
Building Dependability Arguments for Software

Intensive Systems

by

Robert Morrison Seater

B.S., Haverford College (2002)
S.M., Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Jan 15, 2009

Certified by. .
Daniel Jackson

Professor
Thesis Supervisor

Accepted by .
Professor Terry P. Orlando

Chairman, Department Committee on Graduate Students

2

Building Dependability Arguments for Software Intensive

Systems

by

Robert Morrison Seater

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 15, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A method is introduced for structuring and guiding the development of end-to-end
dependability arguments. The goal is to establish high-level requirements of complex
software-intensive systems, especially properties that cross-cut normal functional
decomposition. The resulting argument documents and validates the justification
of system-level claims by tracing them down to component-level substantiation, such
as automatic code analysis or cryptographic proofs. The method is evaluated on case
studies drawn from the Burr Proton Therapy Center, operating at Massachusetts
General Hospital, and on the Pret a Voter cryptographic voting system, developed
at the University of Newcastle.

Thesis Supervisor: Daniel Jackson
Title: Professor

3

4

Acknowledgments

This research was supported, in part, by

- grants 0086154 (‘Design Conformant Software’) and 6895566 (‘Safety
Mechanisms for Medical Software’), from the ITR program of the National
Science Foundation.

- NSF grant 0438897 (‘Sod Collaborative Research: Constraint-based
Architecture Evaluation’).

- the Toshiba Corporation, as part of a collaboration between Toshiba’s
Corporate Research and Development Center and the Software Design Group
of MIT’s Computer Science and Artificial Intelligence Lab. We especially thank
Takeo Imia.

This work is part of an ongoing collaboration between the Software Design Group

at MIT and the Burr Proton Therapy Center (BPTC) of the Massachusetts General

Hospital. We especially appreciate the assistance of Jay Flanz and Doug Miller of

the BPTC for devoting so much of their time to the project.

I am thankful for the many people who contributed ideas and encouragement for

this work. Specifically, Daniel Jackson’s advising was insightful and inspiring; without

it I would have abandoned my line of work many times over. I am also indebted to

my thesis committee members, Rob Miller and Ed Crawley, for their insight and

proofreading skills. Many other researchers have made intellectual contributions to

this work, of whom I would like to especially thank Peter Ryan, Eunsuk Kang, Lucy

Mendel, Derek Rayside, John Hall, Rohit Gheyi, and Michael Jackson (not the singer).

I would also like to thank the organizers and attendees of IWAAPF’06 (a workshop

devoted to Problem Frames research) for their warm welcome and insightful feedback.

No acknowledgement would be complete without a predictable, but justified, thank

you to my wife (Jessica) for putting up with my graduate student stipend (low) and

lifestyle (I got more sleep than she did). Lastly, thanks to Terry Nation for creating

the Daleks, who played a starring role in my thesis defense.

5

6

Contents

1 Motivation 13

1.1 Introduction: System Failure . 13

1.1.1 Software Intensive Systems . 14

1.1.2 Dependability, Auditability, and Traceability 15

1.2 Contributions . 17

1.2.1 Hypothesis . 18

2 Synthesis Technique: CDAD 21

2.1 Dependability Arguments . 21

2.1.1 Granularities . 23

2.1.2 The Space of Arguments . 24

2.1.3 Sample Arguments . 26

2.1.4 Existing Techniques . 28

2.1.5 Dependability Arguments . 30

2.1.6 Composition . 32

2.2 Structuring a Dependability Argument 35

3 Requirement Progression 39

3.1 Overall Approach . 39

3.1.1 The Need for Progression . 39

3.1.2 Our Approach . 40

3.2 Problem Frames . 41

3.2.1 More Detail . 42

7

3.3 Requirement Progression . 46

3.3.1 Available Transformations . 47

3.4 Two-Way Traffic Light . 50

3.4.1 Basic Declarations . 51

3.4.2 The Requirement . 56

3.4.3 Step 1: from Cars to Light Units 56

3.4.4 Step 2: From Light Unit to Control Unit 58

3.4.5 Lessons Learnt . 60

3.5 Proton Therapy Logging . 61

3.5.1 System Requirements . 62

3.5.2 Logging Subproblem . 63

3.5.3 The Phenomena . 67

3.5.4 Matching Problem Frames . 69

3.5.5 The Requirement . 73

3.5.6 Transformation and Derivation 74

3.6 Handling Time: Automatic Door Controller 78

3.6.1 Designations and Context . 78

3.6.2 Formalizing the Requirement(s) 81

3.6.3 Lessons Learnt . 85

3.7 Encoding Problem Diagrams in Alloy 90

3.7.1 Sets and Relations . 90

3.7.2 Well Formedness . 91

3.8 Encoding Requirement Progression in Alloy 93

3.8.1 Requirement Progression Invariant 94

3.8.2 The Transformations . 94

3.8.3 Well Formedness Preservation 95

3.9 Discussion . 96

3.9.1 Role of the Analyst . 96

3.9.2 Source of Breadcrumbs . 97

3.9.3 Progression Mistakes . 98

8

3.9.4 Reacting to Rejected Breadcrumbs 99

3.9.5 Progression Uniqueness . 100

3.9.6 Automatic Analysis . 102

3.9.7 Are These Examples Too Small? 103

3.9.8 Related Techniques . 103

4 Case Study: BPTC Dose Delivery 105

4.1 The Burr Proton Therapy Center . 105

4.2 BPTC Hazard Analysis . 107

4.3 Dose Delivery Argument . 110

4.3.1 Designations . 110

4.3.2 Problem Diagram . 119

4.3.3 Flow Diagram . 119

4.3.4 Argument Diagram . 119

4.3.5 Argument Validation . 120

4.3.6 Breadcrumb Interpretation . 120

4.3.7 Breadcrumb Assumptions & Hazards 120

4.3.8 Arc Assumptions & Hazards 131

4.4 Translation to Forge . 135

4.4.1 Sample Procedure Translation 136

4.4.2 Original C Code . 138

4.4.3 Condensed C Code . 141

4.4.4 Abstracted C Code . 141

4.4.5 Java Code to Generate Forge Code from C Code 146

4.4.6 Generated Forge Code . 146

4.4.7 Human Burden: Abstraction & Translation 148

4.4.8 Forge Analysis of Specification 148

4.4.9 development process . 150

4.5 Discoveries . 152

4.5.1 Effort . 156

9

5 Case Study: Voting Auditability 157

5.1 Verifiable Voting . 158

5.1.1 Overview of the System . 159

5.1.2 Flow of a Vote . 159

5.2 Representing the Problem . 161

5.3 Fidelity Goal . 167

5.3.1 Formalization of the Requirement 167

5.3.2 Requirement Progression for Fidelity Goal 168

5.4 Secrecy Goal . 184

5.4.1 Modeling Information . 185

5.4.2 Modeling Initial Data . 186

5.4.3 Modeling Incognito Data . 187

5.4.4 Modeling Inferences . 188

5.4.5 Identifying an Attack . 189

5.4.6 Interpreting the Solutions . 190

5.5 Auditability Goal . 199

5.5.1 Types of Audits . 199

5.5.2 A Precise Formulation . 200

5.5.3 Identifying Necessary Audits 201

5.6 Deriving Inferences from Breadcrumbs 203

5.6.1 Derivation Process . 205

5.6.2 Sample Derivation . 206

5.6.3 Another Example . 207

5.6.4 Validation via Multiplicities 208

5.7 Achievements . 214

5.7.1 Clean Division . 214

5.7.2 Leveraging Fidelity for Secrecy and Auditability 214

5.7.3 Discoveries . 215

5.7.4 Effort . 215

10

6 Related Work 219

6.1 Related Work . 219

6.1.1 Requirement Decomposition 219

6.1.2 Problem Frames . 221

6.1.3 Analysis of the BPTC . 222

7 Conclusions 225

7.1 Contributions and Achievements . 225

7.2 Limitations . 226

7.2.1 Vulnerabilities Versus Errors 227

7.2.2 Human Domains . 227

7.2.3 Support from Domain Specialists 228

7.2.4 Analyst Expertise . 229

7.2.5 Code Analysis . 231

7.3 Experience and Reflections . 233

7.3.1 Types of Personnel . 233

7.3.2 Mediums of Communication 234

7.3.3 Styles of Thinking . 235

7.3.4 BPTC Safety Culture . 236

7.3.5 BPTC Conceptual Mistakes 237

7.4 Future Work . 239

7.4.1 Tool Support for Progression 239

7.4.2 Code Analysis . 240

7.4.3 Integration with STAMP . 240

7.4.4 Lightweight Techniques . 241

7.5 Waterglass Model of Budget Allocation 241

7.5.1 Representing Component Techniques 241

7.5.2 Classifying Mistakes . 243

7.5.3 Shaped Glasses . 245

8 Appendix: Automatic Door Model 249

11

9 Appendix: BPTC Case Study History 253

10 Appendix: Requirement Progression Model 257

11 Appendix: Voting Fidelity Model 265

12 Appendix: Voting Secrecy Model 275

12

Chapter 1

Motivation

1.1 Introduction: System Failure

It is widely understood that system failures often result not from component failures

but from inadequate component specifications – the components behaved according

to their specifications but the system failed as a whole due to unforeseen component

interaction [7, 16, 29, 33, 35, 49, 50, 51]. Even when a system failure can be tracked

back to a bad decision made by a particular component, usually the component made

that decision in accordance with its specification. That specification, in conjunction

with other component specifications, was not sufficiently strong to enforce correct

system behavior. It is the system as a whole, not any one component, that produced

the failure.

For example, a chemical engineer might provide a specification to a software

engineer writing code to control an automatic valve, but omit assumptions that all

chemical engineers take for granted (e.g. that input valves should always be closed

before output valves). The software engineer then provides a piece of software in

accordance with the written spec, but which violates the implicit intention of the

chemical engineer [49].

Specification inconsistencies stem from two sources: a shortcoming on the

part of the system engineer to decompose the system requirement into component

specifications, and a failure to unambiguously communicate the specification to the

13

engineers and specialists for each component. Our work strives to address both

concerns, especially as they arise in software-intensive systems.

1.1.1 Software Intensive Systems

Software components differ from electro-mechanical components in ways that

intensify the burden put on system-level analysis and requirements engineering.

As software is increasingly deployed in contexts in which it controls multiple,

complex physical devices, this issue is likely to grow in importance. Systems

incorporating software components are likely to become increasingly resistant to

traditional methods of analysis, such as testing, manual inspection, redundancy, and

functional decomposition.

Software components do not break. Current practices, such as FMEA [6, 59], focus

solely on component failure. While such a focus is appropriate for electro-mechanical

systems, where parts wear out and must be replaced, it does not address the concerns

of software components. Software does not wear out or break. Any error in a software

component is present from installation. 1

Software engineers are more vulnerable to omitted assumptions. The more

different types of engineers involved in a system, the greater the chance of

miscommunication. The inclusion of software engineers, whose training is often

disjoint from other engineering professions, exacerbates the issue and increases the

risk of miscommunication and omitted assumptions. Software engineering education

programs that share common coursework with other engineering disciplines are only

5-10 years old [63, 62].

