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Abstract

This paper characterizes the optimal way for a principal to structure a rank-order

tournament in a moral hazard setting (as in Lazear and Rosen (1981)). We �nd that

it is generally optimal to give rewards to top performers that are smaller in magnitude

than corresponding punishments to poor performers. The paper identi�es four reasons

why the principal might prefer to give larger rewards than punishments: (i) R is small

relative to P (where R is risk aversion and P is absolute prudence); (ii) the distribution

of shocks to ouput is asymmetric and the asymmetry takes a particular form; (iii) the

principal faces a limited liability constraint; and (iv) there is agent heterogeneity of

a particular form. An intuition is given as to why these factors a¤ect the optimal

prize schedule. Using the theory developed by Green and Stokey (1983), we relate the

results about tournaments to the structure of the optimal individual contract. The

optimal individual contract typically punishes low output more than it rewards high

output. We also give conditions under which the optimal individual contract will be

a concave function of output.
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1 Introduction

Lazear and Rosen (1981) argue that rank-order tournaments help to solve a moral hazard

problem faced by �rms. Lazear-Rosen tournaments have been interpreted as explaining

many features of �rms, such as within-�rm job promotions, wage increases, bonuses, and

CEO compensation (Prendergast (1999)).

This paper attempts to characterize the optimal way to structure a tournament that is

set up by a principal to deal with a moral hazard problem. These results have considerable

practical signi�cance. They allow us to test whether aspects of employee compensation arise

because of or in spite of the moral hazard theory of tournaments.

We �nd that, typically, the optimal prize schedule gives special rewards to a few of the

best performers, special punishments to a few of the worst performers, and somewhat smaller

rewards/punishments for those whose performance is neither at the top nor bottom of the

distribution. Furthermore, the reward for placing ith in the tournament rather than (i+1)th

is smaller than the punishment for placing (n � i + 1)th rather than (n � i)th (where n is

the number of agents in the tournament) when i � n�1
2
. In particular, this means that the

punishments for the worst performers are greater in magnitude than the rewards for the best

performers.

The particular shape of the optimal prize schedule depends greatly upon the distribution

of the shocks to agents� output. We �nd that a set of weights, f�igni=1, which can be

calculated solely based upon the shock distribution, encapsulates the e¤ect of the shock

distribution on the optimal prize schedule. The weight �i is equal to the marginal change

in placing ith in the tournament from a marginal change in e¤ort. In fact, when agents�

utility for wealth is logarthmic, the optimal prize schedule is simply an a¢ ne transformation

of the weight schedule.1

While, in general, optimal tournaments punish more than they reward, there are four

factors that lead the rewards to be large relative to the punishments. We �nd that the

1When utility for wealth is logarithmic and the shock distribution is symmetric (in the sense that F (�x) =
1 � F (x)), we �nd that the rewards for the best performers are exactly equal to the punishments for the
worst performers.
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amount of punishment relative to reward depends upon the size of R relative to P , where

R is Arrow-Pratt risk aversion and P is the coe¢ cient of absolute prudence. When R is

su¢ ciently low relative to P , it may be optimal for the principal to give larger rewards than

punishments.2 If the principal faces a limited liability constraint (a constraint on how much

agents can be punished), this may limit the principal�s ability to punish and lead the principal

to rely more heavily upon rewards to incentivize agents. The optimal size of rewards relative

to punishments also depends upon the distribution of the shocks to agents�output. If the

shock distribution is asymmetric (F (x) 6= 1�F (x)) in a manner to be de�ned below, it may

be optimal to give large rewards relative to punishments. Finally, if the agents participating

in the tournament are heterogeneous in a manner to be de�ned below, the principal may

wish to give large rewards. Associated with each of these four factors is a distinct intuition

that we will attempt to convey below.

While it is generally optimal for the principal to punish more than reward, the principal

still gives special rewards to top performers in such cases. In order to examine the importance

of rewards relative to punishments as tools to the principal for incentivizing agents, we look

at tournaments that give a prize w1 to the top j performers and a prize w2 to the bottom n�j

performers. We �nd that, in general, the principal chooses j � n
2
. Furthermore, a winner-

take-all tournament (j = 1) is usually a less pro�table way to structure a tournament than

a loser-lose-all tournament (j = n � 1). When the shocks to agents�output are uniformly

distributed, j� = n� 1. While j� is not necessarily equal to n� 1 when the shocks follow a

non-uniform distribution, it is often the case.

These results speak, to some extent, to the importance of punishment as a tool to the

principal. Perhaps more importantly, however, we �nd that the optimal two-prize tourna-

ment returns a pro�t to the principal that closely approximates the pro�t from the optimal

n-prize tournament. The pro�ts to the principal from non-optimal choices of j are gen-

erally far from the pro�ts from the optimal n-prize tournament. A consequence of this

2The concept of absolute prudence is due to Kimball (1990) who analyzes its role on precautionary saving
in a dynamic model. The relationship between risk aversion and absolute prudence has been explored in a
variety of settings di¤erent to ours (see, for example, Carroll and Kimball (1996) and Caplin and Nalebu¤
(1991)).
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�nding is that the optimal loser-lose-all tournament often returns a pro�t that is close to

the pro�t from the optimal tournament. This cannot be said of the optimal winner-take-all

tournament.

Using the theory developed by Green and Stokey (1983), we are able to relate our results

about the optimal tournament prize structure to the structure of the optimal individual

contract. When optimal tournaments gives larger punishments than rewards, the optimal

individual contract also uses more punishment than reward. In the special case where the

shocks to output follow a normal distribution, the optimal individual contract is generally

concave.

The paper will proceed as follows. Section 2 provides a brief review of the existing

literature. Section 3 gives the basic setup of the model and states the problem of the

principal designing the tournament. Section 4 establishes the main results of the paper,

giving a partial characterization of the optimal prize schedule. Section 5 considers the case

in which the principal is limited to awarding only two types of prizes. Section 6 considers

the factors that might make it optimal to give larger rewards to winners than punishments

to losers. Section 7 considers the implications of our results for the structure of the optimal

individual contract. Section 8 contains some concluding remarks.

2 Brief Literature Review

Classic treatments of tournaments are given by Lazear and Rosen (1981), Green and

Stokey (1983) and Nalebu¤ and Stiglitz (1983). The two papers most closely related to

this one are Krishna and Morgan (1998) and Moldovanu and Sela (2001). They also focus

on optimal prize structures in rank-order tournaments. While the assumptions made in

these papers di¤er from those of Lazear and Rosen (1981), the results are generally seen

as applicable to the Lazear-Rosen context. Both of these papers conclude that optimally

designed tournaments give a special prize to top performers. In fact, they suggest that

roughly the same prize should be given to all but a few of the best performers.

In contrast, we �nd that it is often optimal for the principal to rely more heavily on
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punishing poor performers than rewarding those who perform well. In fact, we �nd that the

principal would often prefer a loser-lose-all tournament (in which only the worst performer

receives a di¤erent prize from others) to a winner-take-all tournament (in which only the

best performer receives a di¤erent prize from others). We see our di¤erence in results as due

to important deviations that Krishna and Morgan (1998) and Moldovanu and Sela (2001)

have made from the standard moral hazard setting.

Krishna and Morgan (1998) have an ex post participation constraint rather than the

standard ex ante participation constraint. This means that the principal must make sure

that an agent receives a certain utility ex post rather than in expectation. With an ex

ante participation constraint, giving more to agents with high rank in the tournament allows

the principal to give less to agents with low rank.3 This is not the case with an ex post

participation constraint.

In an elegant paper, Moldovanu and Sela (2001) seek to explain prize structures in tour-

naments within the framework of private value all-pay auctions. This is formally similar to

models analyzed by Weber (1985), Glazer and Hassin (1988), Hillman and Riley (1989), Kr-

ishna andMorgan (1997), Clark and Riis (1998) and Barut and Kovenock (1998). Moldovanu

and Sela (2001) analyze a model where contestants have di¤erent costs of exerting e¤ort,

which is private information. The contest designed seeks to maximize the sum of the e¤orts

by determining the allocation of a �xed purse among the contestants. They show that if the

contestants have linear or concave cost of e¤ort functions then the optimal prize structure

involves allocating the entire prize to the �rst-place getter. With convex costs, entry fees,

or minimum e¤ort requirements, more prizes can be optimal.

With this approach, there is a deterministic relationship between action choice and out-

put. Therefore, agents�attitudes to risk play no role. This contrasts sharply with the

stochastic relationship which is present in the Lazear-Rosen framework.

3Since an agent has some chance of achieving any rank, giving more for high rank increases an agent�s
expected utility. Since the PC is binding in equilibrium, this allows the principal to give less for low rank.
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3 The Model

In this section, we will give the setup of the problem. The assumptions that we make

should be very familiar: they are the same assumptions as those made by Lazear and Rosen

(1981), Green and Stokey (1983) and Nalebu¤ and Stiglitz (1983).

3.1 Statement of the Problem

We will consider a world in which there are n agents available to compete in a rank-order

tournament. This tournament is set up by a principal whose goal is to maximize her expected

pro�ts. The principal pays a prize wi to the agent who places ith in the tournament. The

pro�ts which accrue to the principal are equal to the sum of the outputs of the participating

agents minus the amount she pays out: � =
Pn

i=1(qi � wi): We assume that the principal

is risk neutral. At least for now, we will assume that agents are homogeneous in ability. If

agent j exerts e¤ort ej; her output is given by qj = ej + "j + �, where "j and � are random

variables with mean zero and distributed according to distributions F and G respectively.

We assume that the "j�s are independent of one another and �. We will refer to � as the

�common shock�to output and "j as the �idiosyncratic shock�to output. Since rank-order

tournaments �lter out the noise created by common shocks but individual contracts do not,

rank-order tournaments are considered most advantageous when common shocks are large.4

We will assume that agents have utility that is additively separable in wealth and e¤ort5.

If agent j places ith in the tournament, her utility is given by: u(wi) � c(ej) where u0 �

0; u00 � 0; c0 � 0; c00 � 0: Agents have an outside option which guarantees them �U; so unless

the expected utility from participation is at least equal to �U , agents will not be willing to

participate.

The timing of events is as follows. Time 1: the principal commits to a prize schedule

4See Holmström (1982) for a de�nitive treatment of relative performance evaluation individual contracts.
He shows that an appropriately structured individual contract with a relative performance component dom-
inates a rank-order tournament for n �nite. Green and Stokey (1983) prove convergence of optimal tourna-
ments to the individual contract second-best as n!1 when there are no common shocks.

5This implies that preferences for income lotteries are independent of action and that preferences for action
lotteries are independent of income (Keeney (1973)). Among other things, this rules out the possibility that
stochastic contracts are optimal.
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fwigni=1: Time 2: agents decide whether or not to participate. Time 3: if everyone has

agreed to participate at time 2, individuals choose how much e¤ort to exert. Time 4:

output is realized and prizes are awarded according to the prize schedule set at time 1.6

3.2 Solving the Model

We will restrict attention to symmetric pure strategy equilibria (as do Green and Stokey

(1983) and Krishna and Morgan (1998)). While we cannot rule out the possibility of other

equilibria, a unique symmetric pure strategy equilibrium generally exists.7 In a symmetric

equilibrium, every agent will exert e¤ort e�. Furthermore, every agent has an equal chance

of winning any prize. Thus, an agent�s expected utility is

1

n

X
i

u(wi)� c(e�)

In order for it to be worthwhile for an agent to participate in the tournament, it is necessary

that
1

n

X
i

u(wi)� c(e�) � �U

An agent who exerts e¤ort e while everyone else exerts e¤ort e� receives expected utility

U(e; e�) =
X
i

'i(e; e
�)u(wi)� c(e)

where 'i(e; e
�) = Pr(ith placeje; e�);

The problem faced by an agent is to choose e to maximize U(e; e�): The �rst-order condition

for this problem is

c0(e) =
X
i

@

@e
'i(e; e

�)u(wi)

By assumption, the solution to the agent�s maximization problem is e = e�. If the

6It is sometimes assumed that agents learn the size of the common shock after choosing to participate.
This makes a di¤erence when the principal incentivizes agents with individual contracts but makes no
di¤erence when the principal incentivizes agents with a tournament, which �lters out common shocks.

7The appendix to Nalebu¤ and Stiglitz (1983) contains a detailed discussion of mixed strategy equilibria
in tournaments.
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�rst-order condition gives the solution to the agent�s maximization problem, it follows that

c0(e�) =
X
i

�iu(wi)

where �i =
@

@e
'i(e; e

�)

����
e=e�

We will often refer to the �i�s as �weights.� The �i�s do not depend upon e
� but simply

upon the distribution function F . Proposition 1 gives a formula for �i and some additional

properties.

Proposition 1 The following is a formula for �i as a function of F and the corresponding

pdf, f :

�i =

�
n� 1
i� 1

�Z
R

F (x)n�i�1(1� F (x))i�2 ((n� i)� (n� 1)F (x)) f(x)2dx

For all F ,
P

i �i = 0, �1 � 0, and �n � 0. If F is symmetric (F (�x) = 1 � F (x)),

�i = ��n�i+1 for all i.

If F is a uniform distribution on [��
2
; �
2
], �1 = ��n = 1

�
and �i = 0 for 1 < i < n.

Proposition 1 shows that the weight schedule for the uniform distribution is completely

�at in the middle and spikes at the top and bottom. We �nd that many other distributions

have weight schedules that are relatively �at in the middle and spike at the top and bottom.

The normal distribution has this pattern. Figure 1 gives a plot of the weights for a normal

distribution with standard deviation of 1 and n = 200.
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­0.01
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0
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Figure 1: Weights for the Normal

While the weights associated with uniformly-distributed and normally-distributed noise

are always decreasing in i, the weights need not be monotonic. When the noise distribution

is not single-peaked, non-monotonicities tend to arise. It should be noted that, while the

weights can be increasing in i over some range, the weights cannot be increasing over the

entire range. As Proposition 1 shows, �1 > �n unless �1 = �n = 0. As we will see in the

next section, non-monotonicities in the weights lead to non-monotonicities in the optimal

prize schedule.

In general, the agents��rst-order condition may or may not give the solution to the

agents�maximization problem. In order for the �rst-order condition to give the solution,

the second-order must be satis�ed. Proposition 2 gives conditions under which the second-

order condition will be satis�ed at e = e�:

Proposition 2 Suppose that F is symmetric (F (�x) = 1�F (x)), u(wi)�u(wj) � u(wn�j+1)�

u(wn�i+1) for all i � j � n+1
2
, and

Pj
i=1 
i � 0 for all j � n

2
, where


i =

�
n� 1
i� 1

�Z
R

(F (x))n�i�2 (1� F (x))i�3

266664
(n� i)(n� i� 1)

�2(n� i)(n� 2)F (x)

+(n� 1)(n� 2)F 2(x)

377775 f 3(x)dx
+

�
n� 1
i� 1

�Z
R

F (x)n�i�1 (1� F (x))i�2 ((n� i)� (n� 1)F (x)) f(x)f 0(x)dx

Then, the agents�second-order condition is satis�ed at e = e�.

The condition on the 
i�s holds when F is a uniform, normal, or Cauchy distribution.

In the next section we will give conditions under which the principal will choose a prize

schedule for which u(wi)� u(wj) � u(wn�j+1)� u(wn�i+1) for all i � j � n+1
2
when agents

act according to the �rst-order condition.

Proposition 2 gives a necessary but not su¢ cient condition for the agents to act according

to the �rst-order condition. When F has su¢ ciently low variance, the prize schedule the

principal would choose under the assumption that agents act according to their �rst-order
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condition leads the agents to exert zero e¤ort (which violates the agents��rst-order condi-

tion).8 In this case, the second-order condition may be satis�ed at e = e� but is not satis�ed

for all e. This issue stems from the fact that, when F has low variance, it is di¢ cult to

tell whether the agent with the lowest rank has slightly low output or very low output. For

a given F , rank becomes an increasingly informative signal of output as n increases (this

result is due to Green and Stokey (1983)). We believe, therefore, that this particular issue

disappears either when n is large or when the variance of F is high. This said, however,

we will not o¤er a su¢ cient condition in the paper for the agents to act according to the

�rst-order condition.

Now that we have elaborated the agents�problem, we turn to the principal�s problem. We

have assumed that the principal is risk neutral. This implies that the principal�s objective

is to maximize expected pro�ts

E(�) =
X
j

ej �
X
i

wi = n

 
e� � 1

n

X
i

wi

!
:

If the agents��rst-order condition is equivalent to the agents�incentive compatibility con-

straint, the problem of the principal can be stated as follows

max
wi

 
e� � 1

n

X
i

wi

!

subject to

1

n

X
i

u(wi)� c(e�) � �U (IR)

c0(e�) =
X
i

�iu(wi) (IC)

Substituting (c0)�1 (
P

i �iu(wi)) for e
�, and u�1(ui) for wi, we can rewrite the principal�s

8For a detailed discussion of this issue, see Nalebu¤ and Stiglitz (1983), Theorem 4.
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problem as:

max
ui

 
(c0)�1

 X
i

�iu(wi)

!
� 1

n

X
i

u�1(ui)

!

subject to

�U � 1

n

X
i

ui + (c
0)�1

 X
i

�iu(wi)

!
� 0

The Lagrangian associated with this maximization problem is:

L =
 
(c0)�1

 X
i

�iui

!
� 1

n

X
i

u�1(ui)

!
� �

 
�U � 1

n

X
i

ui + c

 
(c0)�1

 X
i

�iui

!!!

