alternatives).

Vovsha and Bekhor (1998) and Papola (2000) estimated CNL models using constant

values of μ. Prashker and Bekhor (1998), Papola (2000), and Wen and Koppelman (2001)

cite difficulties of making this assumption. Nest-specific μm may be estimated if there is

sufficient data for their identification. Bekhor and Prashker (2001) proposed the following

formulation based on path topology:

μm = 1 −
∑

i αmi∑
i δmi

(9)

7. Estimation results

Table 4 below presents the best estimates obtained for 4 route choice models: MNL, PSL, and

two CNL models. Parameter estimates are shown in bold, followed by t-statistics. T -statistics

are for the hypothesis of a zero parameter value. For the ln(Path Size) terms, an additional

t-statistic is calculated for the null hypothesis that the coefficient equals one.

Explanatory variables include not only well-known variables such as travel time and

distance, but also variables related to network knowledge, such as time spent on government-

numbered routes. Further insight on the explanatory variables can be found in Bekhor,

Ben-Akiva, and Ramming (2002) and Ramming (2001). In this paper, we skip the discussion

on the explanatory variables for brevity. Note that all utility parameter estimates and their

standard errors are in the same order of magnitude. Therefore, we focus on measures of model

fit, which help us evaluate the usefulness of the Path Size and Cross-Nested specifications.
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Table 4 Estimation results

Variable MNL PSL CNL CNL

1. Distance (miles) −0.253 −0.212 −0.252 −0.224

−2.4 −2.1 −2.5 −2.3

2. Free-flow time (minutes) −0.601 −0.513 −0.553 −0.474

−6.6 −6.3 −6.5 −6.0

3. Path uses mass. pike (dummy) −0.640 −0.490 −0.530 −0.370

−0.9 −0.8 −0.8 −0.6

4. Path uses tobin bridge (dummy) 2.90 2.75 2.79 2.75

3.1 3.1 3.1 3.2

5. Path uses sumner tunnel (dummy) 2.18 1.92 2.06 1.92

1.8 1.7 1.8 1.7

6. Ln(delay) for no income reported −5.13 −4.45 −4.80 −4.26

−2.6 −2.5 −2.6 −2.6

7. Ln(delay) for income < $100,000 per year −0.205 −0.583 −0.191 −0.506

−0.5 −1.4 −0.4 −1.2

8. Ln(delay) for income >= $100,000 per year −2.562 −2.676 −2.542 −2.624

−2.7 −3.0 −2.8 −3.0

9. Time spent on government-numbered route 0.112 0.090 0.098 0.078

3.5 2.9 3.1 2.6

10. Path with least distance label (dummy) 1.056 0.759 0.987 0.728

4.2 3.0 4.0 3.0

11. Path with least estimated time (dummy) 0.971 0.377 0.881 0.382

4.3 1.5 4.0 1.6

12. Ln(path size) based on FF time, γ = ∞ 0.730 0.617

t-statistic w/r/t 0 6.0 5.2

t-statistic w/r/t 1 −2.2 −3.2

Number of observations 159 159 159 159

Initial log-likelihood −519.7 −519.7 −519.7 −519.7

Final log-likelihood −410.8 −393.1 −404.1 −390.6

Number of parameters 11 12 11 12

Rho-Bar squared 0.188 0.221 0.201 0.225

Notice that the model with only the Path Size term outperforms the model with only

the Cross-Nested Logit structure. (Using Horowitz’s, 1983, non-nested hypothesis test, the

probability that CNL is the correct model given the results in Table 4 is about 0.15 thousandths

of a percent!) This is interesting for several reasons. First, the PSL model is more easily

estimated than the CNL model; with PSL, the Path Size term can be calculated after the path

enumeration step and used in standard MNL estimation software. CNL estimation requires

specialized code. Commensurate with its complexity, CNL takes longer computational time

to estimate. Theoretically, the Path Size term may be thought of as an approximation to CNL

as suggested by the model structures presented in the paper.

Why then does the PSL model out perform the CNL model? One reason may be that the

PSL term has been calibrated with a value of γ = infinity. The CNL specifications estimated in

Table 4 above may be more similar to a Path Size term with γ = 1. The log-likelihood for the

PSL model γ = 1 (not presented in the table) is −409.9. Therefore, CNL is an improvement

over PSL with a corresponding specification. Also note that CNL has a better fit than the

MNL model, which has a log-likelihood of −410.8.

Also note that the models with both CNL and Path Size specifications out-perform both

“pure” CNL and PSL. (The t-statistic of the Path Size coefficient provides a nested hypothesis
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test comparing the CNL model without Path Size to the one with Path Size. Horowitz’s

non-nested hypothesis test reveals a 2.1 percent probability the PSL-only model should be

preferred to the CNL with Path Size specification.) This observation may be related to the

need to further calibrate the CNL models.