Software is given more complex tasks. Software components are often given

1One could consider memory leaks or caches filling up as examples of software wearout, although
those concerns are more analogous to a physical motor overheating. The part has not worn out
and broken, but rather it requires a reset or idle time. If it overheats more than is acceptable for
the current application, then one faces a design problem not a component failure. A self-modifying
computer system which is never reset or rebooted (such as a self-configuring network) could indeed
have failures in the traditional sense – over the course of auto-configuring and maintaining caches, the
system might evolve itself into a bad state, and effectively have broken – requiring a full replacement.
For most software systems, this scenario is a stretch of the imagination, and the primary concern
lies with logic errors in the design, not decay over the system’s lifespan.

14

the most complex and subtle specifications on the grounds that software is flexible

and cheap to update. This means that the software components are more likely

to be sensitive to subtlies of the system architecture, and thus more vulnerable to

incomplete analysis and documentation.

Software is complex and non-continuous. A computer program can behave

completely different on one set of inputs than on a similar set of inputs, reducing

the confidence gained from past performance and testing. Furthermore, because of

the size and complexity of most software, it thwarts manual verification at the source

level. The result is a components which is hard to verify statically or empirically.

1.1.2 Dependability, Auditability, and Traceability

To be confident that a system meets its requirements, we need something more than

skilled engineers and good process. We need an argument that is founded on concrete,

reproducible evidence that documents why the system should be trusted.

A dependability argument [19] is one that justifies the use of a particular

component for a particular role in a particular system. It is not an argument about

absolute correctness, and it is not about preventing component failures. Rather, it is

about understanding the interaction of components, and encurring that the individual

component specifications are adequate to prevent system-level failure.

Building a correct argument is not enough; the argument must also be auditable.

It might be reviewed by a certification authority (such as the FDA [61], FAA [2], or

NRC [3]), a system engineer deciding if the system is suitable for a slightly different

operating context, an engineer wanting to make a change to the system, or even

an engineer new to the project. As the system evolves, the dependability argument

must be maintainable, as reconstructing a thorough dependability argument after

each change to the system is impractical.

A key part of making an argument auditable and maintainable is providing

traceability. Traceability takes two forms: upward and downward. Downward

traceability answers the question “Which components and what properties of those

components ensure that system requirement X is enforced?”, and provide confidence

15

that the system operates as desired. Upward traceability answers the question “Which

system requirements does component X help enforce, and upon what properties of X

do those requirements rely?”, and allows the system to be more safely modified.

An argument that provides both forms of traceability is termed end-to-end ; it

connects the high level system concerns down to the low level component properties,

based on an explicit description of the structure of the intervening layers.

The research community has approached dependability along four, largely

independent routes. Individually, these styles of approach provide insufficient

breadth, depth, confidence and/or are not economical on complex systems. Our

approach brings together techniques developed in these different academic fields to

build a composite argument with an appropriate tradeoff of those factors.

Requirements Engineering (RE) focuses on the task of factoring system

requirements into component specifications. RE techniques typically considers

the interactions of the components, but rarely validate the assumptions made

about those components. Roughly speaking, arguments developed in the RE

community are broad but not deep.

Program Analysis (PA) focuses on establishing specifications of individual

software components. PA techniques typically do not consider why those

specifications are important, just whether or not they might be violated.

Roughly speaking, arguments developed in the PA communities are deep but

not broad.

Testing can provide the breadth of requirements engineering and the depth of

program analysis, but fundamentally cannot provide the coverage needed to

build a dependability argument. Testing a software-intensive system assures

that the system operates correctly in the tested scenarios, but provides no

guarantees about scenarios not specifically tested – not even if those scenarios

are similar to those that were tested.

Formal Methods (FM) have the potential to provide ample coverage, but are too

costly to economically apply to large legacy system. FM have only scaled to

16

large systems when the systems have been built from scratch in a controlled

manner by specially trained developers [25, 56]. Applied to an existing complex

system, they do not scale adequately to build end-to-end arguments. As a

result, the tend to be used in a manner that provides depth but not breadth, if

they are used at all.

Unfortunately, while requirements engineering and program analysis each provide

sufficient confidence at acceptable cost, the specifications generated by requirements

engineering techniques often do not match up with the types of properties that

program analysis techniques can validate. The two halves are typically connected

only informally by a intuition that certain properties about the code (such as the lack

of buffer overruns) will correspond to system properties (such as the system being

protected from security attacks). There is not a systematic, auditable argument

for why the properties checkable by program analysis are sufficient to ensure the

properties called for by requirements engineering.

Our approach is to combined techniques from requirements engineering and

program analysis to harness the best of both worlds. To connect them, we draw

heavily upon techniques from both those fields and from formal methods.

1.2 Contributions

This research is organized around four interworven contributions.

CDAD Framework - We have developed Composite Dependability Argument

Diagrams (CDAD), a framework for constructing end-to-end dependability

arguments by smoothly integrating a collection of component arguments.

Chain of Techniques - We have identified a set of techniques for building pieces

of a dependability argument. We fit these techniques together using CDAD,

producing a composite technique suitable for building dependability arguments

for a particular class of software-intensive system properties.

17

Requirement Progression - Where necessary, we have developed techniques to

connect existing techniques and thereby completing the end-to-end argument.

Most prominently, we developed Requirement Progression, a technique used to

connect problem diagrams with code specifications. Requirement progression

became a central part of all our dependability arguments.

Case Studies - We have applied that technique to two systems: (a) The Burr

Proton Therapy Center (BPTC), a medical system currently being used to treat

cancer patients as Massachusetts General Hospital (MGH). The BPTC analysis

shows how we use CDADs to integrate requirement preogression with automatic

code analysis of software components. (b) The Pret a Voter cryptographic

voting system developed at the University of Newcastle. The voting analysis

shows how using requirement progression to build a fidelity argument make the

construction of secrecy and auditability arguments for the same system easier,

more thorough, and more transparent to review.

For each of the two case studies, we contribute the following:

• A safety case for the dependability of the system with respect to mission-
critical requirements. This involves both a description of the assumptions and
conditions under which the software is suitably dependable, and a verifiable
argument for why those conditions and assumptions are sufficient.

• A list of undocumented dependencies, assumptions, and vulnerabilities of the
system, and an analysis of their effect on safety. These assumptions will
hopefully be added to the official documentation for the system, making the
it easier and safer to maintain.

• A description of our experience building the dependability argument, including
analysis of which parts worked well, which need improvement, and at what stage
during the process different problems were discovered.

1.2.1 Hypothesis

In this thesis, we will motivate and substantiate our belief that requirement

progression and CDADs are effective and cost-effective techniques for guiding

18

and structuring end-to-end dependability arguments. CDADs provide a means

for showing the overall structure of a dependability argument, and requirement

progression provides a key link in that argument, providing confidence that the

component specifications do indeed enforce the system requirements.

19

20

Chapter 2

Synthesis Technique: CDAD

Given a collection of techniques, each of which provides a narrow piece of a

dependability argugment, how does one connect them together to build a single end-

to-end argument? To answer this question, we first show how to classify component

techniques according to the breadth of the claim they support and the depth of the

evidence they provide. We will then show now that classification guides composition,

and demonstrate one such composition that we have found to be effective.

2.1 Dependability Arguments

In this section, we introduce the Composite Dependability Argument Diagram

(CDAD), a structured classification of argument styles used to analyze and document

system dependability. This classification shows what approaches are appropriate

for addressing different types of concerns about the system at different levels of

granularity. More importantly, it shows how different approaches can be connected

together to build a unified dependability argument for an end-to-end system concern.

21

!ontractors
)

aster
!ontrol
-oom

/

perator

1o22le
3ensors

data stuct
declarations

rc7 m
s8

c9eck data
consistency

pack
m

essa8e

<
rap9ical

=ser >nter?ace

@AB
re8ulators

C9ysicians

9ospital operatin8 context
EForld le7elG

proton t9erapy sytem
Esystem

 le7elGtreatm
ent m

ana8er so?tFare
Ecom

ponent le7elG

selectHpatient procedure
Em

odule le7elGm
s8 unpackin8

code ?ra8m
ent

Eblock le7elG

Crescription
Aatabase

>n7estors

snd m
s8

a J m
KiL

8etHnextEG

Mospital
Bdm

inistration

N9erapists

Ouerry
database ?or

patient id

F
igu

re
2-1:

G
ranu

larities
at

w
h
ich

on
e

can
view

a
system

:
the

context
of

th
e

su
rrou

n
d
in

g
w

orld
,

th
e

system
u
n
d
er

an
alysis,

an
d

com
p
on

ents
of

th
at

system
.

A
softw

are
com

p
on

ent
can

b
e

view
ed

as
an

entire
com

p
on

ent,
as

p
roced

u
re

m
od

u
les,

lin
ear

b
locks

of
cod

e,
or

as
in

d
ivid

u
al

lin
es

of
cod

e.
E

ach
granu

larity
p
rovid

es
a

d
iff

erent
level

of
ab

straction
,
h
id

in
g

som
e

d
etails

w
h
ile

revealin
g

b
road

er
p
attern

s
an

d
con

n
ection

s.

22

2.1.1 Granularities

The first part of understanding Composite Dependability Argument Diagrams

(CDADs) is to understand the axes. Both axes use the same scale – a hierarchy

of granularities at which one can view the system.

An artifact at one granularity comprises finer grained black boxes plus additional

information about the structure of those pieces. For example, an architecture is a

collection of components plus an organization of the interactions of those components,

and each of those components is, in turn, a collection of modules plus an organization

of the interaction of those modules.

Figure 2-1 shows a classic decomposition of a system description, accompanied by

examples drawn from the BPTC.

Context - The coarsest granularity regards the system architecture as a black box

interacting with the surrounding world and stakeholders.

For the BPTC, the world contains domains such as investors, doctors, and FDA

regulators, as well as the delivery system itself. The internals of the architecture

are hidden from view, but their interactions, communications, and goals are

shown. Legal and financial concerns are expressed at this granularity, although

our work focuses solely on safety concerns.

System - The next finer granularity regards the components of the system

architecture as black boxes, and examines how those components communicate

and interact.

Refining our view of the BPTC architecture reveals components such as

operators, prescriptions, and the treatment manager. It is at this granularity

that we state safety concerns, such as accurate dose delivery, consistent logging,

and safe shutdown.

Component - At the next granularity, we regard modules within a components as

black boxes, and examine how those modules interact. In the case of a software

23

components, the modules might correspond to procedures that are connected

by function calls and shared data.

The BPTC treatment manager component contains modules such as messaging

procedures and data structure definitions.

Module - At an even finer granularity, blocks within a module are treated as black

boxes, but the structure within the module that links together those blocks is

exposed. For a software module, the blocks might be linear fragments of code,

linked together by conditionals and other non-linear control flow.

For example, the “set equipment” procedure includes a block that initializes

some variables, the code inside the loop that constructs an array of data, and

a block that constructs a message from the array and sends it to the hardware

device driver.

Block - The finest granularity we consider for a software component is the block

level: individual statements in the code are considered to be black boxes, and

we consider the structure of those statements (according to the the semantics

of the programming language).