Just as the agents��rst-order condition does not necessarily solve the agents�maximiza-

tion problem, the �rst-order conditions of the Lagrangian may not solve the principal�s

maximization problem. The following Lemma gives a condition under which the principal

will act according to the �rst-order conditions of the Lagrangian.

Lemma 1 Let s(u1; :::; un) = (c0)�1 (
P

i �iui)� 1
n

P
i u

�1(ui) and l(u1; :::; un) = �U� 1
n

P
i ui+

c ((c0)�1 (
P

i �iui)). If c000 � 0 and c00

c0 �
c000

c00 , then s is concave and l is convex. Therefore,

if c000 � 0, c00
c0 �

c000

c00 , and (u1; :::; un; �) satis�es the Kuhn-Tucker conditions of L, (u1; :::; un)

solves the principal�s problem.

These conditions on the cost of e¤ort function are somewhat restrictive, but they do hold

for all functions of the form c(e) = de� for which � � 2.

4 The Optimal Prize Schedule

We will begin by giving a partial characterization of the principal�s optimal prize sched-

ule. It will be shown that, when u has the property that R � P
2
(R is risk aversion and P is

absolute prudence), the noise distribution is symmetric, and the weights are monotonic, the

rewards given at the top of the prize schedule are smaller than the punishments given at the
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bottom of the prize schedule. When R � P
2
, the noise distribution is symmetric, and the

weights are monotonic, the rewards given at the top of the prize schedule are larger than the

punishments given at the bottom. R � P
2
for all CARA utility fuctions and CRRA utility

functions with � � 1.

For many common noise distributions, the prize schedule is relatively �at except at the

top and at the bottom. In particular, when the noise distribution is uniformly distributed,

we �nd that there is a special prize for �rst place, a special prize (or punishment) for last

place, and a single prize for everyone else. We also show that, when agents have CRRA

utility with a coe¢ cient of relative risk aversion equal to one, the principal�s optimal prize

schedule is an a¢ ne transformation of the weights, �i.

The �rst-order conditions of the Lagrangian lead to the following proposition, which tells

us a great deal about the optimal prize schedule.

Proposition 3 Suppose w� = (w�1; :::w
�
n) is the optimal prize schedule and let vi = u

0(w�i ).

If the agents act according to their �rst-order condition, c000 � 0, and c00

c0 �
c000

c00 , then
1
vi
� 1
vi+k

1
vj
� 1
vj+l

=
�i��i+k
�j��j+l

for all i; j; k; and l:

It should be noted that the equations of the proposition plus the individual rationality

constraint captures almost everything about the optimal tournament. They are just one

equation short of a complete characterization.

Consider the implications of Proposition 3 when F is a uniform distribution. Because

the weights are constant for the uniform distribution for 1 < i < n, it follows that the

prize schedule is �at except at the top and the bottom. Therefore, it is optimal for the

principal to give one prize for the best performance, one prize (or punishment) for the worst

performance, and a prize for everyone else.

Corollary 1 If F is uniformly distributed, c000 � 0; c
00

c0 �
c000

c00 ; and agents act according to

their �rst-order condition:

w�i = w
�
j , 1 < i; j < n
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As mentioned above, many distributions (such as the normal) have weight schedules that

are relatively �at for 1 < i < n and spike at the top and bottom. The optimal prize

schedules associated with these distributions will be relatively �at for 1 < i < n, although

they will not be perfectly �at.

Proposition 3 allows us to bound the slope of the prize schedule. Proposition 4, which

is the main result of this section, summarizes what we can conclude about the slope.

Proposition 4 Suppose i; j � 0 and min(i; i + k) � max(j; j + l) (k and l can be positive

or negative). Suppose further that �i � �i+k � 0 and �j � �j+l � 0. Let R = �u00

u0 denote

the Arrow-Pratt measure of risk aversion. Let P = �u000

u00 denote the coe¢ cient of absolute

prudence. Suppose c000 � 0, c00

c0 �
c000

c00 , and the agents act according to their �rst-order

condition.

(i) If R � P
2
:

�i � �i+k
�j � �j+l

�
�
u00(w�j+l)

u00(w�i )

� 
u0(w�i )

u0(w�j+l)

!2
�i � �i+k
�j � �j+l

�
w�i � w�i+k
w�j � w�j+l

�
�
u00(w�j )

u00(w�i+k)

��
u0(w�i+k)

u0(w�j )

�2
�i � �i+k
�j � �j+l

(ii) If R � P
2
:

�
u00(w�j )

u00(w�i+k)

��
u0(w�i+k)

u0(w�j )

�2
�i � �i+k
�j � �j+l

�
w�i � w�i+k
w�j � w�j+l

�
�
u00(w�j+l)

u00(w�i )

� 
u0(w�i )

u0(w�j+l)

!2
�i � �i+k
�j � �j+l

� �i � �i+k
�j � �j+l

(iii) Let u�i = u(w
�
i ). If R � P

3
:

�i � �i+k
�j � �j+l

�
�
u00(w�j+l)

u00(w�i )

� 
u0(w�i )

u0(w�j+l)

!3
�i � �i+k
�j � �j+l

�
u�i � u�i+k
u�j � u�j+l

�
�
u00(w�j )

u00(w�i+k)

��
u0(w�i+k)

u0(w�j )

�3
�i � �i+k
�j � �j+l

(iv) If R � P
3
:

�
u00(w�j )

u00(w�i+k)

��
u0(w�i+k)

u0(w�j )

�3
�i � �i+k
�j � �j+l

�
u�i � u�i+k
u�j � u�j+l

�
�
u00(w�j+l)

u00(w�i )

� 
u0(w�i )

u0(w�j+l)

!3
�i � �i+k
�j � �j+l

� �i � �i+k
�j � �j+l

Notice that R � P
2
is a stronger condition than R � P

3
. We will explain why the size of

R relative to P is important in Section 5 in a case where the intuition is easy to see. For
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most utility functions of interest, R � P
2
. R � P

2
for all CARA utility functions and CRRA

utility functions with � � 1. R � P
3
for all CARA utility functions and CRRA utility

functions with � � 1
2
. R � P

3
for CRRA utility functions with � � 1

2
, and R � P

2
for CRRA

utility functions with � � 1. This makes � = 1 and � = 1
2
interesting cases since R = P

2
for

� = 1 and R = P
3
for � = 1

2
.

In the previous section, Proposition 2 gave a condition on the prize schedule under which

the agents�second-order condition will hold for certain F at e = e�: The following corollary

to Proposition 4 gives us conditions under which the principal will choose a prize schedule

that meets the condition of Proposition 2.

Corollary 2 If F is symmetric, f�ig is decreasing in i; R � P
3
; c000 � 0, c00

c0 �
c000

c00 ; and agents

act according to their �rst-order condition:

u(w�i )� u(w�j ) � u(w�n�j+1)� u(w�n�i+1) for all i � j �
n+ 1

2

Therefore, when the principal assumes that agents act according to the �rst-order con-

dition, F is symmetric, f�ig is decreasing in i,
Pj

i=1 
i � 0 for j � n
2
, R � P

3
, c000 � 0, and

c00

c0 �
c000

c00 , the principal will choose a prize schedule that satis�es the agent�s second-order

condition at e = e�.

When F is symmetric, Proposition 4 allows us to compare the size of punishments in�icted

at the bottom of the prize schedule (w�i � w�i+1, i � n+1
2
) to corresponding rewards given at

the top of the prize schedule (w�n�i�w�n�i+1). We �nd that when R is large relative to P , the

punishments (w�i �w�i+1) will be larger than the rewards (w�n�i�w�n�i+1). When R is small

relative to P , the punishments (w�i �w�i+1) will be smaller than the rewards (w�n�i�w�n�i+1).

Proposition 5 Let ri =
w�i�w�i+1

w�n�i�w�n�i+1
and qi =

u�i�u�i+1
u�n�i�u�n�i+1

. Suppose F is symmetric, f�ig is

decreasing in i, c000 � 0, c00
c0 �

c000

c00 , and agents act according to their �rst-order condition.

14



(i) If R � P
2
:

ri � 1 for i � n+ 1

2

ri+1 � ri for all i

(ii) If R � P
2
:

ri � 1 for i � n+ 1

2

ri+1 � ri for all i

(iii) If R � P
3
:

qi � 1 for i � n+ 1

2

qi+1 � qi for all i

(iv) If R � P
3
:

qi � 1 for i � n+ 1

2

qi+1 � qi for all i

As an illustration of this result, consider the optimal prize schedule when n = 200, F is a

normal distribution with standard deviation 1, c(e) = e2

2
, and the utility function is CRRA

with � = 2. For this case, R � P
2
. Figure 2 shows the prize schedule in money (as opposed

to utils). We observe that the punishments at the bottom of the prize schedule (w�i �w�i+1,

i � n+1
2
) are greater than the corresponding rewards at the top (w�n�i � w�n�i+1). Figure 3

gives the ratios, ri.
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Figure 3: ri

As mentioned, if the utility function is CRRA with � = 1, R = P
2
. If the utility function

is CRRA with � = 1
2
, R = P

3
. Therefore, these are interesting special cases. This yields the

following corollary.

Corollary 3 If u(w) = log(w), c000 � 0, c00

c0 �
c000

c00 , and the agents act according to their

�rst-order condition, then
w�i � w�i+k
w�j � w�j+l

=
�i � �i+k
�j � �j+l

for all i; j; k; and l. Furthermore, the vector w� = (w�1; :::; w
�
n) is an a¢ ne transformation

of the vector � = (�1; :::; �n). If F is also symmetric,

w�i � w�i+1
w�n�i � w�n�i+1

= 1

for all i.
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If u(w) = w1=2, c000 � 0, c00

c0 �
c000

c00 , and the agents act according to their �rst-order

condition, then
u�i � u�i+k
u�j � u�j+l

=
�i � �i+k
�j � �j+l

for all i; j; k; and l. Furthermore, the vector u� = (u�1; :::; u
�
n) is an a¢ ne transformation of

the vector � = (�1; :::; �n). If F is also symmetric,

u�i � u�i+1
u�n�i � u�n�i+1

= 1

for all i.

In this sense, optimal prize schedules tend to look similar to a¢ ne transformations of the

weight schedules. When R is large relative to P , the optimal prize schedule di¤ers from

an a¢ ne transformation of the weight schedule in that the prizes at the top are revised in

the direction of the median prize while the prizes at the bottom are revised in the opposite

direction from the median prize. We see this in comparing the prize schedule in Figure 2 to

the corresponding weights shown in Figure 1. When R is small relative to P , the optimal

prize schedule di¤ers from an a¢ ne transformation of the weight schedule in that the slope

of the prize schedule at the top is revised upward relative to the slope of the prize schedule

at the bottom.

5 Two-Prize Tournaments

In the previous section, we found that when R is large relative to P , the principal relies

more heavily on punishment than on reward. To examine how important punishments are

relative to rewards, we will consider what happens when the principal is limited to using

just two prizes. That is, suppose she can only give a prize w1 to the top j performers and a

prize w2 to the bottom n� j performers. When the principal is restricted in this way, where

would she like to set j? One possibility would be to set j = n
2
, so that the top half earns

one prize and the bottom half earns another. Another possibility would be to set j = 1;
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which gives a special prize to the best performer. The opposite would be to set j = n� 1,

so that there is a special punishment in store for the worst performer.

We will �nd that, when R � P
3
and F is symmetric, it is always optimal to set j � n

2

and it is often optimal for the principal to set j = n � 1, giving a special punishment to

the worst performer. This is somewhat indicative of the importance of punishments to the

principal relative to the importance or rewards.

In order to further examine the importance of punishment relative to reward, we will

compare the pro�ts to the principal from the optimal n-prize tournament and two-prize

tournaments for di¤erent choices of j. We �nd that, when R is large relative to P and F

is symmetric, the principal�s pro�ts from the optimal j = n � 1 tournament are frequently

close to her pro�ts from the optimal n prize tournament while the pro�ts from a j = 1

tournament are usually far from optimal. These results contrast with the notion that it is

optimal or nearly optimal for the principal to implement a winner-take-all tournament (see

Moldovanu and Sela (2001), and Krishna and Morgan (1998)).

De�nition 1 We will call a tournament a �j tournament�when the principal pays a prize

w1 to the top j performers and a prize w2 to the bottom n�j performers. Let u1 = u(w1) and

u2 = u(w2): We will call a tournament a �winner-prize tournament�if j � n
2
and a �strict

winner-prize tournament� if j = 1: We will call a tournament a �loser-prize tournament�

is j � n
2
and a �strict loser-prize tournament� if j = n� 1:

We will consider when the principal prefers to implement a loser-prize tournament rather

than a winner-prize tournament. To answer this question, we will compare a j tournament

and an n� j tournament that induce the same level of e¤ort and both meet the individual

rationality constraint. It will be shown that, when R is large relative to P , F is symmetric,

and j � n
2
, the payment made to agents by the principal is greater when she uses the j

tournament. When R is small relative to P , F is symmetric, and j � n
2
, the payment made

to agents by the principal is smaller when she uses the j tournament.

First, we must know when a j tournament and an n � j tournament induce the same

e¤ort. The following lemma provides the answer.
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Lemma 2 If F is symmetric and agents act according to the �rst-order condition, a j tour-

nament and an n � j tournament for which u1 � u2 is the same induce the same level of

e¤ort. This level of e¤ort is given by

c0(e) =

 
jX
i=1

�i

!
(u1 � u2)

Using this lemma, we will now establish the main result of this section.

Proposition 6 Suppose the principal is restricted to use a j tournament (but has a choice

over w1 and w2) and that the principal is restricted to implementing a tournament that

induces e¤ort level e. Let �j denote the expected pro�ts from the optimal choice of w1

and w2: Suppose further that F is symmetric and agents act according to the �rst-order

condition.

(i) If R � P
3
,

�j � �n�j for j �
n

2

(ii) If R � P
3
,

�j � �n�j for j �
n

2

The following is an immediate corollary.

Corollary 4 Suppose the principal is restricted to implementing a j tournament, but can

choose whatever j she likes. Suppose F is symmetric and agents act according to the

�rst-order condition. If u satis�es R � P
3
, then the optimal j tournament is a loser-prize

tournament (a tournament with j � n
2
). If u satis�es R � P

3
, then the optimal j tournament

is a winner-prize tournament (a tournament with j � n
2
).

Let us consider the intuition behind Proposition 6. Suppose the j tournament gives

payments u1 and u2 in utils while the n � j tournament gives payments ~u1 and ~u2 in utils.

Because the individual rationality constraint will bind for both tournaments and because
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they induce the same e¤ort level, we can conclude that: ~u2 � u2 � ~u1 � u1 and that

j(u1 � ~u02) = (n� j)(~u01 � u2).

The principal pays the dollar equivalent of ~u1 rather than the dollar equivalent of u2 to

n� j agents when using the n� j tournament. This is a cost to using the n� j tournament.

But, the principal also pays the money equivalent of ~u2 rather than the money equivalent of

u1 to j agents. This is a bene�t to using the n� j tournament.

The cost will be small if the utility function is relatively vertical between u2 and ~u1. The

bene�t will be large if the utility function is relatively �at between ~u2 and u2 and between ~u1

and u1. Of course, we assume that u00 � 0. Therefore, the utility function must be �atter

between u2 and ~u1 than between ~u2 and u2. What this means is that for the bene�t to be

large relative to the cost, the utility function must get �atter and get �atter at an increasing

rate. Furthermore, the more quickly the utility function �attens, the more important it is

that the utility function is �attening at an increasing rate (the �attening from bottom to

middle favors the j tournament, which needs to be made up for by extra �attening from

middle to top in order for the n� j tournament to dominate).

R gives a measure of the �attening of the utility function and P gives a measure of

whether the �attening takes place at an increasing or decreasing rate. This explains why R

large relative to P leads the n� j tournament to be favored. As we showed in Proposition

5, when the principal uses n prizes and R is large relative to P , it is also optimal to punish

more than reward. The reason for this is exactly the same.

So far, we have given conditions under which the optimal two-prize tournament is a loser-

prize tournament. We can go further and make comparisons between loser-prize tournaments

when we assume that the idiosyncratic noise distribution is uniform.

Proposition 7 Suppose the principal is restricted to use a j tournament, that F is a sym-

metric uniform distribution, and that agents act according to the �rst-order condition. If u

satis�es R � P
3
, the optimal j tournament is the strict loser-prize tournament. If u satis�es

R � P
3
, the optimal j tournament is the strict winner-prize tournament.

When the noise distribution is not uniform, the optimal j depends upon the utility func-
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tion as well as the distributional weights. However, as mentioned above, many distributions

(including the normal distribution) have weight schedules that are similar to the uniform

distribution: they are relatively �at for 1 < i < n and spike at the top and bottom. The

strict loser-prize tournament tends to be optimal when R > P
3
and the noise distribution

has weights that look similar to those of a uniform distribution. In the numerical examples

that we have considered, we have generally found j = n � 1 to be the optimal two-prize

tournament when F is normal and R > P
3
.

5.1 Numerical Examples

Our results above give no sense of how much the choice of j matters to the principal�s

pro�ts. In a case where j = n � 1 is optimal, we would like to know how much worse o¤

the principal would be if she chose j = 1 instead. We have looked at numerical examples in

order to get a sense of the magnitude of the loss.