8. Conclusions

This paper focused on the problem of estimating a route choice model for a large network.

The approach of the paper was to first generate a choice set and use this choice set to estimate

the model parameters.

The choice set generation method proposed falls in the class of deterministic methods.

The advantage of such method is that can be applied for any urban network with existent

resources, since it is based on successive shortest path calculations using travel time and

distance variables.

Several route choice models were proposed to overcome the MNL drawbacks. The Path-

Size Logit model was proposed to model route choice since it can capture overlapping among

routes, and it can be estimated using conventional software. The model estimation included

also network knowledge variables, in addition to standard travel time and distance variables.

The initial results presented in this paper suggest that route choice models may be estimated

for large urban networks at relatively modest computing resources.

References

Bekhor, S., Ben-Akiva, and M.S. Ramming (2002). “Adaptation of Logit Kernel to Route Choice Situation.”
Transportation Research Record, 1805, 78–85.

Bekhor, S. and J. Prashker (2001). “Stochastic User Equilibrium Formulation for the Generalized Nested Logit
Model.” Transportation Research Record, 1752, 84–90.

Ben-Akiva, M., M.J. Bergman, A.J. Daly, and R. Ramaswamy (1984). “Modelling Inter Urban Route Choice
Behaviour.” In J. Volmuller and R. Hamerslag (eds.), Proceedings of the 9th International Symposium on
Transportation and Traffic Theory, VNU Press, Utrecht, pp. 299–330.

Ben-Akiva, M. and M. Bierlaire (1999). “Discrete Choice Methods and Their Applications to Short Term
Travel Decisions.” In R.W. Hall (ed.), Handbook of Transportation Science.

Ben-Akiva, M. and D. Bolduc (1996). “Multinomial Probit with a Logit Kernel and a General Parametric
Specification of the Covariance Structure.” Working Paper, 1996.

Ben-Akiva, M. and S.R. Lerman (1985). Discrete Choice Analysis: Theory and Application to Travel Demand,
Cambridge, MA: MIT Press.

Cascetta, E., A. Nuzzolo, F. Russo, and A. Vitetta (1996). “A Modified Logit Route Choice Model Overcoming
Path Overlapping Problems: Specification and Some Calibration Results for Interurban Networks.” In J.B.
Lesort (ed.), Transportation and Traffic Theory. Proceedings from the Thirteenth International Symposium
on Transportation and Traffic Theory, Lyon, France, Pergamon pp. 697–711.

Chu, C. (1989). “A Paired Combinatorial Logit Model for Travel Demand Analysis.” In Proceedings of the
5th World Conference on Transportation Research, 4, Ventura, CA, pp. 295–309.

Daganzo, C.F. and Y. Sheffi (1977). “On Stochastic Models of Traffic Assignment.” Transportation Science,
11, 253–274.

De la Barra, T., B. Perez, and J. Anez (1993). “Multidimensional Path Search and Assignment.” In Proceedings
of the 21st PTRC Summer Meeting, pp. 307–319.

Gliebe, J.P., F.S. Koppelman, and A. Ziliaskopoulos (1999). Route Choice Using a Paired Combinatorial Logit
Model, presented at the 78th TRB Meeting, Washington D.C.

Horowitz, J.L. (1983). “Statistical Comparison of Non-Nested Probabilistic Discrete Choice Models.” Trans-
portation Science, 17, 319–350.

McFadden, D. (1978). “Modeling the Choice of Residential Location.” In A. Karlqvist et al. (eds.), Spatial
Interaction Theory and Residential Location, North Holland, Amsterdam pp. 75–96.

Springer



Ann Oper Res (2006) 144:235–247 247

McFadden, D. and K. Train (2000). “Mixed MNL Models for Discrete Response.” Journal of Applied Econo-
metrics, 15(5), 447–470.

Papola A. (2000). “Some Development of the Cross-Nested Logit Model.” In Proceedings of the 9th IATBR
Conference. Gold Coast, Australia.

Prashker, J.N. and S. Bekhor (1998). “Investigation of Stochastic Network Loading Procedures.” Transporta-
tion Research Record, 1645, 94–102.

Ramming, M.S. (2001). “Network Knowledge and Route Choice.” Unpublished Ph.D. Thesis, Massachusetts
Institute of Technology.

Vovsha, P. (1997). “The Cross-Nested Logit Model: Application to Mode Choice in the Tel-Aviv Metropolitan
Area.” Transportation Research Record, 1607, 6–15.

Wen, C. and F. Koppelman (2001). “The Generalized Nested Logit Model.” Transportation Research Part B:
Methodological, 35(7), 627–641.

Yai, T., S. Iwakura, and S. Morichi (1997). “Multinomial Probit with Structured Covariance for Route Choice
Behavior.” Transportation Research Part B, 31, 195–207.

Springer



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