2.1.2 The Space of Arguments

In system analysis, a claim is often stated at one granularity but established at a

lower granularity. For example, a performance goal might be stated at the world

(highest) granularity but established by examining the reliability of interactions at

the component (middle) granularity. An argument relates a claim at the stated level

with a collection of claims at the established level. An argument justifies the belief

that enforcing the finer grained properties will be sufficient to enforce the coarser

grained property.

An argument’s breadth is the granularity of the stated goal, while its depth is

the granularity into which it recasts that goal. For example, a system refinement

argument might state a claim about the system architecture as a whole and recast

24

s"
al
lo
&

broadnarro&

de
ep

ar-ument

stated

establis"ed

Figure 2-2: An argument states a property at a certain breadth and establishes it by
examining the system at a certain depth.

that claim into a set of assumptions about the components of the system. As we

will see later, a collection of arguments can be strung together to build a composite

argument with greater breadth (further to the right) and greater depth (further down)

than any one of the components.

x-axis: The x-axis position of an argument is its breadth. The narrowest (left-most)
arguments deal with goals stated about code blocks, such as assertions and
invariants. The broadest arguments deal with goals stated about the context in
which the system operates, such as safety requirements imposed by regulatory
agencies.

y-axis: The y-axis position of an argument is its depth. The shallowest arguments
are established at the world granularity, looking at the interactions between
the system and its stakeholders, but without considering the architecture of the
system. The deepest arguments are established at the code block granularity,
looking at the full semantics of the software.

statements: An <x, x> point on the main diagonal is a statement about the
granularity x. A <system, system> point is a statement about the system
– a requirement. A <component, component> point is a statement about a
component of the system – a domain assumption.

arguments: An <x, y> point below the main diagonal is an argument that the
statement at <y, y> holds as long as a certain set of statements at <x, x> hold.
For example, <system, component> is an argument that a system requirement
is enforced by a set of component assumptions.

25

sta
tem

en
ts

arguments

stated as property on...

re
ca

st
 a

s
pr

op
er

tie
s

on
...

conte2t

system

component

module

bloc5

co
nte

2t

sy
ste

m

co
mpo

ne
nt

mod
ule

blo
c5

Figure 2-3: Points on the main diagonal represent statements about the system
at a particular granularity. Points below the main diagonal represent arguments
that establish one statement based on a set of statements (assumptions) at a lower
granularity.

invalid points: The upper-lefthand triangle of the diagram is empty – breadth is
always greater than or equal to depth. A property cannot be established at
a higher granularity than it is stated. For example, one cannot show that
a component obeys its specification by noting that the system has a certain
requirement, whereas one can do the reverse – argue that a system has a
requirement because a component obeys its specification.

2.1.3 Sample Arguments

Consider two particular points in this diagram: design refinement, at <world,

system>, and whole program verification, at <component, block>.

Arguments at <world, system> are design refinement arguments; they recast

claims/goals stated about the world surrounding the system into claims/goals stated

about the system under analysis (treated as a black box) and claims/goals stated

about other systems interacting with the system under analysis.

For example, a high level hazard analysis for a chemical tank would be a design

refinement argument. It recasts safety constraints (that the tank does not harm

surrounding equipment) into constraints about the chemical tank (that it does

26

system

wor
ld

design
renement

breadth stated

de
pt

h
es

ta
bl

is
he

d

co
mpo

ne
nt

block

whole
program

verication

Figure 2-4: The breadth and depth of two sample argument styles.

not vent more than X grams of corrosive gas per day) and constraints about the

surrounding equipment (that they will not be damaged by exposure to X grams

of corrosive gas per day). A world goal (damage to surrounding assets) has been

decomposed into system goals (how many grams of gas can be vented per day).

In contrast, at <component, block> we have whole program verification arguments,

which recast goals about an entire software component and establish them in terms

of the semantic of individual block of code.

For example, a thorough manual review of the software that controls a chemical

valve would be whole program verification. It would take a property stated about the

system as a whole, that it correctly send signals to the value according to a prescribed

pattern, and recasts it as properties about the semantics of the language used (e.g.

that the send open signal does indeed send an open signal to the value, and that a

wait 1 second really does pause for 1 second). Of course, manual exhaustive review

might be too costly or too error prone to be suitable for a particular analysis, but it

certainly fits the mould of a whole program verification argument.

27

state% as property on,,,

re
ca

st
 a

s
pr

op
er

tie
s

on
,,,

context

system

component

mo%1le

bloc4

co
nte

xt

sy
ste

m

co
mpo

ne
nt

mo%
1le

blo
c4

Forge& (arun& ,SC&
code review&
algorithmic proof

design patterns&
design review

;M=& >&
?DM& A

UM=&
OC=&

;avadoc

code statements&
abstracted calls

Astree

Figure 2-5: Program Analysis (PA) techniques reside in the lower lefthand region,
providing depth but not much breadth.

2.1.4 Existing Techniques

CDADs do not directly represent the cost (both human and computational) of

building the different kinds of arguments, although we discuss extensions of the CDAD

notation to express such information in Chapter 7. In general, moving deeper (down)

and broader (right) raises cost and/or lowers confidence.

The fields of program analysis (PA), requirements engineering (RE), and testing

are represented by clusters of argument types in the CDAD.

PA: Program analysis techniques (PA) occupy the lower-left-hand region, as shown in
Figure 2.1.3 – the properties are stated and established at a low granularity. PA
techniques rarely address properties stated at or above the system granularity, as
such properties are too broadly stated to be amenable to automatic analysis. We

28

s"a"ed&as&proper"*&on,,,

re
-a
s"
&a
s&
pr
op
er
".e
s&
on
,,,

-on"e/"

s*s"e0

-o0ponen"

0od1le

blo-4

-o
n"e
/"

s*
s"e
0

-o
0p
on
en
"

0o
d1
le

blo
-4

i"#
$a&ard anal,sis#

paper protot,ping

fault trees#
event trees#

6M8A# 6M8CA

S<AMP diagram#
customer intervie@

A6As# OPM#
problem diagram#

use cases

DAOS

state c$arts

Figure 2-6: Requirements Engineering (RE) techniques reside in the top right corner,
with great breadth but limited depth.

indicate this obstacle with the vertical system complexity barrier in Figure 2.1.3.

RE: Requirements engineering techniques (RE) occupy the upper-right-hand region,
as shown in Figure refcdad-RE – the properties are stated and established at
a high granularity. RE techniques rarely establish properties below the system
granularity, as doing so produces descriptions that are too large and complex
to be reasoned about. We indicate this obstacle with the horizontal component
complexity barrier in Figure 2.1.3.

Testing: Testing techniques occupy the bottom row; they provide deep analysis at
various breadths, as shown in Figure 2.1.3. Testing can provide the breadth
of RE and the depth of PA, but fundamentally cannot provide the confidence
needed to build a dependability argument. Testing assures that the system
operates correctly in the tested scenarios, but provides no guarantees about
scenarios not specifically tested.

The ultimate of software engineering is to develop a high-confidence economical

29

sh
al
lo
w

broadnarrow

de
ep

component
complexit+
barrier

s+stem
complexit+
barrier

Figure 2-7: Requirements engineering techniques tend to stay above the component
complexity barrier, to avoid introducing too much detail about the operation of
the underlying system. Program analysis techniques tend to stay left of the
system complexity barrier, to avoid introducing the details of too many interacting
components of the system.

technique at the lower-right-hand-most corner – one that states a property at the

highest (world) granularity and establishes it at the lowest (block) granularity.

Unfortunately, getting anywhere near that goal requires crossing both complexity

barriers.

2.1.5 Dependability Arguments

Most tasks do not require the holy grail and can make do with more modest

approaches. For example, verifying that libraries obey their contracts requires

only a <module, block> style argument, and can be established using program

analysis techniques such as Greg Dennis’s Forge [23] or Patrick Lam’s HOB [46].

Similarly, determining if a given software specification is sufficient to enforce a given

system requirement requires only <system, component> or better, and can thus be

satisfied by requirement progression [81]. However, the important class of end-to-end

dependability arguments lies outside the ranges of conventional PA and RE techniques.

Dependability arguments for software intensive systems should state properties

30

!"a"$% a! '(o'$("* o+,,,

($
-a

!"
 a

!
'(

o'
$(

".$
!

o+
,,,

-o+"$/"

!*!"$0

-o0'o+$+"

0o%1l$

3lo-4

-o
+"$

/"

!*
!"$

0

-o
0'o

+$
+"

0o%
1l$

3lo
-4

unit tests deplo,ment testing

usabilit, testing1
integration testing

regression tests1
full component tests

Figure 2-8: Testing techniques reside on the bottom row, establishing properties at
the depest level and a variety of breadths. However, testing alone does not provide
the confidence needed for a dependability argument.

at the system granularity (or higher) and establish those properties at the module

granularity (or lower). For example, part of the BPTC dependability argument

(described in Chapter 4) is to establish that patients do not receive more radiation

than their prescriptions indicate. Such an argument should be grounded in the code,

so that if the requirement is changed (e.g. to say that the patient cannot receive

less than their prescription either) or if the system is changed (e.g. to include an

additional firing mode), one can determine which parts of the code need updating, if

any.

Figure 2.1.4 shows the space of solutions that are appropriate for building this

kind of dependability argument. While we do not necessarily need to achieve the

31

!"a"$% a! '(o'$("* o+,,,

($
-a

!"
 a

!
'(

o'
$(

".$
!

o+
,,,

-o+"$/"

!*!"$0

-o0'o+$+"

0o%1l$

3lo-4

-o
+"$

/"

!*
!"$

0

-o
0'o

+$
+"

0o%
1l$

3lo
-4

56

78

Goal

Figure 2-9: Neither requirements engineering (top right) nor program analysis
(bottom left) techniques have enough breadth and depth to reach the lower right
area, where dependability arguments reside. However, composition of RE and PA
techniques can get us there.

bottom-right corner to build dependability arguments, we do need something more

than we have – neither PA nor RE techniques have sufficient breadth and depth to

land in the target region. We can, however, compose existing PA and RE techniques,

together with some additional work, to create a composite technique that falls within

the target region, as shown in Figure 2.1.4. The challenge of building composite

techniques is to keep the cost from rising too high without letting the confidence

drop too low.

2.1.6 Composition

Building composite arguments take more than picking two techniques that, between

them, have sufficient breadth and depth.

(a) The techniques must match up.

We can’t reach the bottom right corner (<world, block>) with just hazard
analysis (<context, system>) and a code review (<module, block>). While
those arguments have sufficient breadth and depth between them, they do not

32

stated as propert* on...

re
ca

st
 a

s
pr

op
er

tie
s

on
...

context

s*stem

component

module

block

co
nte

xt

s*
ste

m

co
mpo

ne
nt

mod
ule

blo
ck

Figure 2-10: A composite argument built out of smaller arguments can reach the
bottom right position (max breadth, max depth), even when no individual technique
can reach that point.

connect together. An additional argument is needed to connect the system
statements used to establish the hazard analysis with the module statements
established by the code review.

(b) There needs to be glue between the techniques.