The numerical examples we have considered suggest that the pro�ts from the optimal j

tournament are generally close to the pro�ts from the optimal n prize tournament. The

induced e¤ort level is also similar. However, we �nd that the choice of j matters a great

deal. When j is not chosen optimally, the principal�s pro�t may be quite far from the pro�t

from the optimal j tournament and the pro�t from the optimal n-prize tournament.

Since j = n � 1 is often the optimal j when R > P
3
, we �nd that there are many cases

where the optimal j = n�1 tournament closely approximates the optimal n prize tournament

while the optimal j = 1 tournament returns a pro�t that is markedly worse. Therefore, in

many cases, punishing the worst performer is the most important incentive the principal has

at her disposal.

Table 1 gives the results of a particular numerical example in order to give a sense of our

�ndings. Table 1 considers the pro�ts from tournaments in which F is a normal distribution

with standard deviation of 1, u(w) = 1 � 1
w
(CRRA with � = 2), c(e) = e2

2
, and �U = �2:

For di¤erent values of n, it compares the pro�ts from the optimal n prize tournament, the

optimal j = n � 1 tournament, the optimal j = n
2
tournament, and the optimal j = 1
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tournament. This is a case where R > P
3
and F is symmetric, so Proposition 6 implies

that the optimal j tournament is a loser-prize tournament. In fact, we �nd that in all of

the cases considered in Table 1, the strict loser-prize tournament (j = n� 1) is the optimal

two-prize tournament.

Table 1: Prize Structures

n �first�best �optimal �j=n�1 �j=1 �j=n=2

2 1.076 0.288 0.288 0.288 0.288

4 1.076 0.514 0.492 0.152 0.377

6 1.076 0.582 0.552 0.061 0.409

8 1.076 0.617 0.583 -0.000 0.426

10 1.076 0.639 0.603 -0.044 0.436

20 1.076 0.689 0.652 -0.155 0.456

50 1.076 0.733 0.699 -0.245 0.469

100 1.076 0.757 0.728 -0.283 0.473

200 1.076 0.777 0.752 -0.306 0.475

We see in Table 1 that the principal�s pro�t from the j = n � 1 tournament is similar

to the principal�s pro�t from the optimal n prize tournament (�optimal). The pro�ts from

the j = 1 and j = n
2
tournaments are considerably lower. We also see that the pro�t from

the optimal n prize tournament is increasing in n and appears to be converging. This is

an illustration of the �nding of Green and Stokey (1983) that the pro�ts from the optimal

rank-order tournament converge, as n increases, to the individual contract second-best level

of pro�ts (in the case where there is no common shock to output).

6 When is it optimal to give winners large rewards?

Our analysis above suggests that, in many instances, the principal will choose a tour-

nament that gives larger punishments to losers than rewards to winners (in the sense of

w�i � w�i+1 � w�n�i � w�n�i+1 for i � n+1
2
). In this section, we will explore the circumstances

in which it is optimal for the principal to give large rewards relative to punishments.
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We see four reasons why a principal might want to give larger rewards than punishments.

The �rst, which we have already considered, is that R may be low relative to P . Proposition

5 says that, if R � P
2
, F is symmetric, and the weights are decreasing in i, w�i � w�i+1 �

w�n�i � w�n�i+1 for i � n+1
2
. The other reasons to reward winners are: the presence of a

limited liability constraint, a noise distribution which is asymmetric in a particular way, and

agent heterogeneity.

Having already addressed the �rst reason, we will consider the other three in turn. We

will attempt to give an intuition as to why each of these factors plays a role in determining

the size of rewards relative to punishments.

6.1 Limited Liability

Suppose the principal faces a limited liability constraint (a limit on how much the

agents can be punished). We might write this constraint, for example, as: wi � �w for all

i. A limited liability constraint may lead the principal to implement a tournament in which

winners are rewarded more than losers are punished. The reason is that such a constraint

makes it comparatively more di¢ cult to incentivize agents through punishment.

Consider an example. Let us suppose the principal is trying to induce an e¤ort level e

and is choosing between a j = 1 tournament and a j = n� 1 tournament. Suppose, in the

absence of a limited liability constraint, it is optimal to choose prizes w1 and w2 in the j = 1

tournament and prizes ~w1 and ~w2 in the j = n � 1 tournament. Suppose the pro�t from

these tournaments are � and ~� respectively. If F is symmetric and R � P
3
, Proposition 6

implies that ~� > �.

We know that ~w2 < w2 < ~w1 < w1. Now suppose that there is a limited liability

constraint such that ~w2 < �w < w2 < ~w1 < w1. The optimal j = 1 tournament is the same

with or without the limited liability constraint, so �L = �. The limited liability constraint

does have an e¤ect, though, on the optimal j = n � 1 tournament. The amount given to

the loser must be increased to meet the limited liability constraint. To induce e¤ort level e,

the prize for everyone else must be increased as well. These changes are costly. So, ~�L < ~�.
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When F is symmetric and R � P
3
, ~� > �. However, it is possible that �L > ~�L. This

gives a sense of why a limited liability constraint might matter.

A limited liability constraint ensures agents a certain amount ex post. In this sense,

it is similar to the ex post participation constraint in Krishna and Morgan (1998). If the

limited liability constraint makes the ex-ante participation constraint non-binding, this is

equivalent to the Krishna and Morgan case. They �nd that, in this case, it is generally

optimal for the principal to implement a winner-take-all tournament. This is consistent

with our observation that limited liability constraints tend to increase rewards relative to

punishments.

Our results from Section 4 of the paper can easily be extended to cases where the principal

faces a limited liability constraint. The following Lemma is a generalization of Proposition

3.

Lemma 3 Suppose that the principal faces a limited liability constraint of the form: wi � �w

for all i. Suppose w� = (w�1; :::w
�
n) is the optimal prize schedule and let vi = u0(w�i ). If

the agents act according to their �rst-order condition, c000 � 0, and c00

c0 �
c000

c00 , then
1
vi
� 1
vi+k

1
vj
� 1
vj+l

=

�i��i+k
�j��j+l

for all i; j; k; and l whenever wi; wj; wk; wl > �w.

Lemma 3 shows that the results of Section 3 hold whenever the limited liability constraint

is nonbinding. In particular, Proposition 5 can be extended to the case where the principal

faces a limited liability constraint.

Corollary 5 Let ri =
w�i�w�i+1

w�n�i�w�n�i+1
and qi =

u�i�u�i+1
u�n�i�u�n�i+1

. Suppose F is symmetric, f�ig is

decreasing in i, c000 � 0, c00

c0 �
c000

c00 , and agents act according to their �rst-order condition.

Suppose that the principal faces a limited liability constraint of the form: wi � �w for all i.

Then the optimal prize schedule, fw�i g is decreasing in i. Let j be such that w�j > �w and

either w�j+1 = �w or j = n.
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(i) If R � P
2
:

ri � 1 for j > i � n+ 1

2

ri = 1 for i � n� j + 1

ri+1 � ri for j > i > n� j + 1

(ii) If R � P
2
:

ri � 1 for j > i � n+ 1

2

ri = 1 for i � n� j + 1

ri+1 � ri for j > i > n� j + 1

(iii) If R � P
3
:

qi � 1 for j > i � n+ 1

2

qi = 1 for i � n� j + 1

qi+1 � qi for j > i > n� j + 1

(iv) If R � P
3
:

qi � 1 for j > i � n+ 1

2

qi = 1 for i � n� j + 1

qi+1 � qi for j > i > n� j + 1

This corollary gives us a good picture of when punishments will be large relative to

rewards and when rewards will be large relative to punishments.

It should be noted that, in the absence of a limited liability constraint, in cases where

R � P
2
and F is symmetric, losers are not necessarily boiled in oil (for an example, see Figure

2). Since the punishments for losers are typically not exorbitant, it is possible to imagine
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cases in which a limited liability constraint might be non-binding.

6.2 Asymmetric Noise Distribution

Corollary 3 shows that, when u is logarthmic, the optimal prize schedule is an a¢ ne

tranformation of the weights, �i. When F is symmetric, �i = ��n�i+1. This means that,

when F is symmetric, the optimal prize schedule rewards winners and punishes losers equally.

But, when F is asymmetric, �i may be larger or smaller than ��n�i+1. There are F for

which the weight schedule�and hence the prize schedule�is steep for low i and �at for high

i. The prize schedule in this case clearly rewards winners more than it punishes losers.

Why does a weight schedule that is �at at the bottom lead to a prize schedule that is

�at at the bottom? Suppose, for the sake of argument, that �n�1 = �n. What this says

is that a marginal change in agent e¤ort does not a¤ect the probability of placing (n� 1)th

relative to nth. Therefore, placing nth rather than (n � 1)th is a matter of luck rather

than e¤ort. In punishing agents for placing nth rather than (n� 1)th, the principal gives a

reward for luck without giving a reward for e¤ort. Since agents are risk averse, it is costly to

the principal to reward luck. Therefore, it does not make sense for the principal to reward

agents for placing nth rather than (n � 1)th. So, w�n�1 = w
�
n. If, in contrast, �n�1 > �n,

punishing nth place relative to (n � 1)th place rewards e¤ort as well as luck. So, it makes

sense for the principal to punish nth place in this case.

It should be noted that there are asymmetric F that produce weight schedules that are

steeper for high i than for low i. Such F lead to prize schedules that reward winners less

than they punish losers. Therefore, asymmetry of the noise distribution can lead to more

or less reward for winners depending upon the particular type of asymmetry.

6.3 Heterogeneity

Agent heterogeneity can have an e¤ect on the optimal size of rewards relative to punish-

ments. Whether heterogeneity increases rewards relative to punishments, decreases rewards

relative to punishments, or is neutral depends, however, on the exact type of heterogeneity
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that exists.

First, there is a question of how an agent�s type, �, a¤ects her output. We will consider

two cases. We will say that there is additive heterogeneity if agent i�s output is given by

qi = ei + �i + "i + �, where �i is agent i�s type, "i is idiosyncratic noise, and � is a common

shock to output. We will say that there is multiplicative heterogeneity if agent i�s output is

given by qi = �iei + "i + �. Multiplicative heterogeneity is perhaps a more relevant type of

heterogeneity to consider, but we will examine both cases.

A second question is whether the principal ever learns the agents�types, and if so, whether

the principal can contract upon type. If the principal becomes aware of the agents�types

and can contract upon it, then the principal can handicap the tournament. Handicapping

e¤ectively restores agent homogeneity and eliminates any e¤ects of heterogeneity on the

optimal prize schedule. For this reason, heterogeneity only a¤ects the optimal prize schedule

when the principal does not observe agents�types or cannot contract upon it. We will assume

in this section that the principal does not observe agents�types. It is potentially interesting

to assume that the principal observes but cannot contract upon type, but we will not analyze

this case in this section.

The third important question is when agents become aware of their types. There are

three cases to consider. Case 1: agents learn their types after deciding whether to participate

in the tournament and after choosing an e¤ort level. Case 2: agents learn their types before

choosing an e¤ort level but after deciding whether to participate. Case 3: agents learn their

types before deciding whether to participate. We will consider cases 1 and 2 in some detail

and brie�y discuss case 3.

In case 1, since agents only learn their types after choosing their e¤ort levels, agents

have the same individual rationality and incentive compatibility constraints. When there is

additive heterogeneity in case 1, �i is just additional idiosyncratic noise. Hence, this case is

identical to the homogeneous case we have already considered. Therefore, we only need to

consider multiplicative heterogeneity in case 1. The following proposition gives an analysis.

Proposition 8 Consider a tournament with n heterogeneous agents. Agents learn their
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ability after signing a contract and after choosing an e¤ort level. The output of an individual

i exerting e¤ort level ei is qi = �iei + "i + � where "i is an idiosyncratic shock (distributed

according to F ), � is a common shock (distributed according to G), and �i is the agent�s ability

level (�i�E(�i) distributed according to H). We assume that the "i�s are independent of one

another, the �i�s, and �. We further assume that the �i�s are independent of one another

and �. For all individuals participating in the tournament, utility is given by u(w) � c(e)

where w is the prize received, e is the e¤ort exerted, and u0 � 0; u00 � 0; c0 � 0; c00 � 0: All

agents have the same outside option, which gives them utility �U: If we restrict attention to

symmetric equilibria, when the principal o¤ers the agents a tournament awarding prize wi

for ith place, the �rst-order condition for the agents�problem can be written as

c0(e) =
Xn

i=1
�iu(wi)

where Xn

i=1
�i = 0

And, if F and H are both symmetric, then

�i = ��n�i+1

The e¤ect of the distribution of � � E(�) on the optimal prize schedule is therefore

analogous to the e¤ect of the idiosyncratic noise distribution on the optimal prize schedule.

When � � E(�) is distributed according to H and H is symmetric, heterogeneity will not

lead to large rewards relative to punishments. However, a particular type of asymmetry of

H can lead to large rewards relative to punishments.

We turn now to case 2. In case 2, since agents learn their types after deciding whether

to participate but before choosing their e¤ort levels, agents will have the same individual

rationality constraint but di¤erent incentive compatibility constraints. Agents of di¤erent

types will therefore choose to exert di¤erent levels of e¤ort.

Let us begin by considering additive heterogeneity of agents. A high � agent needs to
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receive a considerably worse draw from the idiosyncratic noise distribution or exert consid-

erably less e¤ort in order to place below a low � agent in the tournament. Therefore, high

� agents have a low probability of placing in the bottom of the tournament. As a result,

rewards for placing well in the tournament incentivize high � agents more than punishments

for placing poorly in the tournament. In contrast, low � agents are given a greater incentive

to exert e¤ort by punishments than by rewards.

If the principal were to switch from a tournament structure in which rewards are large

relative to punishments to a tournament structure in which punishments are large relative to

rewards, the principal would �nd a decline in the e¤ort level of high � agents but an increase

in the e¤ort level of low � agents.

Whether this is advantageous to the principal depends in part upon the distribution of

�. This is analogous to the e¤ect of the distribution of H in case 1. For example, imagine

a setting in which one agent always receives a � far below any other but no agent ever

receives a � far above any other. A strict loser-prize tournament (which punishes more

than it rewards) will induce virtually no e¤ort in this setting since the agent who receives

the lowest � is all-but-certain to rank at the bottom. In contrast, a strict winner-prize

tournament (which rewards more than it punishes) will induce a group of agents with high

��s to compete for �rst place in the tournament. A strict winner-prize tournament clearly

dominates a strict-loser prize tournament in this case. If, instead, one agent always receives

a � far above any other but no agent ever receives a � far below any other, a strict loser-prize

tournament will be preferred to a strict winner-prize tournament.

In order to examine a separate issue, let us assume that the ability distribution is sym-

metric. It turns out that, in this context, switching from a tournament that rewards more

than punishes to a tournament that punishes more than rewards leads to an increase in e¤ort

among low � agents that is generally greater than the decrease in e¤ort among high � agents.

In this setting, heterogeneity increases the desire to give punishments that are large relative

to rewards.

We will illustrate this result under somewhat restrictive assumptions, but we believe that

the result applies widely. We will show that a principal can induce more e¤ort with a strict-
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loser prize tournament in which w1�w2 = � than with a strict-winner prize tournament in

which w1 � w2 = �. Recall that Lemma 2 shows that, in the homogeneous case, two-prize

tournaments for which w1 � w2 = � induce the same e¤ort level.

We begin by giving a careful de�nition of the moral hazard setting.

De�nition 2 A tournament is called a �-Additive tournament when: there are n individuals

(where n is even), n
2
of whom are low ability and n

2
of whom are high ability. Agents learn

their ability after signing a contract but before choosing an e¤ort level. The output of a

low ability individual exerting e¤ort ei is qi = ei + "i + � where "i is an idiosyncratic shock

and � is a common shock. The output of a high ability individual exerting e¤ort ej is

qj = ej + �+ "j + � where "j is an idiosyncratic shock and � is a common shock, and � � 0.

All of the idiosyncratic shocks are independent and are distributed according to F . For all

individuals participating in the tournament, utility is given by u(w) � c(e) where w is the

prize received, e is the e¤ort exerted, u0 � 0, u00 � 0, c0 � 0, and c00 � 0: All individuals

have the same outside option, which gives them utility �U:

Proposition 9 gives the result.

Proposition 9 Consider a �-Additive tournament with c(e) = e2

2
. If F is symmetric and

the agents act according to their �rst-order conditions, the strict loser-prize tournament

which pays out prizes w1 and w2 induces a higher level of e¤ort than the strict winner-prize

tournament which pays out prizes w1 and w2.

Unlike the homogeneous case, which induces the same level of e¤ort when the prizes

are the same in the loser- and winner-prize tournaments (Lemma 2), the heterogeneous

case results in greater e¤ort in the loser-prize case. It follows from the same logic as that

in the proof of Proposition 6, that the strict loser-prize tournament dominates the strict

winner-prize tournament when R � P
3
. Furthermore, the strict loser-prize tournament may

dominate even when R � P
3
.

Corollary 6 Consider a �-Additive tournament with c(e) = e2

2
. Suppose that F is symmet-

ric and the agents act according to their �rst-order conditions, and that R � P
3
for u. Then,
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the principal�s pro�ts are greater when she implements a strict loser-prize tournament than

when she implements a strict winner-prize tournament. Furthermore, the strict winner-prize

tournament does not necessarily dominate when R � P
3
.

We conclude from these results that additive heterogeneity in case 2 increases punishment

relative to reward when the ability distribution is symmetric.

Multiplicative heterogeneity in case 2 has a di¤erent impact on the optimal tournament.

Multiplicative heterogeneity introduces a new e¤ect. Because, high � agents are more

productive than low � agents, the principal cares more about inducing e¤ort among high �

agents than low � agents.

As with additive heterogeneity, high � agents have a low probability of placing at the

bottom of the tournament and low � agents have a low probability of placing at the top.

Therefore, high � agents are given a greater incentive to exert e¤ort by rewards than by

punishments and low � agents are given a greater incentive to exert e¤ort by punishments

than by rewards.

Unlike the additive heterogeneity case, the e¤ort of high � types is more valuable to the

principle than the e¤ort of low � types. This gives the principal a strong reason to rely more

upon rewarding winners than punishing losers. We will give an illustration of this e¤ect.

As in all of the cases we have considered, the ability distribution can have an impact on

the optimal tournament. We will therefore assume a symmetric ability distribution in order

to illustrate the e¤ect.

De�nition 3 A tournament is called a �-Multiplicative tournament when: there are n indi-

viduals (where n is even), n
2
of whom are low ability and n

2
of whom are high ability. Agents

learn their abilities after signing a contract but before choosing an e¤ort level. The output

of a low ability individual exerting e¤ort ei is qi = ei + "i + � where "i is an idiosyncratic

shock and � is a common shock. The output of a high ability individual exerting e¤ort ej is

qj = �ej + "j + � where "j is an idiosyncratic shock and � is a common shock, and � � 1.

All of the idiosyncratic shocks are independent and are distributed according to F. For all

individuals participating in the tournament, utility is given by u(w) � c(e) where w is the
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prize received, e is the e¤ort exerted, u0 � 0, u00 � 0, c0 � 0, and c00 � 0. All individuals

have the same outside option, which gives them utility �U:

A strict winner-prize tournament is e¤ective at incentivizing high ability types while a

strict loser-prize tournament is e¤ective at incentivizing low ability types. We know that

when there is no heterogeneity (� = 1) and R � P
3
, the principal prefers the strict loser-prize

tournament to the strict winner-prize tournament. But, as � increases, the importance of

incentivizing high ability types relative to low ability types increases and the strict winner-

prize tournament does a better and better job of incentivizing high ability agents relative

to the strict loser-prize tournament. This means that when � is very large, it is better for

the principal to implement a strict winner-prize tournament even if R � P
3
. Proposition 10

illustrates this result.

Proposition 10 Consider a �-Multiplicative tournament with c(e) = de�; d > 0 and � >

1. If F is symmetric and the agents act according to their �rst-order conditions, then

for su¢ ciently large �, the principal will prefer a strict winner-prize tournament to a strict

loser-prize tournament.

We conclude, therefore, that multiplicative heterogeneity can lead it to be optimal for

the principal to give rewards that are large relative to punishments.

Finally, we turn to case 3, in which agents learn their types before deciding whether to

participate in the tournament. In case 3, the tournament that the principal o¤ers a¤ects

which agents will choose to participate in the tournament. Therefore, the principal also

faces a screening problem.

The major way in which the screening problem a¤ects the structure of the optimal tour-

nament is that it a¤ects the distribution of types participating in the tournament. Screening

is likely to result in a distribution of types that is asymmetric. The type of screening that

the principal can engage in screens out agents with � < ��. Therefore, screening may cut o¤

the left-hand tail of the ability distribution.

Agents are therefore likely to be more clumped at low � than at high �. If this is the

case, punishment will tend to give more incentivization to low � agents than reward will give
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to high � agents. Therefore, we believe that screening on the part of the principal is likely

to lead to larger punishments relative to rewards.

7 Individual Contracts

In this section, we will relate our results about the shape of the optimal tournament

prize schedule to the shape of the optimal individual contract.

Let us return to the moral hazard setting from Section 2, in which agents are homoge-

neous. Let us suppose that there is no common shock to output (� = 0). Under these

assumptions, Green and Stokey (1983) have shown that incentivizing agents with the optimal

individual contract, which gives agents w�(q), yields a pro�t that is greater than the pro�t

from the optimal n-person tournament.

The reason for this result is that an agent�s rank is a noisy signal of an agent�s output.

Therefore, the tournament gives agents a more variable payo¤ for a given e¤ort level than

the individual contract. Since agents are risk averse, the principal needs to compensate

agents for this additional risk, which is costly.

Green and Stokey observe, however, that as n increases, an agent�s rank gives an increas-

ingly informative signal of an agent�s output. Rank becomes a less and less noisy signal of

output. As a result, they �nd that the pro�t from the tournament approaches the pro�t

from the individual contract as n approaches in�nity. We will use this result to relate the

structure of the optimal tournament to the structure of the optimal individual contract. We

will show that the optimal individual contract, like the optimal tournament, generally gives

smaller rewards than punishments. Furthermore, we will be able to give conditions under

which the optimal individual contract is concave or convex.

Let us construct an individual contract, wn(q), that is continuous and for whichwn(E(qn(i))) =

wni where E(q
n
(i)) is the expected output of the agent who ranks ith in an n-agent tournament

and wni is the optimal prize to give for ith place in the n-agent tournament. We can de�ne
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Figure 1: Figure 4: w200(q)

wn(q) as follows:

wn(q) =

�
E("n

(i)
)�(q�e�n)

E("n
(i)
)�E("n

(i+1)
)

�
wni+1 +

�
(q�e�)�E("n

(i+1)
)

E("n
(i)
)�E("n

(i+1)
)

�
wni , q � e�n 2 [E("n(i+1)); E("n(i))]

wn1 +
�

wn1�wn2
E("n

(1)
)�E("n

(2)
)

��
(q � e�n)� E("n(1))

�
, q � e�n � E("n(1))

wnn �
�

wnn�1�wnn
E("n

(n�1))�E("
n
(n)
)

��
E("n(n))� (q � e�n)

�
, q � e�n � E("n(n))

where e�n is the e¤ort induced by the optimal n-agent tournament and "
n
(i) is the ith order

statistic of the idiosyncratic shocks.

Figure 4 shows w200(q) in the case where F is a normal distribution with standard de-

viation of 1, u(w) = 1 � 1
w
(CRRA with � = 2), c(e) = e2

2
, and �U = �2. Figure 5 gives

the slope. Notice that the shape is not identical to the shape of the optimal tournament

prize schedule. The optimal tournament prize schedule has a slope that is increasing at

low i (equivalent to high q). In contrast, w200(q) has a slope that is decreasing at high q

(equivalent to low i). The reason for this result is that E("n(dn=2e�1)) � E("n(dn=2e)) � :::: �

E("n(2))� E("n(3)) � E("n(1))� E("n(2)) for F normal.
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In fact, it can be shown that, when F is a normal distribution, wn(q) is concave if R � P
2

and wn(q) is convex if P2 � R �
P
3
. This result relies upon the fact that E("n(i)) = n�

2�ni

for the normal distribution.

In general, we cannot determine whether wn(q) will be concave or convex, but we can

determine whether the wn(q) gives larger rewards or punishments. When F is symmetric

and the optimal n-prize tournament gives larger punishments than rewards:

wn(e
�
n + (�1 + �2))� wn(e�n + �1) � wn(e�n � �1)� wn(e�n � (�1 + �2))

for �1; �2 � 0. Similarly, if F is symmetric and the optimal n-prize tournament gives larger

rewards than punishments:

wn(e
�
n + (�1 + �2))� wn(e�n + �1) � wn(e�n � �1)� wn(e�n � (�1 + �2))

for �1; �2 � 0.

Green and Stokey (1983) implies that wn(q) converges pointwise to w�(q) as n approaches

in�nity. As a result, we can apply our �ndings about the shape of wn(q) to w�(q). This

gives us the following proposition.

Proposition 11 Suppose that the optimal individual contract for the principal is w�(q),

� = 0; c000 � 0; c00
c0 �

c000

c00 ; F is symmetric, f�
n
i gni=1 is decreasing in i for all n;

Pj
i=1 


n
i � 0 for
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all j � n
2
and all n; and that the agents�second-order conditions are satis�ed for su¢ ciently

large n: Then w�(q) is increasing in q. Suppose �1; �2 � 0 and e� is the e¤ort induced by

w�(q).

If R � P
2
,

w�(e� + �1 + �2)� w�(e� + �1) � w�(e� � �1)� w�(e� � �1 � �2)

If P
2
� R � P

3
,

w�(e� + �1 + �2)� w�(e� + �1) � w�(e� � �1)� w�(e� � �1 � �2)

If R � P
3
,

u(w�(e� + �1 + �2))� u(w�(e� + �1)) � u(w�(e� � �1))� u(w�(e� � �1 � �2))

Suppose, additionally, that F is a normal distribution (which implies that the conditions

on �ni and 

n
i hold). If R � P

3
, u(w�(q)) is concave. If R � P

2
, w�(q) is concave. If

P
2
� R � P

3
, w�(q) is convex.

In the standard principal-agent model, one can obtain an implicit expression for the slope

of optimal incentive scheme. For instance, Holmström (1979) shows that where the �rst-

order approach is valid (and the principal is risk-neutral) the optimal individual contract

has the following form
1

u0(w(q))
= �� �f

0(q � e�)
f(q � e�)

where � and � are Lagrange multipliers on the participation and incentive compatibility

constraints respectively. We �nd that the results of Proposition 11 can also be derived

using this framework. While Holmström�s approach is well known, these results do not

appear to be.
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8 Conclusion

This paper gives a framework and an intuition for thinking about how prizes should

be structured in rank-order tournaments created to deal with moral hazard. These results

allow us to test whether aspects of employee compensation are explained by the moral

hazard theory of tournaments or arise for other reasons. Within-�rm job promotions, wage

increases, bonuses, and CEO compensation have often been interpreted as prizes for top

performers in Lazear-Rosen rank-order tournaments. Our results, for example, cast some

doubt on the idea that tournaments that reward winners without punishing losers exist

purely to solve a moral hazard problem.

The paper identi�es four key factors that in�uence the size of rewards for top performers

relative to punishments for poor performers: (i) the size of R relative to P , (ii) the shape

of the idiosyncratic noise distribution, (iii) limited liability constraints, and (iv) agent het-

erogeneity. When R is su¢ ciently large relative to P , the noise distribution is symmetric,

agents are homogeneous, and the principal does not face a limited liability constraint, it is

generally optimal to give larger punishments than rewards.

The paper also attempts to determine how important punishment is as a tool to the

principal relative to reward. We �nd that a loser-lose-all tournament often returns a pro�t

that closely approximates the pro�t of the optimal tournament. In contrast, the winner-take-

all tournament usually returns a pro�t that is far from the pro�t of the optimal tournament.

We are able to apply our results about optimal tournaments to analyze the structure of

the optimal individual contract. We �nd that when R is su¢ ciently large relative to P and

the noise distribution is symmetric, the optimal individual contract generally gives larger

punishments for low output than rewards for high output. In the special case where F is a

normal distribution, the optimal individual contract is concave when R is su¢ ciently large

relative to P .
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9 Appendix

Proof of Proposition 1.

'i(e; e
�) = Pr(ith placeje; e�)

=

Z
R

�
n� 1
i� 1

�
(F (e� e� + x))n�i (1� F (e� e� + x))i�1 f(x)dx

@

@e
'i(e; e

�) =

Z
R

�
n� 1
i� 1

��
(n� i) (F (e� e� + x))n�i�1 (1� F (e� e� + x))i�1

�(i� 1) (F (e� e� + x))n�i (1� F (e� e� + x))i�2
�
f(x)f(e� e� + x)dx

=

Z
R

�
n� 1
i� 1

�
(F (e� e� + x))n�i�1 (1� F (e� e� + x))i�2

�
�
(n� i) (1� F (e� e� + x))
�(i� 1) (F (e� e� + x))

�
f(x)f(e� e� + x)dx

=

Z
R

�
n� 1
i� 1

�
(F (e� e� + x))n�i�1 (1� F (e� e� + x))i�2

� [(n� i)� (n� 1) (F (e� e� + x))] f(x)f(e� e� + x)dx

�i =
@

@e
'i(e; e

�)

����
e=e�

=

�
n� 1
i� 1

�Z
R

F (x)n�i�1(1� F (x))i�2 ((n� i)� (n� 1)F (x)) f(x)2dx

Since
Pn
i=1 'i(e; e

�) = 1,
Pn
i=1

@
@e'i(e; e

�) = 0. Hence,
Pn
i=1 �i =

Pn
i=1

@
@e'i(e; e

�)
��
e=e�

= 0.

�1 = (n� 1)
Z
R

F (x)n�2f(x)2dx � 0

�n = �(n� 1)
Z
R

(1� F (x))n�2f(x)2dx � 0

If F is symmetric, F (�x) = 1� F (x). Di¤erentiating both sides, it follows that f(�x) = f(x).

�i =

�
n� 1
i� 1

�Z
R

F (x)n�i�1(1� F (x))i�2 ((n� i)� (n� 1)F (x)) f(x)2dx

Therefore,

�n�i+1 =

�
n� 1
n� i

�Z
R

F (x)i�2(1� F (x))n�i�1 ((i� 1)� (n� 1)F (x)) f(x)2dx
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Since,
�
n�1
n�i
�
=
�
n�1
i�1
�
;

�n�i+1 =

�
n� 1
i� 1

�Z
R

F (x)i�2(1� F (x))n�i�1 ((i� 1)� (n� 1)F (x)) f(x)2dx

=

�
n� 1
i� 1

� �1Z
1

F (�x)i�2(1� F (�x))n�i�1 ((i� 1)� (n� 1)F (�x)) f(�x)2d(�x)

=

�
n� 1
i� 1

�Z
R

(1� F (x))i�2F (x)n�i�1 ((i� 1)� (n� 1)(1� F (x))) f(x)2dx

= �
�
n� 1
i� 1

�Z
R

(1� F (x))i�2F (x)n�i�1 ((n� i)� (n� 1)F (x)) f(x)2dx

= ��i

Hence, �n�i+1 = ��i for F symmetric. If F is symmetric, F (�x) = 1 � F (x). Di¤erentiating

both sides, it follows that f(�x) = f(x). Suppose F is uniform on [��
2 ;
�
2 ]. F (x) =

x+�
2

� on
[��

2 ;
�
2 ]. f(x) = 1

� on [�
�
2 ;
�
2 ] and f(x) = 0 on [�

�
2 ;
�
2 ]
C :

�i =

�
n� 1
i� 1

� �
2Z

��
2

F (x)n�i�1(1� F (x))i�2 ((n� i)� (n� 1)F (x)) f(x)2dx
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� �
2Z
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2

�

�i�2�
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�
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�2
dx
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2Z

��
2

�
x+ �
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�
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�i�2�
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�
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�
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�
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��
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2

�

�n�i��x+ �
2

�

�i�1 1
�

�����
�
2

x=��
2

From this, we see that

�1 = ��n =
1

�
�i = 0; 1 < i < n

Proof of Proposition 2. Suppose that F is symmetric and u(wi) � u(wj) � u(wn�j+1) �
u(wn�i+1) for all i � j � n+1

2 .
The second-order condition of the agent�s problem is:

nX
i=1

@2

@e2
'i(e; e

�)u(wi)� c00(e) � 0
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Since c00 � 0 by assumption, the second-order condition will hold at e = e� if:

nX
i=1


iu(wi) � 0

where 
i =
@2

@e2
'i(e; e

�)

����
e=e�

In the proof of Proposition 1, a formula was given for @
@e'i(e; e

�). Di¤erentiating this expression
with respect to e, we �nd that:


i =
@2

@e2
'i(e; e

�)

����
e=e�

=

�
n� 1
i� 1

�Z
R

(F (x))n�i�2 (1� F (x))i�3
�

(n� i)(n� i� 1)
�2(n� i)(n� 2)F (x) + (n� 1)(n� 2)F 2(x)

�
f3(x)dx

+

�
n� 1
i� 1

�Z
R

F (x)n�i�1 (1� F (x))i�2 [(n� i)� (n� 1)F (x)] f(x)f 0(x)dx

Since
Pn
i=1 'i(e; e

�) = 1,
Pn
i=1

@2

@e2
'i(e; e

�)
���
e=e�

= 0 and
Pn
i=1 
i = 0.