We can’t reach <system, block> with just KAOS [21, 22, 18, 8] (<system,
component>) and Astree [9, 10] (<component, block>). The claims generated
by KAOS are at the right level to be established by an Astree analysis, but
they may not be in the right form. In order to connect up the two arguments,
a glue argument may be needed – an argument that actually rests on the main
diagonal, and serves only to rephrase a statement within the same granularity.
In this case, we need glue at <component, component>) to recast the claims
generated by KAOS into claims that can be established by the Astree.

(c) The component techniques must provide sufficient confidence and coverage at
acceptable cost.

We could reach the bottom right corner (<world, block>) using just deployment
testing (<world, block>), but doing so will not provide sufficient confidence.
While it has sufficient breadth and depth, testing the entire system on real
patients and observing the results does not give us the confidence needed to
certify the system as dependable. Testing fundamentally cannot provide the
level of coverage needed to certify a complex system with confidence. We discuss
ways to add confidence and cost information to CDADs as future work, in
Chapter 7.

33

!"a"$% a! '(o'$("* o+,,,

($
-a

!"
 a

!
'(

o'
$(

".$
!

o+
,,,

-o+"$/"

!*!"$0

-o0'o+$+"

0o%1l$

3lo-4

-o
+"$

/"

!*
!"$

0

-o
0'o

+$
+"

0o%
1l$

3lo
-4

!a#ard
anal(sis

forge anal(sis

re0uirement
progression

trace
extraction

!ospital needs

specification for
treatment manager

designations7
problem diagram

specification
for trace

code statements7
abstracted calls

Figure 2-11: A composite technique used to analyze the BPTC.

34

2.2 Structuring a Dependability Argument

Our general approach to constructing composite arguments can be applied to the

BPTC case study by instantiating it with a particular set of component techniques.

Figure 2.1.6 shows the techniques we combine, as arguments and statements, to form

the composite technique we use in Chapter 4.

Hospital Needs : An informal discussion with hospital administrators about the
role of the BPTC at MGH.

This statement is at <context, context>.

Hazard Analysis : A characterization of dangerous states that could be induced
by the system, including a classification of each hazard’s danger level (low,
medium, high) [49].

This argument is at <context, system>.

Designations : A list of formal terms, both domains and phenomena, which will
be relevant to the argument. Each term is mapped to an informal description,
serving to ground our formality in the real world.

This statement is at <system, system>.

Problem Diagram : The system requirement is initially expressed with a problem
diagram, from the Problem Frames approach [40, 38]. This step recasts the
requirement from its original (possibly informal) statement into a form that is
be amenable to requirement progression. It identifies the domains relevant to
the subsystem under consideration, and the phenomena through which those
domains interact, using the formal terms introduced by the designations.

This statement is at <system, system>.

Requirement Progression : The system requirement is transformed into a
software specification using requirement progression [81]. The resulting diagram
is called an argument diagram, which is the problem diagram annotated with a
collection of domain assumptions (breadcrumbs) sufficient to enforce the original
system requirement. Domain assumptions about software components can be
used as specifications for those components.

This argument is at <system, component>.

Argument Validation : Along with the argument diagram is an Alloy [30] model
which mechanically confirms that the breadcrumbs do indeed enforce the desired
system property.

This argument is at <system, component>.

35

Breadcrumb Assumption Interpretation : The domain properties inferred by
Requirement Progression are interpreted back into the languages of their
domains, using the designations, and decomposed into component assumptions
about its domain. Each component assumption is classified as software
correctness (c), software separability (s), or non-software properties (x). The
decomposed assumptions are now amenable to domain specific analysis.

This statement is at <component, component>.

Phenomenon Assumption Interpretation : Problem diagrams contain implicit
assumptions, such as atomicity and inter-domain consistency. These
assumptions are also interpreted, decomposed, and classified as (c), (s), or
(x).

This argument is at <component, component>.

Specification for TM : A specification of the correct behavior of the Treatment
manager, resulting from interpreting one of the breadcrumbs derived during
requirement progression. It is now phrased in terms of code terminology, and
is thus amenable to analysis.

This statement is at <component, component>.

Trace Extraction : The process of identifying the subset of the code relevant to
the TM specification. It is identifying by using a Flow Diagram, an informal
annotation of the problem diagram, indicating the flow of information through
the system. The flow diagram is used to label (and thus implicitly order) the
domains and the letters assigned to arcs. These labels are purely for the sake
of bookkeeping and help us to systematically develop the argument.

This argument is at <component, module>.

Specification for Trace : A specification of what it means for the identified subset
to be correct. In this case, it is the same claim as the specification for the
treatment manager, but now applied to a small chunk of code.

This statement is at <module, module>.

Forge Analysis : The individual pieces are discharged using existing analysis
techniques. Separability assumptions are addressed with impact analysis, and
correctness properties are addressed using a combination of manual inspection
and automatic analysis via the Forge framework.

This argument is at <module, block>.

Code Statements : Individual lines of code in the code base, and the assumption
that they have the semantics assigned to them by Forge.

This statement is at <block, block>.

36

Together, these component techniques provide an argument at <context, block>,

well within our the zone for Dependability Arguments. The component techniques

provide sufficient confidence to allow the overall argument to be used to certify the

system.

37

38

Chapter 3

Requirement Progression

3.1 Overall Approach

The problem frames approach offers a framework for describing the interactions

amongst software and other system components [38, 40]. It helps the developer

understand the context in which the software problem resides, and which of its

aspects are relevant to the design of a solution [31, 39, 44, 47]. In this approach,

a requirement is an end-to-end constraint on phenomena from the problem world,

which are not necessarily controlled or observed by the machine. During subsequent

development, the requirement is typically factored into a specification (of a machine

to be implemented) and a set of domain assumptions (about the behavior of physical

devices and operators that interact directly or indirectly with the machine).

3.1.1 The Need for Progression

A key advantage of the problem frames approach is that it makes explicit the

argument that connects these elements. In general, this argument takes a simple

form: That the specification of the machine, in combination with the properties

of the environment, establishes the desired requirement. When the environment

comprises multiple domains, however, the argument may take a more complicated

form. The problem frames representation allows the argument to be shown in an

39

argument diagram – the problem diagram embellished with the argument.

In the problem frames book [40], a strategy for constructing such arguments, called

problem progression, is described. But, since each step in a problem progression

involves deletion of domains from the diagram, the strategy does not result in an

argument diagram; rather, it produces a series of diagram fragments. The approach

described in this paper, which we call requirement progression, likewise aims to

produce an argument diagram. Its steps produce accretions to the diagram, never

deletions, and the diagram resulting from the final step is an argument diagram in

the expected form.

Often, the problem diagram fits a well established pattern (a problem frame),

and the argument required will be an instantiation of an archetypal argument. As

our logging example will illustrate, not all problems match existing frames, and an

argument diagram must be specially constructed using progression.

3.1.2 Our Approach

Our approach relies upon the analyst’s ability to accurately distill, disambiguate,

and formalize the requirement. One of the benefits of problem oriented software

engineering [44], of which problem frames is an example, is that the analyst

is permitted to formulate the requirement in terms of whatever phenomena are

convenient for describing the actual system requirement. For example, a designer

of a traffic light might write a requirement saying “cars going different directions

are never in the intersection at the same time”. The analyst then methodically

transforms the requirement so that it constrains only controllable phenomena, making

sure that the new version is sufficiently strong to enforce the original requirement.

For example, the traffic light designer might reformulate the requirement to say “the

control unit sends signals to the traffic lights in the following pattern...”, and justify

the reformulation by appealing to known properties about how cars and traffic lights

behave. Attempting to write the reformulated version from scratch is error prone.

As with other progression techniques (e.g. [70]), our goal is to provide support for

performing that transformation systematically and accurately. Our technique is most

40

appropriate when the requirement can be phrased in a formal language, although the

methods we describe could also guide reasoning about informal requirements.

We demonstrate our technique on two examples. The first example is of a two-

way traffic light similar to the one described in the problem frames book [40]. It

demonstrates the use of our technique to specialize the correctness argument of

the problem frame that matches the problem diagram. The second example is a

simplified view of the logging facility used in a radiation therapy medical system. It

demonstrates the use of our technique when no single existing problem frame matches

the entire problem. These examples are perhaps not sufficiently complex to properly

demonstrate the need for systematic requirement progression, but they do illustrate

the key elements of our approach and indicate its strong and weak points.

In both examples, the various constraints are formalized in the Alloy modeling

language, and the Alloy Analyzer [30, 34, 37] is used to check that the resulting

specification and domain assumptions do indeed establish the desired system-level

properties. The Alloy Analyzer can check the validity of a transformation with a

bounded, exhaustive analysis. Our transformation technique is not tied to Alloy;

we chose Alloy because it is simple, was familiar to us, provides automatic analysis,

and allows a fairly natural expression of the kinds of requirements and assumptions

involved in these examples.

In Chapters 4 and 5 we apply requirement progression to reals systems,

demonstrating its applicability to complex system. There, we see that these

techniques scale to reals systems, and are not actually much more difficult to use

there than on the toy examples shown in this chapter.

3.2 Problem Frames

Before one can establish a system requirement, one must articulate it.

The Problem Frames approach is a technique for describing and analyzing desired

system properties. The Problem Frames approach offers a framework for describing

the interactions amongst software and other system components [38, 40]. It helps the

41

developer understand the context in which the software problem resides, and which of

its aspects are relevant to the design of a solution [31, 39, 47]. Once the requirement

is articulated as a problem diagram, it becomes amenable to more systematic analysis

(Section 3.3).

The problem frames approach is an example of problem oriented software

engineering [44], meaning that it focuses on the context in which a system operates

rather than the internal architecture of the system. It emphasizes the distinction

between phenomena one wishes to indirectly constrain (the system requirement)

and phenomena the software can directly control (the component specifications and

domain assumptions). System analysis is a matter of understanding the indirect links

between those two sets of phenomena.

One benefit of this approach is that the analyst formulates the system requirement

in terms of whatever phenomena are most appropriate and convenient. As a result, we

have a higher confidence that the written requirements accurately reflect the intended

requirements. Attempting to directly write the requirement in terms of controllable

phenomena can be subtle and error prone. The problem frames approach separates

the articulation of the requirement from the transformation of that requirement into

a form usable as a specification.

In this chapter, we will describe Requirement Progression, a technique for

systematically decomposing a system requirement (written in terms of the phenomena

to be controlled) into a set of specifications (written in terms of controllable

phenomena). First, however, we will examine Problem Frames in a bit more detail.

3.2.1 More Detail

An analyst has, in hand or in mind, an end-to-end requirement on the world that

some machine is to enforce. In order to implement or verify the machine, one needs

a specification at the machine’s interface. Since the requirement typically references

phenomena not shared by the machine, it cannot serve as a specification. The Problem

42

Frame notation expresses this disconnect as shown in Figure 3-1. 1

!a#$%&' ()o+l'-
.o)l/

%&0')1a#'
2$'&o-'&a 3'45%)'-'&0)'1')'&#'/

2$'&o-'&a

Figure 3-1: A generic problem frames description showing the disconnect between
the phenomena controlled by the machine (the interface phenomena) and those
constrained by the requirement (the referenced phenomena).

The analyst has written a requirement (right) describing a desired end-to-end

constraint on the problem world (center). The requirement references some subset of

the phenomena from the problem world (right arc). A machine (left) is to enforce

that requirement by interacting with the problem world via interface phenomena (left

arc).