Since F is symmetric:


n�i+1 =

�
n� 1
n� i

�Z
R

(F (x))i�3 (1� F (x))n�i�2
�

(i� 1)(i� 2)
�2(i� 1)(n� 2)F (x) + (n� 1)(n� 2)F 2(x)

�
f3(x)dx

+

�
n� 1
i� 1

�Z
R

F (x)i�2 (1� F (x))n�i�1
�

(i� 1)
�(n� 1)F (x)

�
f(x)f 0(x)dx

=

�
n� 1
i� 1

�Z
R

(F (�x))i�3 (1� F (�x))n�i�2
�
(i� 1)(i� 2)� 2(i� 1)(n� 2)F (�x)

+(n� 1)(n� 2)F 2(�x)

�
f3(�x)dx

�
�
n� 1
i� 1

�Z
R

F (�x)i�2 (1� F (�x))n�i�1 [(n� i)� (n� 1)(1� F (�x))] f(�x)f 0(�x)dx

=

�
n� 1
i� 1

�Z
R

(F (x))n�i�2 (1� F (x))i�3
�
(i� 1)(i� 2)� 2(i� 1)(n� 2)(1� F (x))

+(n� 1)(n� 2)(1� F (x))2
�
f3(x)dx

+

�
n� 1
i� 1

�Z
R

F (�x)i�2 (1� F (�x))n�i�1 [(n� i)� (n� 1)(1� F (�x))] f(x)f 0(x)dx

=

�
n� 1
i� 1

�Z
R

(F (x))n�i�2 (1� F (x))i�3
�
(n� i)(n� i� 1)� 2(n� i)(n� 2)F (x)

+(n� 1)(n� 2)F 2(x)

�
f3(x)dx

+

�
n� 1
i� 1

�Z
R

F (x)n�i�1 (1� F (x))i�2 [(n� i)� (n� 1)F (x)] f(x)f 0(x)dx

= 
i

Let us de�ne 
0i as follows. 
0i = 
i for i 6= n+1
2 . If i =

n+1
2 , 


0
i =

1
2
i
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Notice that, since 
i = 
n�i+1,

dn=2eX
i=1


0i =
1

2

nX
i=1


i

= 0

Let P = fi � dn=2e j
0i � 0g and N = fi � dn=2e j
0i < 0g. By assumption
Pj
i=1 
i � 0 for all

j � n
2 . Furthermore,

Pdn=2e
i=1 
0i = 0. As a result, for i 2 P it is possible to write 
0i as:


0i = �
X
k2N

�ik

0
k

where �ik � 0 for i > k, �ik = 0 for k < i; andX
i2P

�ik = 1 for all k 2 N

nX
i=1


iu(wi) =

dn=2eX
i=1


0i(u(wi) + u(wn�i+1))

=
X
i2P


0i(u(wi) + u(wn�i+1)) +
X
k2N


0k(u(wk) + u(wn�k+1))

= �
X
i2P

X
k2N

�ik

0
k(u(wi) + u(wn�i+1)) +

X
i2N


0i(u(wi) + u(wn�i+1))

=
X
k2N

(�
0k)(
X
i2P

�ik(u(wi) + u(wn�i+1))� (u(wk) + u(wn�k+1))

For i � k � n+1
2 ,

u(wi)� u(wk) � u(wn�k+1)� u(wn�i+1)
u(wi) + u(wn�i+1) � u(wk) + u(wn�k+1)

Since i � k � n+1
2 when �ik > 0, it follows thatX
k2N

(�
k)(
X
i2P

�ik(u(wi) + u(wn�i+1))� (u(wk) + u(wn�k+1)) � 0

Therefore,
Pn
i=1 
iu(wi) � 0. Hence, the second-order condition holds at e = e�:

Proof of Lemma 1. s(u1; :::; un) = (c
0)�1 (

P
i �iui)� 1

n

P
i u
�1(ui)

Since u00 � 0 and u0 � 0, (u�1)00(x) = �u00(u�1(x))
(u0(u�1(x)))3 � 0. Therefore, �u�1 is concave. Hence,

� 1
n

P
i u
�1(ui). Since

P
i �iui is linear in ui, (c

0)�1 (
P
i �iui) is concave if (c

0)�1 is concave. For

simplicity of notation, let z1(x) = (c0)�1(x): z001 (x) =
�c000((c0)�1(x)))
(c00((c0)�1(x)))3

. Therefore, (c0)�1 is concave

if and only if c
000

c00 � 0. Since c00; c000 � 0, (c0)�1 is indeed concave. Since (c0)�1 (
P
i �iui) and

� 1
n

P
i u
�1(ui) are both concave, s is a concave function.

q(u1; :::; un) = � 1
n

P
i ui + c

�
(c0)�1 (

P
i �iui)

�
+ �U

� 1
n

P
i ui +

�U is linear, and therefore both concave and convex. c
�
(c0)�1 (

P
i �iui)

�
will be

convex if c
�
(c0)�1 (x)

�
is convex since

P
i �iui is linear. For simplicity of notation, let z2(x) =

c
�
(c0)�1 (x)

�
. z002 (x) =

(c00((c0)�1(x))))
2�(c0((c0)�1(x)))(c000((c0)�1(x)))
(c00((c0)�1(x)))3

. Since � c000

c00 � �
c00

c0 , it follows that
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z002 � 0. Hence, c
�
(c0)�1 (

P
i �iui)

�
is convex. Since � 1

n

P
i ui +

�U and c
�
(c0)�1 (

P
i �iui)

�
are

both convex, q is convex.

Proof of Proposition 3.

L =
 
(c0)�1

 X
i

�iui

!
� 1

n

X
i

u�1(ui)

!
� �

 
�U � 1

n

X
i

ui + c

 
(c0)�1

 X
i

�iui

!!!

Let h(x) = (c0)�1(x), v(x) = u0(x), and vi = u0(wi) = u0(u�1(ui)).
The �rst order condition for ui is as follows: 
�ih

0

 X
i

�iui

!
� 1

nu0(u�1(ui))

!
+ �

 
1

n
� c0

 
h

 X
i

�iui

!!
h0

 X
i

�iui

!!
= 0

�inh
0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui

!!!
+ � =

1

vi

It follows that, for any i and k,

1

vi
� 1

vi+k
= (�i � �i+k)nh0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui

!!!

Similarly, for any j and l,

1

vj
� 1

vj+l
=
1

vi
� 1

vi+k
= (�j � �j+l)nh0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui

!!!

Therefore,
1
vi
� 1

vi+k
1
vj
� 1

vj+l

=
�i � �i+k
�j � �j+l

Proof of Corollary 1. Assume that agents act according to the �rst-order condition, F is
uniform, and 1 < i � j < n. It follows from Proposition 3 that:

1
vi
� 1

vj
1
v1
� 1

vn

=
�i � �j
�1 � �n

Since F is uniform, �i = �j = 0: Hence,
1
vi
= 1

vj
, which implies that w�i = w�j :

Proof of Proposition 4. Let r(w) = 1
v(w) =

1
u0(w) :

r0(w) =
�u00
(u0)2

� 0

r00(w) =
2(u00)2 � u0u000

(u0)3

=

�
�u00
(u0)2

��
2

�
�u00
u0

�
�
�
�u

000

u00

��
=

�
�u00
(u0)2

�
(2R� P )
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Where R = �u00

u0 is the Arrow-Pratt measure of risk aversion and P = �u000

u00 is the coe¢ cient of
absolute prudence. Since u0 � 0 and u00 � 0 by assumption, �u00

(u0)2 � 0. Therefore, R �
P
2 implies

r00 � 0 and R � P
2 implies r

00 � 0: Let us now consider two cases.
Case 1: R � P

2
Since �i � �i+k and r is increasing, it follows that w

�
i � w�i+k. Because r

00 � 0 (since R � P
2 ),

it follows that:

r0(w�i+k)(w
�
i � w�i+k) � r(w�i )� r(w�i+k) � r0(w�i )(w

�
i � w�i+k)

Similarly, since �j � �j+l, w
�
j � w�j+l and:

r0(w�j+l)(w
�
j � w�j+l) � r(w�j )� r(w�j+l) � r0(w�j )(w

�
j � w�j+l)

Hence,  
r0(w�i+k)

r0(w�j )

!
w�i � w�i+k
w�j � w�j+l

�
r(w�i )� r(w�i+k)
r(w�j )� r(w�j+l)

�
 
r0(w�i )

r0(w�j+l)

!
w�i � w�i+k
w�j � w�j+l

And,  
r0(w�j+l)

r0(w�i )

!
r(w�i )� r(w�i+k)
r(w�j )� r(w�j+l)

�
w�i � w�i+k
w�j � w�j+l

�
 

r0(w�j )

r0(w�i+k)

!
r(w�i )� r(w�i+k)
r(w�j )� r(w�j+l)

By Proposition 3,
r(w�i )�r(w�i+k)
r(w�j )�r(w�j+l)

=
�i��i+k
�j��j+l

. Therefore, 
r0(w�j+l)

r0(w�i )

!
�i � �i+k
�j � �j+l

�
w�i � w�i+k
w�j � w�j+l

�
 

r0(w�j )

r0(w�i+k)

!
�i � �i+k
�j � �j+l

r00 � 0 and min(i; i+ k) � max(j; j + l) implies that:

1 �
r0(w�j+l)

r0(w�i )
�

r0(w�j )

r0(w�i+k)

And,
r0(w�j+l)

r0(w�i )
=

 
u00(w�j+l)

u00(w�i )

! 
u0(w�i )

u0(w�j+l)

!2
So,

�i � �i+k
�j � �j+l

�
 
u00(w�j+l)

u00(w�i )

! 
u0(w�i )

u0(w�j+l)

!2
�i � �i+k
�j � �j+l

�
w�i � w�i+k
w�j � w�j+l

�
 

u00(w�j )

u00(w�i+k)

! 
u0(w�i+k)

u0(w�j )

!2
�i � �i+k
�j � �j+l

Case 2: R � P
2

Since w�i � w�i+k and r
00 � 0 (since R � P

2 ), it follows that:

r0(w�i )(w
�
i � w�i+k) � r(w�i )� r(w�i+k) � r0(w�i+k)(w

�
i � w�i+k)

Similarly,
r0(w�j )(w

�
j � w�j+l) � r(w�j )� r(w�j+l) � r0(w�j+l)(w

�
j � w�j+l)
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Hence,  
r0(w�i )

r0(w�j+l)

!
w�i � w�i+k
w�j � w�j+l

�
r(w�i )� r(w�i+k)
r(w�j )� r(w�j+l)

�
 
r0(w�i+k)

r0(w�j )

!
w�i � w�i+k
w�j � w�j+l

And,  
r0(w�j )

r0(w�i+k)

!
r(w�i )� r(w�i+k)
r(w�j )� r(w�j+l)

�
w�i � w�i+k
w�j � w�j+l

�
 
r0(w�j+l)

r0(w�i )

!
r(w�i )� r(w�i+k)
r(w�j )� r(w�j+l)

By Proposition 3,
r(w�i )�r(w�i+k)
r(w�j )�r(w�j+l)

=
�i��i+k
�j��j+l

. Therefore, 
r0(w�j )

r0(w�i+k)

!
�i � �i+k
�j � �j+l

�
w�i � w�i+k
w�j � w�j+l

�
 
r0(w�j+l)

r0(w�i )

!
�i � �i+k
�j � �j+l

r00 � 0 and min(i; i+ k) � max(j; j + l) implies that:

r0(w�j )

r0(w�i+k)
�
r0(w�j+l)

r0(w�i )
� 1

And,
r0(w�j )

r0(w�i+k)
=

 
u00(w�j )

u00(w�i+k)

! 
u0(w�i+k)

u0(w�j )

!2
So, 

u00(w�j )

u00(w�i+k)

! 
u0(w�i+k)

u0(w�j )

!2
�i � �i+k
�j � �j+l

�
w�i � w�i+k
w�j � w�j+l

�
 
u00(w�j+l)

u00(w�i )

! 
u0(w�i )

u0(w�j+l)

!2
�i � �i+k
�j � �j+l

�
�i � �i+k
�j � �j+l

Let z(x) = 1
u0(u�1(x)) :

z0(x) =
�u00(u�1(x))
(u0(u�1(x)))3

� 0

z00(y) =
3(u00)2 � u0u000

(u0)5

=

�
�u00
(u0)4

��
3

�
�u00
u0

�
�
�
�u000
u00

��
=

�
�u00
(u0)4

�
(3R� P )

Since u0 � 0 and u00 � 0 by assumption, �u00
(u0)4 � 0. Therefore, R � P

3 implies z
00 � 0 and R � P

3

implies z00 � 0: Following the same procedure as above with r, we consider two cases.
Case 1: R � P

3
Since R � P

3 , it follows that z
00 � 0: Hence,

z0(u�i+k)(u
�
i � u�i+k) � z(u�i )� z(u�i+k) � z0(u�i )(u

�
i � u�i+k)

Similarly,
z0(u�j+l)(u

�
j � u�j+l) � z(u�j )� z(u�j+l) � z0(u�j )(u

�
j � u�j+l)
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Hence,  
z0(u�i+k)

z0(u�j )

!
u�i � u�i+k
u�j � u�j+l

�
z(u�i )� z(u�i+k)
z(u�j )� z(u�j+l)

�
 

z0(u�i )

z0(u�j+l)

!
u�i � u�i+k
u�j � u�j+l

And,  
z0(u�j+l)

z0(u�i )

!
z(u�i )� z(u�i+k)
z(u�j )� z(u�j+l)

�
u�i � u�i+k
u�j � u�j+l

�
 

z0(u�j )

z0(u�i+k)

!
z(u�i )� z(u�i+k)
z(u�j )� z(u�j+l)

By Proposition 3 and the de�nition of z, it follows that
z(u�i )�z(u�i+k)
z(u�j )�z(u�j+l)

=
1
vi
� 1
vi+k

1
vj
� 1
vj+l

=
�i��i+k
�j��j+l

. So,

 
z0(u�j+l)

z0(u�i )

!
�i � �i+k
�j � �j+l

�
u�i � u�i+k
u�j � u�j+l

�
 

z0(u�j )

z0(u�i+k)

!
�i � �i+k
�j � �j+l

z00 � 0 and min(i; i+ k) � max(j; j + l) implies that:

1 �
z0(u�j+l)

z0(u�i )
�

z0(u�j )

z0(u�i+k)

And,
z0(u�j+l)

z0(u�i )
=

 
u00(w�j+l)

u00(w�i )

! 
u0(w�i )

u0(w�j+l)

!3
So,

�i � �i+k
�j � �j+l

�
 
u00(w�j+l)

u00(w�i )

! 
u0(w�i )

u0(w�j+l)

!3
�i � �i+k
�j � �j+l

�
u�i � u�i+k
u�j � u�j+l

�
 

u00(w�j )

u00(w�i+k)

! 
u0(w�i+k)

u0(w�j )

!3
�i � �i+k
�j � �j+l

Case 2: R � P
3

Since R � P
3 , it follows that z

00 � 0: Hence,

z0(u�i )(u
�
i � u�i+k) � z(u�i )� z(u�i+k) � z0(u�i+k)(u

�
i � u�i+k)

Similarly,
z0(u�j )(u

�
j � u�j+l) � z(u�j )� z(u�j+l) � z0(u�j+l)(u

�
j � u�j+l)

Hence,  
z0(u�i )

z0(u�j+l)

!
u�i � u�i+k
u�j � u�j+l

�
z(u�i )� z(u�i+k)
z(u�j )� z(u�j+l)

�
 
z0(u�i+k)

z0(u�j )

!
u�i � u�i+k
u�j � u�j+l

And,  
z0(u�j )

z0(u�i+k)

!
z(u�i )� z(u�i+k)
z(u�j )� z(u�j+l)

�
u�i � u�i+k
u�j � u�j+l

�
 
z0(u�j+l)

z0(u�i )

!
z(u�i )� z(u�i+k)
z(u�j )� z(u�j+l)

By Proposition 3 and the de�nition of z, it follows that
z(u�i )�z(u�i+k)
z(u�j )�z(u�j+l)

=
1
vi
� 1
vi+k

1
vj
� 1
vj+l

=
�i��i+k
�j��j+l

. So,

 
z0(u�j )

z0(u�i+k)

!
�i � �i+k
�j � �j+l

�
u�i � u�i+k
u�j � u�j+l

�
 
z0(u�j+l)

z0(u�i )

!
�i � �i+k
�j � �j+l
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z00 � 0 and min(i; i+ k) � max(j; j + l) implies that:

z0(u�j )

z0(u�i+k)
�
z0(u�j+l)

z0(u�i )
� 1

And,
z0(u�j )

z0(u�i+k)
=

 
u00(w�j )

u00(w�i+k)

! 
u0(w�i+k)

u0(w�j )

!3
So, 

u00(w�j )

u00(w�i+k)

! 
u0(w�i+k)

u0(w�j )

!3
�i � �i+k
�j � �j+l

�
u�i � u�i+k
u�j � u�j+l

�
 
u00(w�j+l)

u00(w�i )

! 
u0(w�i )

u0(w�j+l)

!3
�i � �i+k
�j � �j+l

�
�i � �i+k
�j � �j+l

Proof of Corollary 2. Suppose R � P
3 , F is symmetric, f�ig is decreasing in i, agents act

according to the �rst-order condition, and i � j � n+1
2 . It follows from Proposition 4 that:

u�n�j+1 � u�n�i+1
u�i � u�j

�
�i � �j

�n�j+1 � �n�i+1

Since F is symmetric, �i = ��n�i+1 and ��j = �n�j+1. Hence,
�i��j

�n�j+1��n�i+1
= 1: It therefore

follows that:

u�n�j+1 � u�n�i+1
u�i � u�j

� 1

u�n�j+1 � u�n�i+1 � u�i � u�j
u(w�n�j+1)� u(w�n�i+1) � u(w�i )� u(w�j )

Proof of Proposition 5. Let ri =
w�i�w�i+1

w�n�i�w�n�i+1
and qi =

u�i�u�i+1
u�n�i�u�n�i+1

and assume that i � n+1
2 .