For example, in a traffic light system, the problem world might consist of the

physical apparatus (lights and sensors) and external components (cars and drivers),

the requirement might be that cars do not collide, and the specification would be

the protocol by which the machine generates control signals in response to the

monitoring signals it receives. The machine and its specification only have access to

the phenomena pertaining to control and feedback signals, whereas the requirement

is a constraint on the directions and positions of the cars.

The problem world is broken into multiple domains, each with its own

assumptions. Here, for example, there may be one domain for the cars and drivers

(whose assumptions include drivers obeying traffic laws), and another for the physical

control apparatus (whose assumptions describe the reaction of the lights to control

signals received, and the relationship between car behavior and monitoring signals

generated). A problem diagram shows the structure of the domains and phenomena

involved in a particular situation. One possible problem diagram for the traffic light

1We deviate slightly from the standard problem frames notation when drawing an arc indicating
that domain D controls phenomenon p. Rather than labeling the arc D!p, we label it p and place an
arrow head pointing away from D. When not all phenomena shared by two domains are controlled
by the same domain, separate arcs are used. Most of our diagrams omit indications of control
altogether, as it is not currently relevant to our approach.

43

system is shown in Figure 3-2.

!"ntr"ller (ights -".!"llisi"nssign/ls !/rs./n0.
1ri2ers

l"3/ti"n
4"siti"n

"5ser26
/ti"ns

Figure 3-2: A problem diagram describing the domains and phenomena for a two-way
traffic light. The arc connecting two domains is labeled by the phenomena shared by
those domains – those phenomena that both domains involve. The arc connecting
the requirement to a domain is labeled by the phenomen referenced (constrained) by
the requirement.

To ensure that the system will indeed enforce the requirement, it is not sufficient to

verify that the machine satisfies its specification. In addition, the developer must show

that the combination of the specification and assumptions about the problem world

imply the requirement. To argue that the machine, when obeying the specification,

will enforce the requirement, we must appeal to assumptions about how the domains

act and interact – how lights respond to control signals, how monitoring signals are

generated, how drivers react to lights, and how cars respond to driver reactions. Those

behaviors are recorded as domain assumptions, as shown in Figure 3-3.

!ontroller (ights -o !ollisionssignals

(ights
AssumptionSpeci!cation

!ars and
7rivers

location
position

observ:
ations

!ars
Assumption

signals
signals

observations
observations

location
position

Figure 3-3: Assumptions about the intervening domains are expressed as partial
domain descriptions in the form of constraints on their behaviors. These assumptions
help us relate the machine specification to the system requirement. As with a
requirement, the arc connecting an assumption or specification to its domain is labeled
with the phenomena referenced by that assumption.

A problem diagram serves to structure the domains and their relationships to the

machine and the requirement, and is accompanied by a frame concern that structures

44

the argument behind this implication. The traffic light system, for example, matches

the required behavior shown in Figure 3-4 [40].

!achine (evice Re+uirement
on behaviors

4he !achine
generates
commands

according to the
Speci!cation, so...

...because the
(evice exhibits

behaviors based on
commands like

this...

...the Re+uirement
on behaviors will

hold..

commands

commands ?
behaviors

Speci!cation
on

commands

behaviors

commands
commands
behaviors

Figure 3-4: An informal argument diagram for the required behavior frame.

Because the required behavior frame concern is general enough to match many

situations, it only gives an outline of the correctness argument and serves primarily

to focus attention on the kinds of domain properties upon which the completed

correctness argument is likely to rely. Applying it to the traffic light problem diagram

suggests the argument structure shown in Figure 3-12.

This information is a valuable aid in building the full argument, but would greatly

benefit from a systematic approach for determining exactly which properties of the

domains are relevant, deriving an appropriate specification for the machine, and

providing a guarantee that the specification and domain properties are sufficient to

establish the requirement. This chapter describes such an approach.

45

!ontro&&er ()g+t, -o.!o&&),)on,

/+e.!ontro&&er.
contro&,.t+e.,)gna&.
23&,e,.accord)ng.to.
t+),.52ec)!cat)on6.

,o...

...8eca3,e.t+e.
,)gna&.23&,e,.re&ate.
to.&)g+t.o8,er9at)on,.

&)ke.t+),...

...t+e.re;3)rement.on.
car.&ocat)on,.and.
2o,)t)on,.=)&&.+o&d6.
2re9ent)ng.car,.>rom.

co&&)d)ng.

,)gna&,

()g+t,.
?,,3m2t)on

52ec)!cat)on.
on.,)gna&,

!ar,.and.
@r)9er,

&ocat)on
2o,)t)on

o8,er9A
at)on,

...and.8eca3,e.&)g+t.
o8,er9at)on,.re&ate.
to.car.&ocat)on,.and.
2o,)t)on,.&)ke.t+),...

!ar,.
?,,3m2t)on

,)gna&,
,)gna&,

o8,er9at)on,
o8,er9at)on,
&ocat)on
2o,)t)on

Figure 3-5: The informal argument diagram that results from applying the required
behavior frame to the two-way traffic light problem diagram. It provides an outline
for arguing that the specification enforces the requirement, and it indicates what sort
of domain assumptions will be needed to build that argument.

3.3 Requirement Progression

In this section, we introduce an incremental way of deriving a specification from a

requirement via requirement progression. A byproduct of the progression is a trail of

domain assumptions, called breadcrumbs, that justify the progression and record the

line of reasoning that lead to the specification.

Requirements, specifications, and breadcrumbs are three instances of domain

constraints. Requirements can touch any set of domains but usually touch only

non-machine domains; specifications touch only the machine domain; and each

breadcrumb touches only a single non-machine domain. The only thing barring

the requirement from serving as a specification is that it mentions the wrong set of

phenomena. Unfortunately, altering it to mention the right set of phenomena (those

at the interface of the machine domain) is no easy matter and requires appealing

to properties of the intervening domains. The transformation process we describe is

46

an incremental method for achieving such an alteration and recording the necessary

domain properties. 2

3.3.1 Available Transformations

There are three types of steps in the transformation process: adding a breadcrumb

permits the requirement to be rephrased, which in turn enables a push to change

which domains it touches. Figure 3-6 shows an archetype of how these steps can turn

a requirement into a specification. In that example, there is one interface phenomenon

controlled by the machine (p1) and one phenomenon mentioned by the requirement

(p2). The intervening domain involves both of those phenomena.

(a) Add a breadcrumb constraint, representing an assumption about a domain
in the problem world. The breadcrumb must touch a single domain that is
currently touched by the requirement (and no other domains), and therefore
only mention phenomena from that domain (e.g. p1 and p2). 3 It is chosen so
as to enable a useful rephrasing (step b). The breadcrumb must be validated by
a domain expert to ensure that it is a valid characterization of the constrained
domain.

(b) Rephrase the requirement so that it represents a different constraint. The new
version of the requirement must touch the same domains, but it may mention
(and thereby constrain) a different subset of the phenomena of those domains
(e.g. mention p1 instead of p2). The rephrasing is chosen so as to enable a
useful push (step c).

The analyst must verify that existing breadcrumbs are sufficiently strong to
permit the rephrasing by establishing the implication

(breadcrumb ∧ new requirement) ⇒ prior requirement

2During the progression, the requirement will undergo a sequence of changes until it has become
a specification. It is useful to distinguish the initial version of the requirement (that the system
designers actually want enforced) from the intermediate versions of the requirement (that are
only meaningful within the progression process). We will thus use the term goal to denote an
intermediate version of the requirement, and reserve the term requirement to refer to the original
system requirement. At any given point in the process, there is exactly one goal; the goal is initially
the requirement and will eventually be a specification.

3The phenomena mentioned by a breadcrumb might be shared amongst several domains, but
there must be a single domain that involves all of them. It is this domain that the breadcrumb
touches.

47

The means of establishing this implication will depend on the language used to
express the breadcrumb and requirement constraints.

(c) Push the requirement so that it touches a different set of domains but still
represents the same constraint over the same phenomena. A push is only
permitted if it will preserve the fact that each phenomenon mentioned by the
requirement is involved in some domain touched by the requirement, and that
every domain touched by the requirement involves some phenomenon mentioned
by the requirement.

Typically, a push changes the requirement to touch some domain d′ (e.g. the
machine) instead of some domain d (e.g. the non-machine domain) such that
all the phenomena of d mentioned by the requirement are also phenomena of
d′ (e.g. p1). Diagramatically, this means that only one of the arcs emanating
from the requirement is altered, and the phenomena labeling that arc must be
shared between d and d′. 4

The analyst continues to perform these transformations (in any order) until the

requirement touches only the machine domain. At that point, it only mentions

phenomena at the interface of the machine and is thus a valid specification.

In theory, one might want to express an assumption that mentions phenomena that

are not involved in any single domain – the constraint representing such an assumption

would necessarily touch two or more domains and would therefore be an invalid

breadcrumb. Such assumptions inhibit local reasoning and are hard to validate, as

there may not be any single domain expert who can certify them. In practice, we have

not found (or been able to construct) an example where such an assumption is needed.

We therefore only allow assumptions about intra-domain properties; inter-domain

properties must be factored into several intra-domain properties (and incorporated

as a set of breadcrumbs).

4If a requirement mentions a phenomenon that is shared between domains, we consider the
diagram to be well formed as long as the requirement touches either of those two domains. It is
good style, but not necessary, for the requirement to touch the domain that controls the mentioned
phenomenon. A push transformation will violate that good style but leave the diagram well formed.
Note that the problem frames notation, as given in the problem frames book [40], is ambiguous
about this issue.

48

Mac$ine (omainp, Re.uirement
(Rep$rased)p,

Mac$ine (omainp,

p,

Breadcrumb

p,
p8

Breadcrumb

p,
p8

Re.uirement
(Speci!cation)

Mac$ine (omain Re.uirementp, p8

Breadcrumb

p,
p8

(b)

(c)

(d)

Mac$ine (omain Re.uirementp, p8

(a)

Figure 3-6: An archetypal requirement progression: (a) Prior to the transformation
(b) A breadcrumb constraint is added, representing an assumption about how the
domain relates phenomena p1 and p2. (c) That breadcrumb permits the requirement
to be rephrased to reference p1 instead of p2. (d) The rephrasing enables a push,
moving the requirement from the problem-world domain onto the machine.

49

3.4 Two-Way Traffic Light

Our first example is of a two-way traffic light, similar to the one described in the

problem frames book [40]. A cartoon of this situation is shown in Figure 3-7. A

two late road has been reduced to 1 lane for a short stretch, perhaps because of

construction on one of the lanes or because of a narrow bridge. A red-green light has

been placed at either end of the stretch, with a computer system synchronizing the

two units. The task is to provide a specification to the computer control unit that will

prevent head-on collisions from occurring on the road segment. Of course, to provide

that spec, we will have to make some assumptions about how the light units behave

(in response to signal pulses sent to them) and how the cars behave (in response to

the red and green lights displayed by the light units). Requirement progression will

guide and validate the discovery of those assumptions and specification.

This scenario is a good example of a problem frame with a linear topology : the

machine and requirement are on opposite ends of a linear sequence of domains.