It follows from Proposition 4 that if R � P
2 ,

�i � �i+1
�n�i � �n�i+1

�
�
r0(w�n�i+1)

r0(w�i )

�
�i � �i+1

�n�i � �n�i+1
� ri �

�
r0(w�n�i)

r0(w�i+1)

�
�i � �i+1

�n�i � �n�i+1

Since F is symmetric, �i = ��n�i+1 and �i+1 = ��n�i. Hence,
�i��i+1

�n�i��n�i+1
= 1. So,

1 �
�
r0(w�n�i+1)

r0(w�i )

�
� ri �

�
r0(w�n�i)

r0(w�i+1)

�
Similarly,

1 �
�
r0(w�n�i)

r0(w�i+1)

�
� ri+1 �

�
r0(w�n�i�1)

r0(w�i+2)

�
Hence,

1 �
�
r0(w�n�i+1)

r0(w�i )

�
� ri �

�
r0(w�n�i)

r0(w�i+1)

�
� ri+1 �

�
r0(w�n�i�1)

r0(w�i+2)

�
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Therefore, ri � 1 and ri+1 � ri for all i � n
2 . Now consider i � n

2 . ri =
1

rn�i
and ri�1 = 1

rn�i+1
.

Since n � i � n
2 , 1 � rn�i � rn�i+1: Hence, 1

rn�i+1
� 1

rn�i
, or ri�1 � ri: Therefore, ri � ri+1 for

all i:
It follows from Proposition 4 that if R � P

3 ,

�i � �i+1
�n�i � �n�i+1

�
�
z0(u�n�i+1)

z0(u�i )

�
�i � �i+1

�n�i � �n�i+1
� qi �

�
z0(u�n�i)

z0(u�i+1)

�
�i � �i+1

�n�i � �n�i+1

Since F is symmetric,
�i��i+1

�n�i��n�i+1
= 1. So,

1 �
�
z0(u�n�i+1)

z0(u�i )

�
� qi �

�
z0(u�n�i)

z0(u�i+1)

�
Similarly,

1 �
�
z0(u�n�i)

z0(u�i+1)

�
� qi+1 �

�
z0(u�n�i�1)

z0(u�i+2)

�
Hence,

1 �
�
z0(u�n�i+1)

z0(u�i )

�
� qi �

�
z0(u�n�i)

z0(u�i+1)

�
� qi+1 �

�
z0(u�n�i�1)

z0(u�i+2)

�
Therefore, qi � 1 and qi+1 � qi for all i � n

2 . Now consider i � n
2 . qi =

1
qn�i

and qi�1 = 1
qn�i+1

.

Since n � i � n
2 , 1 � qn�i � qn�i+1: Hence, 1

qn�i+1
� 1

qn�i
, or qi�1 � qi: Therefore, qi � qi+1 for

all i:
It follows from Proposition 4 that if R � P

2 ,

�i � �i+1
�n�i � �n�i+1

�
�
r0(w�n�i+1)

r0(w�i )

�
�i � �i+1

�n�i � �n�i+1
� ri �

�
r0(w�n�i)

r0(w�i+1)

�
�i � �i+1

�n�i � �n�i+1

Since F is symmetric,
�i��i+1

�n�i��n�i+1
= 1. So,

1 �
�
r0(w�n�i+1)

r0(w�i )

�
� ri �

�
r0(w�n�i)

r0(w�i+1)

�
Similarly,

1 �
�
r0(w�n�i)

r0(w�i+1)

�
� ri+1 �

�
r0(w�n�i�1)

r0(w�i+2)

�
Hence,

1 �
�
r0(w�n�i+1)

r0(w�i )

�
� ri �

�
r0(w�n�i)

r0(w�i+1)

�
� ri+1 �

�
r0(w�n�i�1)

r0(w�i+2)

�
Therefore, ri � 1 and ri+1 � ri for all i � n

2 . Now consider i � n
2 . ri =

1
rn�i

and ri�1 = 1
rn�i+1

.

Since n � i � n
2 , 1 � rn�i � rn�i+1: Hence, 1

rn�i+1
� 1

rn�i
, or ri�1 � ri: Therefore, ri � ri+1 for

all i:
It follows from Proposition 4 that if R � P

3 ,
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�i � �i+1
�n�i � �n�i+1

�
�
z0(u�n�i+1)

z0(u�i )

�
�i � �i+1

�n�i � �n�i+1
� qi �

�
z0(u�n�i)

z0(u�i+1)

�
�i � �i+1

�n�i � �n�i+1

Since F is symmetric,
�i��i+1

�n�i��n�i+1
= 1. So,

1 �
�
z0(u�n�i+1)

z0(u�i )

�
� qi �

�
z0(u�n�i)

z0(u�i+1)

�
Similarly,

1 �
�
z0(u�n�i)

z0(u�i+1)

�
� qi+1 �

�
z0(u�n�i�1)

z0(u�i+2)

�
Hence,

1 �
�
z0(u�n�i+1)

z0(u�i )

�
� qi �

�
z0(u�n�i)

z0(u�i+1)

�
� qi+1 �

�
z0(u�n�i�1)

z0(u�i+2)

�
Therefore, qi � 1 and qi+1 � qi for all i � n

2 . Now consider i � n
2 . qi =

1
qn�i

and qi�1 = 1
qn�i+1

.

Since n � i � n
2 , 1 � qn�i � qn�i+1: Hence, 1

qn�i+1
� 1

qn�i
, or qi�1 � qi: Therefore, qi � qi+1 for

all i:

Proof of Corollary 3. If u(w) = log(w), R = P
2 : Hence,

w�i � w�i+k
w�j � w�j+l

=
�i � �i+k
�j � �j+l

w�i � w�n
w�1 � w�n

=
�i � �n
�1 � �n

w�i =
�i � �n
�1 � �n

(w�1 � w�n) + w�n

w�i =

�
w�1 � w�n
�1 � �n

�
�i +

��nw�1 + �1w�n
�1 � �n

If u(w) =
p
w, R = P

3 : Hence,

u�i � u�i+k
u�j � u�j+l

=
�i � �i+k
�j � �j+l

u�i =

�
u�1 � u�n
�1 � �n

�
�i +

��nu�1 + u1w�n
�1 � �n

Proof of Lemma 2. In a j tournament, the e¤ort exerted by the players is given by

c0(ej) =
X
i

�iu(wi)

=

 
jX
i=1

�i

!
u1 +

0@ nX
i=j+1

�i

1Au2
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Since
Pn
i=1 �i = 0;

Pn
i=j+1 �i = �

Pj
i=1 �i: Thus,

c0(ej) =

 
jX
i=1

�i

!
(u1 � u2)

Now, let us consider the e¤ort exerted in an n� j tournament.

c0(en�j) =

 
n�jX
i=1

�i

!
u1 +

0@ nX
i=n�j+1

�i

1Au2

= �

0@ nX
i=n�j+1

�i

1Au1 +

0@ nX
i=n�j+1

�i

1Au2

When F is a symmetric distribution, we know that �i = ��n+1�i: Thus, for F symmetric,Pn
i=n�j+1 �i = �

Pj
i=1 �i and

c0(en�j) =

 
jX
i=1

�i

!
(u1 � u2)

This proves the lemma.

Proof of Proposition 6. We will begin by considering the case where R � P
3 . We will compare

a j tournament (j � n
2 ) and an n� j tournament that both meet the IR constraint and lead to the

same exertion of e¤ort, e, by players in the IC constraint. We will show that the sum of prizes
paid by the principal in the j tournament exceeds the sum of prizes paid by the principal in the
n � j tournament. Given this result, we know that we can obtain the same e¤ort with an n � j
tournament as a j tournament while meeting the IR constraint and paying out less in prizes. This
shows that the optimal j tournament is dominated by the optimal n� j tournament.

Following this argument, we will now consider a j tournament and an n � j tournament that
both meet the IR constraint and lead to the same e¤ort exertion. Let w1 and w2 denote the prizes
paid in the j tournament and let ui = u(wi): Similarly, let ~w1 and ~w2 denote the prizes paid in
the n � j tournament and let ~ui = u( ~wi): Further, let � =

j
n : The IR constraints for the j and

n� j tournaments imply that

�u1 + (1� �)u2 = �u

(1� �)~u1 + �~u2 = �u

where
�u = �U + c(e)

Lemma 1 tells us that e¤ort is the same in the j and n� j tournaments when u1 � u2 = ~u1 � ~u2:
These three equations tell us that

~u1 =
�

1� �u1 +
1� 2�
1� � �u

~u2 = 2�u� u1
u2 =

��
1� �u1 +

1

1� � �u

Let W denote the sum of prizes in the j tournament and ~W denote the sum of prizes in the n� j
tournament. Also, let h = u�1: Then
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W = �w1 + (1� �)w2 = �h(u1) + (1� �)h(
��
1� �u1 +

1

1� � �u)

~W = � ~w2 + (1� �) ~w1 = �h(2�u� u1) + (1� �)h(
�

1� �u1 +
1� 2�
1� � �u)

Let g(x) = �h(x)+(1��)h( �u��x1�� ) and � = u1� �u � 0: We need to show that, for � � 1
2 ; W � ~W;

or
g(�u+�)� g(�u��) � 0 (*)

We see that
g0(x) = �(h0(x)� h0( �u� �x

1� � ))

h00(y) = �u00(h(y))
[u0(h(y))]3

: Since u is concave, h00 � 0. Observe that g0(x) � 0 for x � �u and g0(x) � 0

for x � �u since h00 � 0. Let '(�) � g(�u +�) � g(�u ��): A su¢ cient condition for (*) is that:
'0(�) � 0 8� � 0 since '(0) = 0: We see that

'0(�) = g0(�u+�) + g0(�u��)
= �(h0(�u+�)� h0(�u� �

1� ��)) + �(h
0(�u��)� h0(�u+ �

1� ��))

= �(h0(�u+�)� h0(�u+ �

1� ��))� �(h
0(�u� �

1� ��)� h
0(�u��))

Let !(�; x; y) = � [(h0(x+ �)� h0(x))� (h0(y + �)� h0(y))]. Then,

'0(�) = !(
1� 2�
1� � ; �u+

�

1� ��; �u��)

Observe that 1�2�1�� � 0 since � � 1
2 and �u+

�
1��� � �u��: Since, !(0; x; y) = 0, it is su¢ cient to

show that@!@� (�; x; y) � 0 when x � y:

@!

@�
(�; x; y) = �(h00(x+ �)� h00(y + �))

A su¢ cient condition therefore for @!@� (�; x; y) � 0 is h
000 � 0:

h000(y) =
3u0 (u00)2 � (u0)2 u000

(u0)6

=
�3u00
(u0)4

�
R� P

3

�
Thus, h000 � 0 when R � P

3 . This proves that W � ~W .
Let us now turn to the case where R � P

3 . Again, we will consider a j tournament (j � n
2 )

and an n � j tournament that both meet the IR constraint and lead to the same e¤ort exertion.
As before,

W = �w1 + (1� �)w2 = �h(u1) + (1� �)h(
��
1� �u1 +

1

1� � �u)

~W = � ~w2 + (1� �) ~w1 = �h(2�u� u1) + (1� �)h(
�

1� �u1 +
1� 2�
1� � �u)
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We need to show that, for � � 1
2 ; W � ~W; or

g(�u+�)� g(�u��) � 0 (**)

Recall that
g0(x) = �(h0(x)� h0( �u� �x

1� � ))

h00(y) = �u00(h(y))
[u0(h(y))]3

: Since u is concave, h00 � 0. As before, g0(x) � 0 for x � �u and g0(x) � 0 for
x � �u since h00 � 0. Let '(�) � g(�u + �) � g(�u � �): A su¢ cient condition for (**) is that:
'0(�) � 0 8� � 0 since '(0) = 0: We see that

'0(�) = g0(�u+�) + g0(�u��)
= �(h0(�u+�)� h0(�u� �

1� ��)) + �(h
0(�u��)� h0(�u+ �

1� ��))

= �(h0(�u+�)� h0(�u+ �

1� ��))� �(h
0(�u� �

1� ��)� h
0(�u��))

Again

'0(�) = !(
1� 2�
1� � ; �u+

�

1� ��; �u��)

1�2�
1�� � 0 since � � 1

2 and �u +
�
1��� � �u � �: Since !(0; x; y) = 0, it is su¢ cient to show

that@!@� (�; x; y) � 0 when x � y:

@!

@�
(�; x; y) = �(h00(x+ �)� h00(y + �))

Therefore, a su¢ cient condition for @!@� (�; x; y) � 0 is h
000 � 0: R � P

3 implies h
000 � 0, which proves

that W � ~W .

Proof of Proposition 7. We will begin with the case where R � P
3 . Let us consider a j

tournament and a j0 tournament with j0 > j � n=2: Let � = j
n and �

0 = j0

n : We will compare j
and j0 tournaments that lead to the same level of e¤ort exertion, e, and consider the amounts paid
out in prizes by the principal. Let w1 and w2 denote the prizes paid in the j tournament and ~w1
and ~w2 denote the prizes paid in the j0 tournament. Let ui = u(wi), ~ui = u( ~wi) and let W and ~W
denote the sum of prizes in the j and j0 tournaments respectively. Before we proceed, we need to
de�ne two functions:

�(x) = �dnxe


(x) = n

Z x

0
�(x)dx

We see that 
( jn) =
Pj
i=1 �i: Thus, the incentive compatibility constraints for the j and j

0 tour-
naments can be written as

c0(e) = 
(�)(u(w1)� u(w2))
c0(e) = 
(�0)(u( ~w1)� u( ~w2))

Individual rationality implies that

�u1 + (1� �)u2 = �u

�0~u1 + (1� �0)~u2 = �u
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where
�u = �U + c(e)

Combining these four constraints, we can solve for W and ~W in terms of u1: Let us de�ne a few
functions:

�(�0) =

(�0)� 
(�)


(�0)
+ �0


(�)


(�0)

h = u�1

g(x; �0) = �h(�0) + (1� �0)h( �u� �
0x

1� �0 )

 (�0) = g(
1� �(�0)
1� � u1 +

�(�0)� �
1� � �u; �)

Then, we �nd that W and ~W can be expressed as follows:

~W =  (�0)

W =  (�)

Let us consider  0(x): If we �nd that  0(x) � 0 for x 2 [�; �0]; then it follows that ~W � W: This
implies that the j0 tournament dominates the j tournament.

 0(x) = (�u� u1) �0(x)
�

1

1� x

��
xh0(u1) + (

1

�0(x)
� x)h0( �u� xu1

1� x )

�
+

�
h(u1)� h(

�u� xu1
1� x )

�
Let us de�ne

�(u) = (�u� u) �0(x)
�

1

1� x

��
xh0(u) + (

1

�0(x)
� x)h0( �u� xu

1� x )
�

+

�
h(u)� h( �u� xu

1� x )
�

We see that �(�u) = 0: Since u1 > �u;  0(x) = �(u1) � 0 if �0(u) � 0 for u > �u:

�0(u) =

�
�u� u
1� x

�
x

 
h00(u)�

1
�0(x) � x
1� x h00(

�u� xu
1� x )

!

+

�
1� x(1 + �0(x))

1� x

��
h0(u)� h0( �u� xu

1� x )
�

Suppose it were the case that �0(x) = 1: Then,

�0(u) =

�
�u� u
1� x

�
x

�
h00(u)� h00( �u� xu

1� x )
�

+

�
1� 2x
1� x

��
h0(u)� h0( �u� xu

1� x )
�

Recall that we are assuming 1 > x � 1
2 and u > �u: Since R � P

3 , it follows that h
00; h000 � 0 (to

see the argument, see the proof of Proposition 6). It therefore follows that the above expression is
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less than zero. Thus, if �0(x) = 1;  0(x) < 0: From the de�nition of �; it follows that

�0(x) = 1 +

0(x)


(x)
(1� x)

Since, 
(x) = n
R x
0 �(x)dx; 


0(x) = n�(x) = n�dnxe: Thus,

�0(x) = 1 +
n�dnxe

(x)

(1� x)

Suppose that F is a symmetric and uniform distribution. It follows from Proposition 1 that �i = 0
for 1 < i < n: This implies that �0(x) = 1 for x 2 [ 1n ;

n�1
n ): Hence, when F is a symmetric uniform

distribution, the j0 tournament dominates the j tournament where j0 > j � n=2: If follows from
this and Corollary 3 that, for F a symmetric uniform distribution, the optimal j tournament is the
strict loser prize tournament.

Now, we will consider the case where R � P
3 . Let us consider a j tournament and a j0

tournament with j0 < j � n=2: Let � = j
n and �

0 = j0

n : As before, we will compare j and j0

tournaments that lead to the same level of e¤ort exertion, e, and consider the amounts paid out in
prizes by the principal. Let w1 and w2 denote the prizes paid in the j tournament and ~w1 and ~w2
denote the prizes paid in the j0 tournament. Let ui = u(wi), ~ui = u( ~wi) and let W and ~W denote
the sum of prizes in the j and j0 tournaments respectively. We will show that, when F is uniform,
~W �W .
Again, we �nd that W and ~W can be expressed as:

~W =  (�0)

W =  (�)

If we �nd that  0(x) � 0 for x 2 [�0; �]; then it follows that ~W �W:

 0(x) = (�u� u1) �0(x)
�

1

1� x

��
xh0(u1) + (

1

�0(x)
� x)h0( �u� xu1

1� x )

�
+

�
h(u1)� h(

�u� xu1
1� x )

�
Again, let

�(u) = (�u� u) �0(x)
�

1

1� x

��
xh0(u) + (

1

�0(x)
� x)h0( �u� xu

1� x )
�

+

�
h(u)� h( �u� xu

1� x )
�

We see that �(�u) = 0: Since u1 > �u;  0(x) = �(u1) � 0 if �0(u) � 0 for u > �u:

�0(u) =

�
�u� u
1� x

�
x

 
h00(u)�

1
�0(x) � x
1� x h00(

�u� xu
1� x )

!

+

�
1� x(1 + �0(x))

1� x

��
h0(u)� h0( �u� xu

1� x )
�
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As shown above, when F is uniform, �0(x) = 1: Thus,

�0(u) =

�
�u� u
1� x

�
x

�
h00(u)� h00( �u� xu

1� x )
�

+

�
1� 2x
1� x

��
h0(u)� h0( �u� xu

1� x )
�

Recall that we are assuming 0 < x � 1
2 and u > �u: Since R � P

3 , h
00 � 0 and h000 � 0 (to see the

argument, see the proof of Proposition 6). It therefore follows that the above expression is greater
than zero. Hence, ~W �W .

Proof of Lemma 3. The principal�s Lagrangian can be modi�ed slightly to take into account
the limited liability constraint:

L =
 
(c0)�1

 X
i

�iui

!
� 1

n

X
i

u�1(ui)

!
��
 
�U � 1

n

X
i

ui + c

 
(c0)�1

 X
i

�iui

!!!
�
X
i


i(�u�ui)

where �u = u�1( �w).
Let h(x) = (c0)�1(x), v(x) = u0(x), and vi = u0(wi) = u0(u�1(ui)).
The �rst order condition for ui is as follows: 
�ih

0

 X
i

�iui

!
� 1

nu0(u�1(ui))

!
+ �

 
1

n
� c0

 
h

 X
i

�iui

!!
h0

 X
i

�iui

!!
+ 
iui = 0

�inh
0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui

!!!
+ � =

1

vi

By assumption, w�i > �w. This implies that u�i > �u, which means that 
i = 0.
Therefore 
�ih

0

 X
i

�iui

!
� 1

nu0(u�1(ui))

!
+ �

 
1

n
� c0

 
h

 X
i

�iui

!!
h0

 X
i

�iui

!!
= 0

�inh
0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui
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Since w�k > �w,

1

vi
� 1

vi+k
= (�i � �i+k)nh0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui

!!!

Similarly, since w�j ; w
�
k > �w,

1

vj
� 1

vj+l
=
1

vi
� 1

vi+k
= (�j � �j+l)nh0

 X
i

�iui

! 
1� �c0

 
h

 X
i

�iui

!!!

Therefore,
1
vi
� 1

vi+k
1
vj
� 1

vj+l

=
�i � �i+k
�j � �j+l
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Proof of Proposition 8. Suppose that (� � E(�))e� + " is distributed according to Q (where
" is distributed according to F and �e� � E(�) is distributed according to H, and � and " are
independent). Then,

Q(x) = Pr((� � E(�))e� + " � x)

= E(F (x� (� � E(�))e�))

=

Z
R

F (x� ye�)g(y)dy

Now suppose that F and H are symmetric. We will show that Q will also be symmetric:

Q(�x) =

Z
R

F (�x� ye�)g(y)dy

= �
Z
R

F (�x+ ye�)g(�y)d(�y)

=

Z
R

(1� F (x� ye�))g(y)dy

= 1�
Z
R

F (x� ye�)g(y)dy

= 1�Q(x)

Hence Q is symmetric when F and H are symmetric since Q(�x) = 1�Q(x). Now let us turn to
the agents�problem. Since we are restricting attention to symmetric equilibria, an agent maximizes

nX
i=1

'i(e; e
�)u(wi)� c(e)

where 'i(e; e
�) = Pr(ith placeje; e�): Since agents do not know their types at the point when e¤ort

is chosen, 'i does not depend upon �. The �rst-order condition for the agents is given by

c0(e) =
nX
i=1

�
@

@e
'i(e; e

�)

�
u(wi)

Since we are considering symmetric equilibria, the solution for e is e = e�. Hence,

c0(e�) =

nX
i=1

�iu(wi)

where �i =
@

@e
'i(e; e

�)

����
e=e�

Let us now derive a formula for �i.

'i(e; e
�) =

�
n� 1
i� 1

�
Pr(�e� E(�)e� + " � (�0 � E(�))e� + "0)n�i Pr(�e� E(�)e� + "

� (�0 � E(�))e� + "0)i�1

=

�
n� 1
i� 1

�Z
R

Z
R

(Q(ye� E(�)e� + x)n�i (1�Q(ye� E(�)e� + x))i�1 f(x)h(y)dxdy
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�i =
@

@e
'i(e; e

�)

����
e=e�

=

�
n� 1
i� 1

�Z
R

Z
R

[(n� i) (Q((y � E(�))e� + x)n�i�1 (1�Q((y � E(�))e� + x))i�1

�(i� 1) (Q((y � E(�))e� + x))n�i (1�Q((y � E(�))e� + x))i�2]f(x)g(y)q((y � E(�))e� + x)dxdy

Now suppose that F and H are symmetric. From above, we know that this also implies that Q is
symmetric.

�n�i+1 =

�
n� 1
n� i

�Z
R

Z
R

[(i� 1) (Q((y � E(�))e� + x)i�2 (1�Q((y � E(�))e� + x))n�i

�(n� i) (Q((y � E(�))e� + x))i�1 (1�Q((y � E(�))e� + x))n�i�1]
�f(x)g(y)q((y � E(�))e� + x)dxdy

= �
�
n� 1
i� 1

�Z
R

Z
R

[(n� i)
�
Q(�(y0 � E(�))e� � x0

�i�1 �
1�Q(�(y0 � E(�))e� � x0)

�n�i�1
�(i� 1)

�
Q(�(y0 � E(�))e� � x0)

�i�2 �
1�Q(�(y0 � E(�))e� � x0)

�n�i
]

�f(x)g(y)q((y0 � E(�))e� + x0)d(�x0)d(2E(�)� y0)

= �
�
n� 1
i� 1

�Z
R

Z
R

[(n� i)
�
Q((y0 � E(�))e� + x0

�n�i�1 �
1�Q((y0 � E(�))e� + x0)

�i�1
�(i� 1)

�
Q((y0 � E(�))e� + x0)

�n�i �
1�Q((y0 � E(�))e� + x0)

�i�2
]

�f(x0)g(y0)q((y0 � E(�))e� + x0)dxdy
= ��i

Therefore, when F and H are symmetric, �i = ��n�i+1.

Proof of Proposition 9. Consider a �-Additive strict loser-prize tournament and a �-Additive
strict winner-prize tournament, both of which pay out prizes w1 and w2: Let ui = u(wi): We
will assume that F is symmetric and that c(e) = e2

2 : Let us denote the e¤ort of the high and
low types in the winner-prize case by eW� and eW0 respectively and let us denote the e¤orts in the
loser-prize case by eL� and e

L
0 : Let us denote the sum of e¤orts by eW and eL in the winner- and

loser-prize cases respectively We will now proceed to show that eW � eL. First consider e¤ort in
the winner-prize tournament:

Pr(winj�; e) = E"i

h
F (e� eW� + "i)

n=2�1F (e� eW0 + � + "i)
n=2
i

eW� = argmax
e
Pr(winj�; e)(u1 � u2)�

e2

2

eW� = E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (�W + � + "i)
n=2f("i)

+n
2F ("i)

n=2�1F (�W + � + "i)
n=2�1f(�W + � + "i)

�
(u1 � u2)

where �W = eW� � eW0
eW� = 	(�W + �)(u1 � u2)

where 	(x) = E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (x+ "i)n=2f("i)
+n
2F ("i)

n=2�1F (x+ "i)n=2�1f(x+ "i)

�
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Pr(winj0; e) = E"i

h
F (e� eW� � � + "i)n=2F (e� eW0 + "i)

n=2�1
i

eW0 = argmax
e
Pr(winj0; e)(u1 � u2)�

e2

2

eW0 = E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (��W � � + "i)n=2f("i)
+n
2F ("i)

n=2�1F (��W � � + "i)n=2�1f(��W � � + "i)

�
(u1 � u2)

= 	(��W � �)(u1 � u2)

Now let us consider e¤ort exertion in the loser-prize tournament:

Pr(notlosej�; e) = 1� Pr(losej�; e)

= 1� E"i
h
(1� F (e� eL� + "i))n=2�1(1� F (e� eL0 + � + "i))n=2

i
= E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (��L � � + "i)n=2f("i)
+n
2F ("i)

n=2�1F (��L � � + "i)n=2�1f(��L � � + "i)

�
(u1 � u2)

= 	(��L � �)(u1 � u2)

eL� = argmaxe
Pr(notlosej�; e)(u1 � u2)�

e2

2

eL� = E"i

� �
n
2 � 1

�
(1� F ("i))n=2�2(1� F (�L + � + "i))n=2f("i)

+n
2 (1� F ("i))

n=2�1(1� F (�L + � + "i))n=2�1f(�L + � + "i)

�
(u1 � u2)

= E"i

� �
n
2 � 1

�
F (�"i)n=2�2F (��L � � � "i)n=2f("i)

+n
2F (�"i)

n=2�1F (��L � � � "i)n=2�1f(�L + � + "i)

�
(u1 � u2)

= (u1 � u2)
Z
R

� �
n
2 � 1

�
F (�"i)n=2�2F (��L � � � "i)n=2f("i)

+n
2F (�"i)

n=2�1F (��L � � � "i)n=2�1f(�L + � + "i)

�
f("i)d"i

= (u1 � u2)
Z
R

� �
n
2 � 1

�
F (�"i)n=2�2F (��L � � � "i)n=2f(�"i)

+n
2F (�"i)

n=2�1F (��L � � � "i)n=2�1f(��L � � � "i)

�
f(�"i)d"i

Let z = �"i

eL� = (u1 � u2)
Z
R

� �
n
2 � 1

�
F (z)n=2�2F (��L � � + z)n=2f(z)

+n
2F (z)

n=2�1F (��L � � + z)n=2�1f(��L � � + z)

�
f(z)dz

= (u1 � u2)
Z
R

� �
n
2 � 1

�
F (z)n=2�2F (��L � � + z)n=2f(z)

+n
2F (z)

n=2�1F (��L � � + z)n=2�1f(��L � � + z)

�
f(z)dz

= E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (��L � � + "i)n=2f("i)
+n
2F ("i)

n=2�1F (��L � � + "i)n=2�1f(��L � � + "i)

�
(u1 � u2)

eL� = 	(��L � �)(u1 � u2)

Pr(notlosej0; e) = 1� Pr(losej�; e)

= 1� E"i
h
(1� F (e� eL� � � + "i))n=2(1� F (e� eL0 + "i))n=2�1

i
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eL0 = argmaxe
Pr(notlosej0; e)(u1 � u2)�

e2

2

eL0 = E"i

� �
n
2 � 1

�
(1� F ("i))n=2�2(1� F (��L � � + "i))n=2f("i)

+n
2 (1� F ("i))

n=2�1(1� F (��L � � + "i))n=2�1f(��L � � + "i)

�
�(u1 � u2)

= E"i

� �
n
2 � 1

�
F (�"i)n=2�2F (�L + � � "i)n=2f("i)

+n
2F (�"i)

n=2�1F (�L + � � "i)n=2�1f(��L � � + "i)

�
(u1 � u2)

= (u1 � u2)
Z
R

� �
n
2 � 1

�
F (�"i)n=2�2F (�L + � � "i)n=2f(�"i)

+n
2F (�"i)

n=2�1F (�L + � � "i)n=2�1f(�L + � � "i)

�
f("i)d"i

Let z = �"i

= (u1 � u2)
Z
R

� �
n
2 � 1

�
F (z)n=2�2F (�L + � + z)n=2f(z)

+n
2F (z)

n=2�1F (�L + � + z)n=2�1f(�L + � + z)

�
f(z)dz

= E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (�L + � + "i)n=2f("i)
+n
2F ("i)

n=2�1F (�L + � + "i)n=2�1f(�L + � + "i)

�
(u1 � u2)

= 	(�L + �)(u1 � u2)

We see then that

eW = eW� + eW0

=
�
	(�W + �) + 	(��W � �)

�
(u1 � u2)

= h(�W + �)(u1 � u2)
where h(x) = 	(x) + 	(�x)

eL = eL� + e
L
0

=
�
	(�L + �) + 	(��L � �)

�
(u1 � u2)

= h(�L + �)(u1 � u2)

There are two things that we need to show to complete the proof. (1) �W � �L, and (2) h(x)
is decreasing. It immediately follows from (1) and (2) that eW � eL:

Proof of (1):

�W =
�
	(�W + �)�	(��W � �)

�
(u1 � u2)

�L =
�
	(��L � �)�	(�L + �)

�
(u1 � u2)

Let g(x) = [	(x)�	(�x)] (u1 � u2): Then �W = g(�W + �) and �L = �g(�L + �): Let us
now �nd a simpler expression for g:

	(x) = E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (x+ "i)n=2f("i)
+n
2F ("i)

n=2�1F (x+ "i)n=2�1f(x+ "i)

�

= E"i

h�n
2
� 1
�
F ("i)

n=2�2F (x+ "i)
n=2f("i)

i
+E"i

hn
2
F ("i)

n=2�1F (x+ "i)
n=2�1f(x+ "i)

i
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	(�x) = E"i

h�n
2
� 1
�
F ("i)

n=2�2F (�x+ "i)n=2f("i)
i

+E"i

hn
2
F ("i)

n=2�1F (�x+ "i)n=2�1f(�x+ "i)
i

= E"i

h�n
2
� 1
�
F ("i)

n=2�2F (�x+ "i)n=2f("i)
i

+

Z
R

n

2
F ("i)

n=2�1F (�x+ "i)n=2�1f(�x+ "i)f("i)d"i

Let z = �x+ "i

= E"i

h�n
2
� 1
�
F ("i)

n=2�2F (�x+ "i)n=2f("i)
i

+

Z
R

n

2
F (x+ z)n=2�1F (z)n=2�1f(z)f(x+ z)dz

= E"i

h�n
2
� 1
�
F ("i)

n=2�2F (�x+ "i)n=2f("i)
i

+E"i

hn
2
F ("i)

n=2�1F (x+ "i)
n=2�1f(x+ "i)

i
g(x) = 	(x)�	(�x)

= E"i

h�n
2
� 1
�
F ("i)

n
2
�2F (x+ "i)

n
2 f("i)

i
�E"i

h�n
2
� 1
�
F (�x+ "i)

n
2 F ("i)

n
2
�2f("i)

i
= E"i

h�n
2
� 1
�
F ("i)

n
2
�2f("i)

�
F (x+ "i)

n
2 � F (�x+ "i)

n
2

�i
g0(x) = E"i

�
n

2

�n
2
� 1
�
F ("i)

n
2
�2f("i)

�
F (x+ "i)

n
2
�1f(x+ "i)

+F (�x+ "i)
n
2
�1f(�x+ "i)

��
� 0

So, g0(x) � 0: Observe that

lim
x�!1

jg(x)j = lim
x�!1

����E"i ��n2 � 1�F ("i)n2�2f("i)
�

F (x+ "i)
n
2

�F (�x+ "i)
n
2

������
=

���E"i h�n2 � 1�F ("i)n2�2f("i) (1� 0)i���
=

���E"i h�n2 � 1�F ("i)n2�2f("i)i��� <1
Since this limit is �nite, it follows that for x su¢ ciently large, g(x + �) < x: It is obvious that
g(0) = 0. Since g is increasing, it follows that g(�) � 0: Thus, for x = 0, g(x + �) � x: By
continuity, there is a value of x, x � 0, with g(x+�) = x: Hence, �W � 0: Now, suppose�W < �L:
�L solves �L = �g(�L + �): Since �W + � � 0 and g(0) = 0; we know that �g(�W + �) � 0.
Thus, �W � �g(�W + �): Since g is increasing, �W < �L implies that �L > �g(�L + �), which
is a contradiction. It therefore follows that, if a solution for �L exists, �W � �L: For x = ��;
x < �g(x+ �) and for x = �W ; x � �g(x+ �): Thus, by continuity, there exists a solution for �L
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with �� � �L � �W : This proves (1).
Proof of (2): Since �L = �g(�L + �); it follows that

d(�L + �)

d�
=

1

1 + g0(�L + �)
� 0

Since, �L(�) + � � �W (�) + �; it follows that there exists �0 � � such that

�L(�0) + �0 = �W (�) + �

Since eW (�) = h(�W (�)+�)(u1�u2) and eL(�) = h(�L(�)+�)(u1�u2); we see that eW (�) = eL(�0)
where �0 � �: We will now argue that eL(�0) � eL(�) for �0 � �: From this, it immediately follows
that eW (�) � eL(�); which proves the claim.

Consider �0 � �: High ability types are more certain to perform well relative to low ability
types than they were before. When all high types exert the same level of e¤ort, as they will in
equilibrium, their prospects do not change at all relative to one another. Therefore, for a given
level of e¤ort by the low types, eL0 , high types choose to reduce their level of e¤ort exertion. Low
ability types, on the other hand, are more certain to perform poorly relative to high ability types
than they were before. When all low ability types exert the same level of e¤ort, as they will in
equilibrium, their prospects do not change at all relative to one another. Therefore, low ability
types also have less incentive to exert e¤ort for a given eL� than they did before. As a result, both
types reduce their e¤ort levels in equilibrium. Hence, eL(�0) � eL(�), which proves the proposition.