Requirement progression is simply a matter of shifting the requirement down that

sequence and onto the machine. Later, in Section 3.5, we will see how requirement

progression works on a branching topology.

The two-way traffic light is also instructive because it is a prototypical instance of

the required behavior frame, one of the five problem frames presented in the problem

frames book [40]. It is thus a good example of how to use our requirement progression

technique to specialize the correctness argument suggested by that frame.

The two-way traffic light problem frame is shown in more detail in Figure 3-9,

along with the requirement we will focus on in this example. To make sense of the

phenomena names used in that diagram, consult the designations, given in Figure 3-8.

The Light Unit has four physical lights: a red light and a green light in each

direction. The control unit sends signal pulses to the light unit to individually toggle

the four lights on and off. The cars moving in each direction observe those traffic

signals, and then decide whether or not to enter the road segment. The requirement

is that cars do not collide, which we will interpret to mean that no two cars are ever

50

Figure 3-7: A cartoon diagram of the traffic light problem. Cars forced to share
a common lane of traffic with oncoming traffic are controlled by a set of red-green
lights, synchronized by a computer control unit.

on the road segment at the same time going opposite directions. However, the control

unit has no knowledge of, or control over, the cars; it can only send signal pulses to

the light units and observe the history of what signals it previously sent.

3.4.1 Basic Declarations

For completeness, we shall include, in addition to the constraints, the Alloy [30, 34, 37]

declarations needed to complete the model.

There is a set of cars and two relations about cars: onSeg is a binary relation

mapping each car to the set of times at which that car is on the road segment. That

relation is wrapped by the predicate CarOnSegment[c, t], which determines if a

51

NRpulse[t] ⇔ A red signal pulse is sent to the north
light unit at time t.

NGpulse[t] ⇔ A green signal pulse is sent to the north
light unit at time t.

SRpulse[t] ⇔ A red signal pulse is sent to the south
light unit at time t.

SGpulse[t] ⇔ A green signal pulse is sent to the south
light unit at time t.

NRobserve[t] ⇔ The northward red light is lit up and
can be observed by cars.

NGobserve[t] ⇔ The northward green light is lit up and
can be observed by cars.

SRobserve[t] ⇔ The southward red light is lit up and
can be observed by cars.

SGobserve[t] ⇔ The southward green light is lit up and
can be observed by cars.

CarDirection[c,t] ⇔ Car c is on the shared road segment at
time t.

CarDirection[c] = North ⇔ Car c is moving northward at time t
CarDirection[c] = South ⇔ Car c is moving southward at time t

Figure 3-8: Designations for a two-way traffic light.

!ontro&
(nit *i+,t (nit !-rs

/0o1ser3e
/4o1ser3e
50o1ser3e
54o1ser3e

/0p7&se
/4p7&se
50p7&se
54p7&se

!-r8irection
!-r:n5e+;ent

no t< ti;e = so;e c1? c2 < !-rs =
 !-r8irectionAc1? tB C nort, -nd
 !-r8irectionAc2? tB C so7t, -nd
 !-r:n5e+;entAc1? tB -nd
 !-r:n5e+;entAc2? tB

Figure 3-9: A more detailed problem diagram for the two-way traffic light problem.
The constraint has been formalized and expressed using the Alloy language, a
relational first-order logic.

52

car c is on the segment at time t. dir is a ternary relation mapping each car and

direction to the set of times at which that car is moving in that direction. This

relation is wrapped in the function CarDirection[c, t] which returns the direction

a given car is moving at a given time. For the rest of this example, we will use the

predicate and the function, rather than their equivalent relations, in order to give

our constraints a more natural syntax for readers who are not familiar with relational

logic.

1 sig Cars {
2 onSeg : set Time ,
3 d i r : D i r e c t i on → Time }
4 pred CarOnSegment [c : Cars , t : Time] { t in c . onSeg }
5 fun CarDirect ion [c : Cars , t : Time] : D i r e c t i on { [c . d i r] . t }
6 abs t r a c t sig Dire c t i on { }
7 one sig north extends Dire c t i on { }
8 one sig south extends Dire c t i on { }

There is a set of times, divided into 8 non-exclusive subsets. For example, NRO

represents the subset of times at which the northern red light is observed, and NRP

represents the set of times at which a signal pulse is sent to the northern red light.

These 8 subsets are wrapped by 8 predicates. For example, NRobserve[t] determines

whether or not the northern red light is observed at time t, and NRpulse[t]

determines whether or not there was a signal pulse sent to the northern red light

at time t. From now on, we will use the predicates, rather than the subsets, to make

our constraints more readable.

1 sig Time { }
2
3 sig NGO, SGO, NRO, SRO in Time { }
4 pred NGobserve [t : Time] { t in NGO}
5 pred SGobserve [t : Time] { t in SGO}
6 pred NRobserve [t : Time] { t in NRO}
7 pred SRobserve [t : Time] { t in SRO}
8
9 sig NGP, SGP, NRP, SRP in Time { }

10 pred NGpulse [t : Time] { t in NGP}
11 pred SGpulse [t : Time] { t in SGP}
12 pred NRpulse [t : Time] { t in NRP}
13 pred SRpulse [t : Time] { t in SRP}

53

Control
(nit *ig,t (nit Cars

/Robserve
/4observe
5Robserve
54observe

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

all t: time | ; /4observe(t) =?
 no c: Cars |
 CarAirection(cB t) = nort,
 and CarDn5egment(cBt)

all t: time | ; 54observe(t) =?
 no c: Cars |
 CarAirection(cB t) = so7t,
 and CarDn5egment(cB t)

CarAirection
CarDn5egment

/4observe
54observe

Control
(nit *ig,t (nit Cars

/Robserve
/4observe
5Robserve
54observe

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

/4observe
54observe

no t: time |
 /4observe(t) and
 54observe(t)

Control
(nit *ig,t (nit Cars

/Robserve
/4observe
5Robserve
54observe

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

/4observe
54observe

no t: time |
 /4observe(t) and
 54observe(t)

all t: time | ; /4observe(t) =?
 no c: Cars |
 CarAirection(cB t) = nort,
 and CarDn5egment(cBt)

all t: time | ; 54observe(t) =?
 no c: Cars |
 CarAirection(cB t) = so7t,
 and CarDn5egment(cB t)

CarAirection
CarDn5egment

/4observe
54observe

CarAirection
CarDn5egment

no t: time | some c1B cF : Cars |
 CarAirection(c1B t) = nort, and
 CarAirection(cFB t) = so7t, and
 CarDn5egment(c1B t) and
 CarDn5egment(cFB t)

all t: time | ; /4observe(t) =?
 no c: Cars |
 CarAirection(cB t) = nort,
 and CarDn5egment(cBt)

all t: time | ; 54observe(t) =?
 no c: Cars |
 CarAirection(cB t) = so7t,
 and CarDn5egment(cB t)

CarAirection
CarDn5egment

/4observe
54observe

(c)

(b)

(a)

Figure 3-10: The first transformation: (a) A breadcrumb constraint is added to the
Cars domain, representing the assumption that car behavior can be determined by
knowing what traffic signals were observed. (b) Taking advantage of that assumption,
the requirement is rephrased so that it refers to observations instead of car behaviors.
(c) Because the requirement refers only to phenomena shared between the Cars and
Light Unit domains, it can be pushed from one to the other.

54

Control
(nit *ig,t (nit Cars

/Robser3e
/4obser3e
5Robser3e
54obser3e

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

/4p7lse
54p7lse

no t: time |
 odd</4p7lse= t> and
 odd<54p7lse= t>

all t: time |
 /4obser3e<t> ?=A odd</4p7lse= t> and
 54obser3e<t> ?=A odd<54p7lse= t>

all t: time | B /4obser3e<t> =A
 no c: Cars |
 CarDirection<c= t> = nort,
 and CarOn5egment<c=t>

all t: time | B 54obser3e<t> =A
 no c: Cars |
 CarDirection<c= t> = so7t,
 and CarOn5egment<c= t>

CarDirection
CarOn5egment

/4obser3e
54obser3e

Control
(nit *ig,t (nit Cars

/Robser3e
/4obser3e
5Robser3e
54obser3e

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

/4p7lse
54p7lse

no t: time |
 odd</4p7lse= t> and
 odd<54p7lse= t>

/4obser3e
54obser3e
/4p7lse
54p7lse

all t: time |
 /4obser3e<t> ?=A odd</4p7lse= t> and
 54obser3e<t> ?=A odd<54p7lse= t>

all t: time | B /4obser3e<t> =A
 no c: Cars |
 CarDirection<c= t> = nort,
 and CarOn5egment<c=t>

all t: time | B 54obser3e<t> =A
 no c: Cars |
 CarDirection<c= t> = so7t,
 and CarOn5egment<c= t>

CarDirection
CarOn5egment

/4obser3e
54obser3e

Control
(nit *ig,t (nit Cars

/Robser3e
/4obser3e
5Robser3e
54obser3e

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

all t: time | B /4obser3e<t> =A
 no c: Cars |
 CarDirection<c= t> = nort,
 and CarOn5egment<c=t>

all t: time | B 54obser3e<t> =A
 no c: Cars |
 CarDirection<c= t> = so7t,
 and CarOn5egment<c= t>

CarDirection
CarOn5egment

/4obser3e
54obser3e

/4obser3e
54obser3e

no t: time |
 /4obser3e<t> and
 54obser3e<t>

/4obser3e
54obser3e
/4p7lse
54p7lse

/4obser3e
54obser3e
/4p7lse
54p7lse

all t: time |
 /4obser3e<t> ?=A odd</4p7lse= t> and
 54obser3e<t> ?=A odd<54p7lse= t>

<a>

<c>

Figure 3-11: The second transformation: (a) a breadcrumb constraint is added to
the Light Unit domain, representing the assumption that signal pulses completely
determine how the cars observe the traffic light. (b) Taking advantage of that
assumption, the requirement is rephrased so that it refers to signal pulses instead of
observations. (c) Because the requirement refers only to phenomena shared between
the Light Unit and Control Unit domains, it can be pushed from one to the other.
The problem diagram is now an argument diagram.

55

3.4.2 The Requirement

The initial requirement that cars do not collide can now be expressed as follows:

1 pred Requirement1 [] {
2 no t : Time | some c1 , c2 : Cars |
3 CarDirect ion [c1 , t] = north and
4 CarDirect ion [c2 , t] = south and
5 CarOnSegment [c1 , t] and
6 CarOnSegment [c2 , t]
7 }

The initial problem diagram with this requirement is shown in Figure 3-9.

Controller (ig+ts -o Collisions

/+e Controller
controls t+e signal

p3lses according to
t+is 5peci!cation6

so...

...8eca3se t+e
signal p3lses relate
to lig+t o8ser9ations

li:e t+is...

...t+e re;3irement on
car locations and
positions =ill +old6

pre9enting cars >rom
colliding.

signals

(ig+ts
Ass3mption

5peci!cation
on signals

Cars and
@ri9ers

location
position

o8ser9A
ations

...and 8eca3se lig+t
o8ser9ations relate
to car locations and
positions li:e t+is...

Cars
Ass3mption

signals
signals

o8ser9ations
o8ser9ations

location
position

Figure 3-12: The informal argument diagram that results from applying the required
behavior frame to the two-way traffic light problem diagram. It provides an outline
for arguing that the specification enforces the requirement, and it indicates what sort
of domain assumptions will be needed to build that argument.

3.4.3 Step 1: from Cars to Light Units

The first thing we would like to do is to push the requirement from the Cars domain

onto the Light Unit domain, following the heuristic of trying to shift the requirement

closer to the Control Unit. In order to justify such a push, we will add a breadcrumb

56

constraint on Cars which permits us to rephrase the requirement so that the only

phenomena it mentions are NRobserve, NGobserve, SRobserve, and SGobserve. We

will then be able to push the requirement from Cars onto Light Unit. These three

tasks are illustrated in Figure 3-10 and narrated below.

(A) Add a Breadcrumb

The frame, shown in Figure 3-12, suggests that we characterize how the Cars domain

relates CarDirection and CarOnSegment with the four observation phenomena.

We do so by adding the following breadcrumb constraint to Cars, expressing the

assumption that cars never disobey red lights. In Alloy, we represent each breadcrumb

as a predicate.

1 pred CarsBreadcrumb [] {
2 a l l t : Time | not NGobserve [t]
3 ⇒ no c : Cars | CarDirect ion [c , t] = north and CarOnSegment [c , t]
4 a l l t : Time | not SGobserve [t]
5 ⇒ no c : Cars | CarDirect ion [c , t] = south and CarOnSegment [c , t]
6 }

This constraint further characterizes the Car domain: at any given time, if a car does

not observe a green light in its direction, then it cannot be on the road segment. 5

We discuss later why red lights do not appear in this assumption – see Section 3.4.5.

The result of this addition is shown in Figure 3-10a.

(B) Rephrase the Requirement

Instead of requiring that no two cars be in the intersection moving in opposite

directions at the same time, we can instead require that opposing green lights are

never both observed to be green at the same time.

5For the sake of simplicity, we will ignore the delays between when a light observation is made and
when car positions change in response to that change. There is no time allowed for the intersection
to clear, and there is no yellow light. These assumptions are more reasonable, if one considered a
time t to represent a period of time, rather than a moment in time. A signal at time t means that
the signal is sent at the beginning of time period t. A car moving northward at time t means that
the card is moving northward at any point during time period t. Of course, a car that changes
direction would be considered to be moving both north and south during that time period.

57

1 pred Requirement2 [] {
2 no t : Time | NGobserve [t] and SGobserve [t]
3 }

The result of this rephrasing is shown in Figure 3-10b.

To validate the rewrite, we are obliged to show that the new requirement,

conjoined with the new breadcrumb, implies the prior requirement.

1 assert Step1 {
2 Requirement2 and CarsBreadcrumb ⇒ Requiremet1
3 }
4 check Step1 for 10

In general, how such implications are discharged will depend on the problem

domain and the level of confidence needed in the requirement. Since our constraints

are written in first-order relational logic, we used the Alloy Analyzer to perform a

bounded, exhaustive check [37, 30]. The check passed for a scope of 10, meaning that

the property is not violated by any situation with up to 10 cars and up to 10 points

in time6.

(C) Push the Requirement

The only phenomena mentioned by the new requirement are NGobserve and

SGobserve. Since those phenomena are shared by both the Cars and Light Unit

domains, we are permitted to push the requirement from one to the other. The result

of this push is shown in Figure 3-10c.

3.4.4 Step 2: From Light Unit to Control Unit

The requirement is now one step away from being a specification. We repeat the

process to shift the requirement the rest of the way onto the Control Unit domain

(the machine). In order to do so, we will need add another breadcrumb and perform

another rephrasing of the requirement. This process is illustrated in Figure 3-11 and

narrated below.

6Each execution of the Alloy model was solved in under 1 second on a 133MHz G4 PowerMac
with 800Mb of RAM, using the freely available version of Alloy 4 [30]

58

(A) Add a Breadcrumb

Once again, we appeal to the frame (Figure 3-12) for guidance on what breadcrumb

to add. This time, we need to make an assumption about the Light Unit domain

that will help us reconcile the observation and signal pulse phenomena. If we assume

that the parity of signal pulses determines how the lights are observed, then we can

substitute mentions of signal pulses for mentions of observations. We do so by adding

the following breadcrumb constraint to Light Unit about the electrical wiring of the

unit and about the reliability of observations:

1 pred LightUnitBreadcrumb [] {
2 a l l t : Time |
3 NGobserve [t] ⇔ odd [NGpulse , t] and
4 SGobserve [t] ⇔ odd [SGpulse , t]
5 }

where odd is a function that determines the parity of the number of occurrences of

the given phenomenon up to the given time. The most recent breadcrumb therefore

says that, at any point in time, if an odd number of signal pulses have been sent to

a particular light, then that light is on and will be observed. If an even number have

been sent, then it is off and will not be observed. The result of this addition is shown

in Figure 3-11a.

(B) Rephrase the Requirement

In light of that breadcrumb, we rephrase the requirement to mention signal pulses

instead of light observations:

1 pred Requirement3 [] {
2 no t : Time | odd [NGpulse , t] and odd [SGpulse , t]
3 }
4 assert Step2 {
5 Requirement3 and LightUnitBreadcrumb ⇒ Requirement2
6 }
7 check Step2 for 10

We use the Alloy Analyzer to verify that the new requirement plus the breadcrumb

imply the prior requirement. It passes for a scope of 10, so the breadcrumb is strong

enough to justify the rephrasing. The result of this rephrasing is shown in Figure 3-

59

11b.

(C) Push the Requirement

The requirement now mentions only phenomena shared by both the Light Unit and

Control Unit domains, so we can push it from one to the other. The result of this

push is shown in Figure 3-11c.

Now that the requirement has been pushed all the way onto the machine domain,

it only mentions phenomena known about by the machine and is a legal specification

for that machine. We have derived a specification for the control unit (the final

version of the requirement), a correctness argument for why it enforces the original

requirement, and a set of assumptions about the world upon which we are relying

(the breadcrumbs). The designer can hand that specification off to an engineer

to guide or validate an implementation, knowing that (as long as the breadcrumb

assumptions hold) the specification is, by construction, sufficient to enforce the

original requirement.

3.4.5 Lessons Learnt

One of the primary benefits of problem frames is that it forces the designer to be

explicit about what assumptions are being made. Those assumptions can then be

checked by domain experts, rather than being left hidden inside of the designer’s

head. In fact, there is a possible mistake in this example, which might have escaped

attention had the breadcrumbs not been explicitly recorded in a formal language as

part of our technique.

Recall that the first breadcrumb (CarsBreadcrumb) states that a car will not enter

the road segment if the green light in its direction is off. Upon closer inspection,

suppose the designer realized that this is not true – if neither the red nor the green

lights are on, then cars might assume that the system is off and enter the road

segment. That breadcrumb needs to be strengthened to mention red observations as

well as green ones. The corrected breadcrumb and resulting specification is shown in

60

Figure 3-13.

Control
(nit *ig,t (nit Cars

/Ro1ser3e
/4o1ser3e
5Ro1ser3e
54o1ser3e

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

/Ro1ser3e
/4o1ser3e
5Ro1ser3e
54o1ser3e

no t: time |
 odd(/4p7lse= t) and
 e3en(/Rp7lse= t) and
 odd(54p7lse= t) and
 e3en(5Rp7lse= t)

/Ro1ser3e
/4o1ser3e
5Ro1ser3e
54o1ser3e

/Rp7lse
/4p7lse
5Rp7lse
54p7lse

all t: time |
 /4o1ser3e(t) ?=A odd(/4p7lse= t) and
 /Ro1ser3e(t) ?=A odd(/Rp7lse= t) and
 54o1ser3e(t) ?=A odd(54p7lse= t) and
 5Ro1ser3e(t) ?=A odd(5Rp7lse= t)

all t: time |
 B /4o1ser3e(t) and /Ro1ser3e(t)
 =A no c: Cars |
 CarDirection(c=t) = nort,
 and CarOn5egment(c= t)

all t: time |
 B 54o1ser3e(t) F 5Ro1ser3e(t)
 =A no c: Cars |
 CarDirection(c=t) = so7t,
 and CarOn5egment(c= t)

CarDirection
CarOn5egment

/Ro1ser3e
/4o1ser3e
5Ro1ser3e
54o1ser3e

Figure 3-13: The argument diagram that results if we change the breadcrumb on the
Car domain to permit cars to enter the intersection when neither a red nor a green
light shows. In this version of the argument, both red and green lights are relevant.

If, however, the designer decides that the cars breadcrumb is reasonable, then we

have learned something about the system: red lights do not play a role in establishing

the original safety requirement. Had we gone straight to writing a specification, rather

than deriving it incrementally, we would probably have missed this insight and have

written an over-constrained specification – we would probably have written one that

requires both red and green lights to be turned on and off in a certain pattern, rather

than one that just constrains green lights. While sufficient to enforce the original

requirement, such a specification would needlessly restrict the design of the control

unit.

3.5 Proton Therapy Logging

Our second example is a simplified version of the logging system used in the BPTC

system. It is a good example of a problem frame with a branching topology : the

61

requirement connects to two different problem-world domains, which in turn connect

(either directly or indirectly) to the machine. Requirement progression will involve

shifting both of the requirement’s arcs onto the machine. Each of the arcs is progressed

in a manner similar to what we saw in the traffic light example (Section 3.4), and will

be handled independently.

The logging problem is also an instructive example because it does not match

any single standard problem frame; one part matches the information display frame,

and another part matches the required behavior frame [40]. While those frames will

still provide us with some guidance, neither of them captures the full essence of

the logging requirement. Requirement progression can still be used to construct a

correctness argument for the system, and will still ensure that we are not relying on

implicit domain assumptions. However, we will not be able to rely on existing frames

to guide our choice of domain assumptions and will instead introduce assumptions

based on existing domain knowledge provided by the BPTC engineers.

3.5.1 System Requirements

The BPTC system is considered to be safety critical primarily due to the potential for

overdose — treating the patient with radiation of excessive strength or duration. The

International Atomic Energy Agency lists 80 separate accidents involving radiation

therapy in the United States over the past fifty years [72]. The most infamous of

these accidents are those involving the Therac-25 machine [49, 53], in whose failures

faulty software was a primary cause. More recently, software appears to have been

the main factor in similar accidents in Panama in 2001 [26].

The BPTC system was developed in the context of a sophisticated safety program

including a detailed risk analysis. Unlike the Therac-25, the BPTC system makes

extensive use of hardware interlocks, monitors, and redundancies. The software itself

is instrumented with abundant runtime checks, heavily tested, and manually reviewed.

There are two top-priority requirements in the BPTC system: overdose avoidance

and logging.

62

Overdose Avoidance: At no time should the radiation received by any part
the patient’s body exceed the dose stipulated in the treatment plan.

Logging: The system should write a log that accurately reflects the dose
delivered to the patient.

Without an accurate log, clinicians cannot resume an interrupted treatment without

risking an overdose.

Each such requirement is handled, in the problem frames approach, as a distinct

subproblem. The proton therapy development involves several other subproblems,

such as that of positioning the patient accurately [36]. We shall consider only the

logging subproblem in this chapter, although we consider other other BPTC concerns

in Chapter 4.