Proof of Proposition 10. Let us denote the e¤ort of the high and low types in the winner-
prize case by eW� and eW0 respectively and let us denote the e¤orts in the loser-prize case by eL�
and eL0 : Let us denote the sum of e¤orts by eW and eL in the winner- and loser-prize cases
respectively In the homogeneous case, holding u1 � u2 constant produced the same e¤ort in the
winner-prize and loser-prize tournaments, and this allowed us to conclude that the loser-prize
tournament dominated. We will show that, holding u1 � u2 constant, as � ! 1 eW

eL
! 1: This

suggests that, for � su¢ ciently large, the winner-prize tournament produces higher pro�ts than the
loser-prize tournament. Hence, e

W

eL
! 1 is a su¢ cient condition for the result. First consider

e¤ort in the winner-prize tournament:

Pr(winj�; e) = E"i

h
F (e� � eW� � + "i)n=2�1F (e� � eW0 + "i)

n=2
i

eW� = argmax
e
Pr(winj�; e)(u1 � u2)� c(e)

c0(eW� ) = �E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (�W + "i)
n=2f("i)

+n
2F ("i�)

n=2�1F (�W + "i)
n=2�1f(�W + "i)

�
�(u1 � u2)

where �W = eW� � � eW0
c0(eW� ) = �	(�W )(u1 � u2)

where 	(x) = E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (x+ "i)n=2f("i)
+n
2F ("i)

n=2�1F (x+ "i)n=2�1f(x+ "i)

�
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Pr(winj0; e) = E"i

h
F (e� eW� � + "i)n=2F (e� eW0 + "i)

n=2�1
i

c0(eW0 ) = argmax
e
Pr(winj0; e)(u1 � u2)� c(e)

c0(eW0 ) = E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (��W + "i)
n=2f("i)

+n
2F ("i)

n=2�1F (��W + "i)
n=2�1f(��W + "i)

�
�(u1 � u2)

= 	(��W )(u1 � u2)

Now let us consider e¤ort exertion in the loser-prize tournament:

Pr(notlosej�; e) = 1� Pr(losej�; e)

= 1� E"i
h
(1� F (e� � eL� � + "i))n=2�1(1� F (e� � eL0 + "i))n=2

i
eL� = argmax

e
Pr(notlosej�; e)(u1 � u2)� c(e)

c0(eL� ) = �E"i

� �
n
2 � 1

�
(1� F ("i))n=2�2(1� F (�L + "i))n=2f("i)

+n
2 (1� F ("i))

n=2�1(1� F (�L + "i))n=2�1f(�L + "i)

�
�(u1 � u2)

= E"i

� �
n
2 � 1

�
F (�"i)n=2�2F (��L � "i)n=2f("i)

+n
2F (�"i)

n=2�1F (��L � "i)n=2�1f(�L + "i)

�
(u1 � u2)

= (u1 � u2)
Z
R

� �
n
2 � 1

�
F (�"i)n=2�2F (��L � "i)n=2f("i)

+n
2F (�"i)

n=2�1F (��L � "i)n=2�1f(�L + "i)

�
�f("i)d"i

= (u1 � u2)�
Z
R

� �
n
2 � 1

�
F (�"i)n=2�2F (��L � "i)n=2f(�"i)

+n
2F (�"i)

n=2�1F (��L � "i)n=2�1f(��L � "i)

�
�f(�"i)d"i

Let z = �"i

= (u1 � u2)�
Z
R

� �
n
2 � 1

�
F (z)n=2�2F (��L + z)n=2f(z)

+n
2F (z)

n=2�1F (��L + z)n=2�1f(��L + z)

�
f(z)dz

= �E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (��L + "i)n=2f("i)
+n
2F ("i)

n=2�1F (��L + "i)n=2�1f(��L + "i)

�
(u1 � u2)

= �	(��L)(u1 � u2)
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Pr(notlosej0; e) = 1� Pr(losej�; e)

= 1� E"i
h
(1� F (e� eL� � + "i))n=2(1� F (e� eL0 + "i))n=2�1

i
eL0 = argmax

e
Pr(notlosej0; e)(u1 � u2)� c(e)

c0(eL0 ) = E"i

�
� �

n
2 � 1

�
(1� F ("i))n=2�2(1� F (��L + "i))n=2f("i)

+n
2 (1� F ("i))

n=2�1(1� F (��L + "i))n=2�1f(��L + "i)

�
�(u1 � u2)

= E"i

� �
n
2 � 1

�
F (�"i)n=2�2F (�L � "i)n=2f("i)

+n
2F (�"i)

n=2�1F (�L � "i)n=2�1f(��L + "i)

�
�(u1 � u2)

= (u1 � u2)

�
Z
R

� �
n
2 � 1

�
F (�"i)n=2�2F (�L � "i)n=2f(�"i)

+n
2F (�"i)

n=2�1F (�L � "i)n=2�1f(�L � "i)

�
f("i)d"i

Let z = �"i
= (u1 � u2)

�
Z
R

� �
n
2 � 1

�
F (z)n=2�2F (�L + z)n=2f(z)

+n
2F (z)

n=2�1F (�L + z)n=2�1f(�L + z)

�
f(z)dz

= E"i

� �
n
2 � 1

�
F ("i)

n=2�2F (�L + "i)n=2f("i)
+n
2F ("i)

n=2�1F (�L + "i)n=2�1f(�L + "i)

�
(u1 � u2)

= 	(�L)(u1 � u2)

Let 
 = (c0)�1: Since c(x) = dx�; 
(x) = x
d�

1
��1 : Since � > 1; limx!1 
(x) =1: We see then

that

eW = eW� � + e
W
0

= 
(	(�W )�2(u1 � u2)) + 
(	(��W )(u1 � u2))
eL = eL� + e

L
0

= 
(	(�L)(u1 � u2)) + 
(	(��L)�2(u1 � u2))

As � !1; we see that eW
eL
! lim

�!1

(	(�W )�2(u1�u2))

(	(��L)�2(u1�u2))

= lim
�!1

�
	(�W )
	(��L)

� 1
��1

: We know that

�W = 
(	(�W )�2(u1 � u2))� 
(	(��W )(u1 � u2))
�L = 
(	(��L)�2(u1 � u2))� 
(	(�L)(u1 � u2))

It is easily shown that lim
x!1

	(x) = c > 0 and lim
x!�1

	(x) = 0 and that 	(x) is �nite for

all x. It therefore follows that lim
�!1

�W = 1 and lim
�!1

�L = 1: From this, we conclude that

lim
�!1

	(�W )
	(��L) =1, and that

eW

eL
!1 as � !1:

We have shown, therefore, that for the same prizes w1 and w2 in the strict winner- and loser-prize
tournaments, the ratio of induced e¤orts, e

W

eL
; goes to in�nity as � ! 1: It immediately follows

that, for � su¢ ciently large, the principal will prefer the optimal strict winner-prize tournament to
the optimal strict loser-prize tournament.
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Proof of Proposition 11. Let

wn(q) =

�
E("n

(i)
)�(q�e�n)

E("n
(i)
)�E("n

(i+1)
)

�
wni+1 +

�
(q�e�)�E("n

(i+1)
)

E("n
(i)
)�E("n

(i+1)
)

�
wni , q � e�n 2 [E("n(i+1)); E("

n
(i))]

wn1 +

�
wn1�wn2

E("n
(1)
)�E("n

(2)
)

��
(q � e�n)� E("n(1))

�
, q � e�n � E("n(1))

wnn �
�

wnn�1�wnn
E("n

(n�1))�E("
n
(n)
)

��
E("n(n))� (q � e

�
n)
�
, q � e�n � E("n(n))

where wni is the optimal prize to give for ith place, e
�
n is the induced e¤ort level of the optimal

tournament in the case where there are n agents, and "n(i) is the ith order statistic of the idiosyncratic
noise.

Green and Stokey (1983) implies that:

lim
n!1

wn(q) = w�(q) for all q 2 R

lim
n!1

e�n = e�

where w�(q) is the optimal individual contract and e� is the e¤ort level induced by w�(q).
f�ni gni=1 decreasing in i implies that fwni gni=1 is decreasing in i, which means that wn(q) is

increasing in q. Since wn(q) is increasing in q for all n, Green and Stokey (1983) implies that w�(q)
is increasing in q.

F symmetric implies that: E("n(i)) = E("n(n�i+1)). Consider �1; �2 � 0. It is possible to write
�1 and �1 + �2 as: �1 = �1E("(i+1)) + (1� �1)E("(i)) and �1 + �2 = �2E("(j+1)) + (1� �2)E("(j))
where 0 � �1; �2 � 1 and j � i � dn=2e. The symmetry of F implies that: ��1 = �1E("(n�i)) +
(1� �1)E("(n�i+1)) and �(�1 + �2) = �2E("(n�j)) + (1� �2)E("(n�j+1)). As a result:

wn(e
�
n + �1) = �1w

n
i+1 + (1� �1)wni

wn(e
�
n + (�1 + �2)) = �2w

n
j+1 + (1� �2)wnj

wn(e
�
n � �1) = �1w

n
n�i + (1� �1)wnn�i+1

wn(e
�
n � (�1 + �2)) = �2w

n
n�j + (1� �2)wnn�j+1

wn(e
�
n + (�1 + �2))� wn(e�n + �1) = �2w

n
j+1 + (1� �2)wnj � �1wni+1 � (1� �1)wni

= �1(�2w
n
j+1 + (1� �2)wnj � wni+1)

+(1� �1)(�2wnj+1 + (1� �2)wnj � wni )
= �1(�2(w

n
j+1 � wni+1) + (1� �2)(wnj � wni+1))

+(1� �1)(�2(wnj+1 � wni ) + (1� �2)wnj � wni )

Suppose that R � P
2 . Since F is symmetric and f�ig is decreasing in i, Proposition 4 implies

that, for j � k � dn=2e
wnj � wnk � wnn�k+1 � wnn�j+1
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Case 1: i = j. Then, since �2 � 0, it follows that �2 � �1.

wn(e
�
n + (�1 + �2))� wn(e�n + �1) = �2w

n
j+1 + (1� �2)wnj � �1wni+1 � (1� �1)wni

= �2w
n
j+1 + (1� �2)wnj � �1wnj+1 � (1� �1)wnj

= (�1 � �2)wnj � (�1 � �2)wnj+1
� (�1 � �2)wnn�j � (�1 � �2)wnn�j+1
= �1w

n
n�i + (1� �1)wnn�i+1 � �2wnn�j � (1� �2)wnn�j+1

= wn(e
�
n � �1)� wn(e�n � (�1 + �2))

Case 2: i � j + 1.

wn(e
�
n + (�1 + �2))� wn(e�n + �1) = �2w

n
j+1 + (1� �2)wnj � �1wni+1 � (1� �1)wni

= �1(�2w
n
j+1 + (1� �2)wnj � wni+1) + (1� �1)(�2wnj+1

+(1� �2)wnj � wni )
= �1(�2(w

n
j+1 � wni+1) + (1� �2)(wnj � wni+1))

+(1� �1)(�2(wnj+1 � wni ) + (1� �2)(wnj � wni ))
� �1(�2(w

n
n�i � wnn�j) + (1� �2)(wnn�i � wnn�j+1))

+(1� �1)(�2(wnn�i+1 � wnn�j) + (1� �2)(wnn�i+1 � wnn�j+1))
= �1w

n
n�i + (1� �1)wnn�i+1 � �2wnn�j � (1� �2)wnn�j+1

= wn(e
�
n � �1)� wn(e�n � (�1 + �2))

Therefore, for �1; �2 � 0 and R � P
2 ,

wn(e
�
n + (�1 + �2))� wn(e�n + �1) � wn(e

�
n � �1)� wn(e�n � (�1 + �2))

From Green and Stokey (1983), it follows that:

w�(e� + (�1 + �2))� w�(e� + �1) � w�(e� � �1)� w�(e� � (�1 + �2))

Suppose that P
3 � R � P

2 . Since F is symmetric and f�ig is decreasing in i, Proposition 4
implies that, for j � k � dn=2e

wnj � wnk � wnn�k+1 � wnn�j+1

Case 1: i = j. Then, since �2 � 0, it follows that �2 � �1.

wn(e
�
n + (�1 + �2))� wn(e�n + �1) = �2w

n
j+1 + (1� �2)wnj � �1wni+1 � (1� �1)wni

= �2w
n
j+1 + (1� �2)wnj � �1wnj+1 � (1� �1)wnj

= (�1 � �2)wnj � (�1 � �2)wnj+1
� (�1 � �2)wnn�j � (�1 � �2)wnn�j+1
= �1w

n
n�i + (1� �1)wnn�i+1 � �2wnn�j � (1� �2)wnn�j+1

= wn(e
�
n � �1)� wn(e�n � (�1 + �2))
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Case 2: i � j + 1.

wn(e
�
n + (�1 + �2))� wn(e�n + �1) = �2w

n
j+1 + (1� �2)wnj � �1wni+1 � (1� �1)wni

= �1(�2w
n
j+1 + (1� �2)wnj � wni+1) + (1� �1)(�2wnj+1

+(1� �2)wnj � wni )
= �1(�2(w

n
j+1 � wni+1) + (1� �2)(wnj � wni+1))

+(1� �1)(�2(wnj+1 � wni ) + (1� �2)(wnj � wni ))
� �1(�2(w

n
n�i � wnn�j) + (1� �2)(wnn�i � wnn�j+1))

+(1� �1)(�2(wnn�i+1 � wnn�j) + (1� �2)(wnn�i+1 � wnn�j+1))
= �1w

n
n�i + (1� �1)wnn�i+1 � �2wnn�j � (1� �2)wnn�j+1

= wn(e
�
n � �1)� wn(e�n � (�1 + �2))

Therefore, for �1; �2 � 0 and P
3 � R � P

2 ,

wn(e
�
n + (�1 + �2))� wn(e�n + �1) � wn(e

�
n � �1)� wn(e�n � (�1 + �2))

From Green and Stokey (1983), it follows that:

w�(e� + (�1 + �2))� w�(e� + �1) � w�(e� � �1)� w�(e� � (�1 + �2))

Consider the following function analogous to wn(q).

un(q) =

�
E("n

(i)
)�(q�e�n)

E("n
(i)
)�E("n

(i+1)
)

�
u(wni+1) +

�
(q�e�)�E("n

(i+1)
)

E("n
(i)
)�E("n

(i+1)
)

�
u(wni ), q � e�n 2 [E("n(i+1)); E("

n
(i))]

u(wn1 ) +

�
u(wn1 )�u(wn2 )
E("n

(1)
)�E("n

(2)
)

��
(q � e�n)� E("n(1))

�
, q � e�n � E("n(1))

u(wnn)�
�

u(wnn�1)�u(wnn)
E("n

(n�1))�E("
n
(n)
)

��
E("n(n))� (q � e

�
n)
�
, q � e�n � E("n(n))

Green and Stokey (1983) implies that un(q) converges pointwise to u(w�(q)). Since F is
symmetric and f�ig is decreasing in i, Proposition 4 implies that, when R � P

3 ,

u(wnj )� u(wnk ) � u(wnn�k+1)� u(wnn�j+1)

for j � k � dn=2e : Following an identical logic to that given above, we �nd that, when R � P
3 ;

u(wn(e
�
n + (�1 + �2)))� u(wn(e�n + �1)) � u(wn(e

�
n � �1))� u(wn(e�n � (�1 + �2)))

for �1; �2 � 0. From Green and Stokey (1983), it follows that:

u(w�(e� + (�1 + �2)))� u(w�(e� + �1)) � u(w�(e� � �1))� u(w�(e� � (�1 + �2))):

Now let us suppose that F is a normal distribution. It can be shown that E("n(i)) = n�2�ni in
this case, where � is the standard deviation of F . wn(q) is a piecewise linear function. We can
de�ne the segments over which the function is linear:

Snn+1 = (�1; E("n(n)))
Sni = (E("n(i)); E("

n
(i�1))), 1 < i < n

Sn1 = (E("n(1));1)

Let slopeni denote the slope of wn(q) on segment S
n
i . wn(q) is constructed so that slope

n
n+1 = slopenn
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and slopen2 = slopen1 . When 1 < i < n:

slopeni =
wni�1 � wni

E("n(i�1))� E("
n
(i))

=
wni�1 � wni

n�2(�ni � �ni�1)

slopeni+1 � slopeni if and only if:

wni � wni+1
n�2(�ni+1 � �ni )

�
wni�1 � wni

n�2(�ni � �ni�1)
wni � wni+1
wni�1 � wni

�
�ni+1 � �ni
�ni � �ni�1

Proposition 4 implies that this is true when R � P
2 . slopeni+1 � slopeni if and only if:

wni � wni+1
wni�1 � wni

�
�ni+1 � �ni
�ni � �ni�1

Proposition 4 implies that this is true when P
3 � R � P

2 . It follows, therefore, that slopeni is
increasing in i when R � P

2 and decreasing in i when
P
3 � R � P

2 . Therefore, wn(q) is concave for
all n when R � P

2 and convex for all n when
P
3 � R � P

2 . Green and Stokey (1983) implies that
w�(q) is concave when R � P

2 and convex for all n when
P
3 � R � P

2 .
Using the facts that un(q) converges to u(w�(q)) and

u(wni )� u(wni+1)
u(wni�1)� u(wni )

�
�ni+1 � �ni
�ni � �ni�1

for R � P
3 , we can construct an analogous argument to show that u(w

�(q)) is concave when R � P
3 .
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