3.5.2 Logging Subproblem

The BPTC provides us with some knowledge about the domains that, together with

the two partially-relevant frames, suggest some domain properties that are likely

to be relevant to our argument (and that will therefore manifest themselves as

breadcrumbs).

The challenge presented by the logging problem is that neither the physical

machine producing the beam nor the logging disk are completely reliable. For

example, the beam equipment could be shut off by a hardware interlock, or the

logging database might reach its capacity or its disk might crash. If the log cannot

be written, the treatment must be halted.

We assume, however, that the Treatment Control System (TCS) is a reliable

component and will therefore be given the responsibility of enforcing the requirement

in the face of known unreliabilities of the other components. If the TCS is found to

be unreliable in ways that prevent it from fulfilling the derived specification, then the

process must be repeated to find a looser specification. Doing so is likely to entail

stronger assumptions about the reliability of other components, or weakening the

requirement we are able to guarantee.

63

We assume a standard failure model for the disk subsystem and the network.

Disk writes are atomic – they either complete successfully, or fail, leaving the disk

unaffected. Messages sent on the network may be dropped, delayed, or reordered,

but are never corrupted or duplicated.

The radiation hardware may fail like a disk, but presents a harder challenge. A

disk write can be made atomic, by regarding it as not having occurred until a single

commit bit is flipped, until which point the write can be revoked. The delivery of

radiation, in contrast, is irrevocable.

64

Mac$ine

(is*la,

(is*la, .
/ensors

2$en t$e state o4
t$e 5orld is s7c$-

and-s7c$....

command

commands .
dis*la,
;al7es

signals .
commands

dis*la, ;al7e

*1

command *$enom
dis*la, *$enom

/ensors

signal *$,sical *$enom

*$,sical
*$enom .

signals

*$,sical *$enom
sensor signals

...t$en> ?eca7se t$e
sensors o?e, t$is
ass7m*tion> t$e,

5ill generate
signals like t$is...

...t$e mac$ine 5ill
detect t$ese

signals...

...and generate
t$ese commands>

according to its
s*eci!cation> ...

...so t$e dis*la, 5ill
$a;e t$ese ;al7es
?eca7se it o?e,s
t$is ass7m*tion...

...5ic
corres*onds> as
reA7ired> to t$e

state o4 t$e 5orld.

Figure 3-14: An informal argument diagram for the information display frame.

65

d = #DoseUnit ⇔ Upon the completion of treatment,
the patient’s body has exactly d units of radiation.

e = #Entry ⇔ Upon the completion of treatment,
there are exactly e entries in the log.

b in DelivBurst ⇔ At some point during the treatment,
a burst of radiation was delivered,
associated with the burst b.

b in ReqBurst ⇔ At some point during the treatment,
a request was made for burst b to be delivered.

b in AckBurst ⇔ At some point during the treatment,
an acknowledgement was made that burst b was delivered.

b in ReqWrite ⇔ At some point during the treatment,
there was a request for burst b to be written.

b in AckWrite ⇔ At some point during the treatment,
there was an acknowledgement that burst b was written.

Figure 3-15: Designations for the dose logging problem diagram.

66

The strategy, therefore, is to deliver the beam in short bursts, logging each burst

as it is occurs. If the disk fails, no further bursts are delivered. If the delivery

mechanism fails, no further log entries are written. Although the log might not

match the treatment exactly, we are assured that they deviate by at most a single

burst.

The analysis we perform shows how this approach is justified, and how it reveals

a distribution of small but subtle assumptions across the various components of the

system.

3.5.3 The Phenomena

Figure 3-16 shows a problem diagram for the logging sub-problem. In it, the

informal logging requirement has been formalized using the Alloy language [30, 34, 37].

Designations7 for the phenomena used in that diagram are given in Figure 3-15.

A Patient is prepared to receive radiation from the Beam Equipment. The

Treatment Control System (TCS) issues a series of ReqBurst requests to the Beam

Equipment.8 Each ReqBurst instructs the equipment to deliver a single burst of

radiation to the patient, DelivBurst, which in turn raises the total radiation delivered

to the patient by one DoseUnit. After a successful DelivBurst, the Beam Equipment

sends an AckBurst acknowledgement back to the TCS.

Whenever the TCS issues a ReqBurst, it attempts to write a record of that dose to

the Log by issuing a ReqWrite request. The Log may then create an Entry recording

that a DoseUnit has been delivered to the patient. Upon successfully creating an

Entry, the Log sends an AckWrite acknowledgement back to the TCS.

Both the Beam Equipment and the Log are known to be partially unreliable. The

Beam Equipment will never perform a DelivBurst without first receiving a ReqBurst,

but it may ignore some ReqBursts. Similarly, the Log will never write erroneous

7A designation is an association between formal terms in some description and informal
properties of the real world. This is in contrast to a definition, which relates formal terms to
other formal terms. [40]

8The number of such requests is based on the patient’s treatment plan. The treatment plan has
thus omitted from the problem diagram, since it is not relevant to the logging requirement. It would
be included in the problem diagram for the overdose avoidance requirement.

67

!CS:
!reatment

Control
S.stem

0atient

2eam
34uipment

Deliv2urst

Log

Re4<rite

Requirement:
The deviation between the number
of entries recorded in the log and
the number of dose units delivered
to the patient is at most one.

!"#$%&'('!)*+,-#.$'*%
!"#$%&'('!)*+,-#.$'/'0'*%
!"#$%&'('!)*+,-#.$'1'0

DoseUnit 3ntr.

Re42urst

>c@2urst

>c@<rite

Figure 3-16: The problem diagram for the logging requirement. At any point in time,
the doses recorded in the log entries should match the total dose actually delivered to
patient, up to a known margin or error.

Entries, but it may ignore some ReqWrite requests (if, for example, the log has

reached its capacity or the disk crashes).

This knowledge about the domains is not initially represented in the problem

diagram, as we are not yet sure which parts of it will be relevant to the progression.

We will not actually add any of this information into the diagram until it is needed

68

for the progression. Rather, these informal descriptions are used to help the analyst

know what domain properties are available for introduction as a breadcrumb.

In this way, the breadcrumbs are only those domain properties relevant to the

argument that the derived specification enforces the original requirement, and they are

uncluttered by unnecessary (albeit correct) domain assumptions. If the domains are

later changed in ways that do not affect the breadcrumbs we used, then the argument

represented by the requirement progression will still hold. Including unnecessary, but

true, assumptions increases the chance that changes to the domain will require the

progression to be reworked.

3.5.4 Matching Problem Frames

No single existing problem frame matches the logging subproblem, although we can

draw some insight from two frames that match pieces of the problem.

Logging partly matches the information display frame, shown in Figure 3-14.

In an information display frame, a Machine resides between Sensors that detect

phenomena in the physical world and a Display that encodes some representation

of those phenomena. The requirement is that the display values correspond, in some

prescribed way, to the state of the physical world. The frame concern focuses our

attention on the following characteristics of the three domains: how the Sensor domain

relates physical phenomena to signals sent to the machine; how the Machine reacts

to those signals by issuing commands to the Display; and how the Display reacts to

those commands by rendering display values. The correctness argument will follow

this chain to argue that any physical world phenomenon will result in the appropriate

display values.

The Logging facility is an information display problem in the following sense: The

DoseUnits are the physical phenomena that we are attempting to represent. The

Patient and Beam Equipment together constitute the Sensor, which detects increases

in DoseUnits and sends AckBurst signals to the TCS. The TCS is the Machine, which

receives AckBurst signals and generates ReqWrite commands. The Log is the Display,

responding to ReqWrite commands and generating Entries. Our requirement is that

69

!"#$%
!&'()*'+)%
",+)&,-%
#./)'*

0()1'+)

2'(*%
34516*'+)

7'-1825&/)

9,:

;'4<&1)'

;'425&/)

=>?25&/)

=>?<&1)'

Breadcru(b +,
T"e num(er o+ (ursts .elivere. (y t"e
(eam equipment is t"e same as t"e
num(er o+ .ose units receive. (y t"e
patient7 T"at is8 eac" (urst .elivers one
unit o+ ra.iation8 an. t"e patient receives
no ra.iation +rom ot"er sources7

!"#$e&nit*+*!"e,i-.ur$t

7,/'@+1)
7'-1825&/)

Breadcru(b -a,
Every ackno;le.ge. (urst is
also a .elivere. (urst7 T"at
is8 only ackno;le.ge. (ursts
are .elivere.8 (ut some
.elivere. (ursts are never
ackno;le.ge.7

123.ur$t*in*"e,i-.ur$t

Breadcru(b -b,
Every .elivere. (urst is also a
requeste. (urst7 T"at is8 only
requeste. (ursts are .elivere.8
(ut some requeste. (ursts are
never .elivere.7

"e,i-.ur$t*in*Req.ur$t

Breadcru(b .a,
T"e num(er o+ ;rite ackno;le.gements
receive. +rom t"e TCS cannot e?cee. t"e
num(er o+ entries in t"e log7 T"at is8 eac"
entry ;ritten generates at most one ;rite
ackno;le.gement8 (ut some entries may
never (e ackno;le.ge.7

!6ntr7*8+*!1239rite

Breadcru(b .b,
T"e num(er o+ entries in t"e log cannot
e?cee. t"e num(er o+ ;rite requests
receive. +rom t"e TCS7 T"at is8 eac"
;rite request creates at least one entry8
(ut some ;rite requests may never (e
enacte.7

!6ntr7*+:*!Req9rite

Speci!cation,
T"e (ursts t"at are requeste. to (e .elivere. are t"e
same as t"e t"e (ursts requeste. to (e ;ritten to t"e
log7 T"at is8 t"e t;o kin.s o+ requests are al;ays
issue. in tan.em7

T"ere is at most one unackno;le.ge. ;rite request8
an. at most one unrequeste. .elivery request7 T"at
is8 a ne; ;rite request cannot (e issue. unless all
prior ;rite requests "ave accompanying ;rite
ackno;le.gements7 Similarly8 a ne; (urst request
cannot (e issue. unless all prior (urst requests "ave
accompanying (urst ackno;le.gments7

Req9rite*+*Req.ur$t
,#ne*Req9rite*;*1239rite
,#ne*Req.ur$t*;*123.ur$t

3+)&.
=>?<&1)'

3+)&.
;'4<&1)'

;'4<&1)'
=>?<&1)'
;'425&/)
=>?25&/)

7'-1825&/)
=>?25&/)

7'-1825&/)
;'425&/)

Figure 3-17: The argument diagram that results from transforming the requirement
into a specification. Each breadcrumb constraint has a formal description of a partial
domain property and an informal interpretation of that formula. The conjunction of
the breadcrumb formulae and the specification formula logically imply the requirement
formula. The Alloy keyword lone, used in the TCS specification, indicates that a set has
a cardinality of zero or one.

70

Entries correspond to DoseUnits.

The TCS does not just passively watch the patient and react to changes in

DoseUnits by updating the Log, as suggested by the information display frame. The

TCS is also permitted to write a log entry and then deliver a burst of radiation

to match it. (Stopping the TCS once the prescribed dose of radiation has been

delivered and ensuring that it eventually delivers a sufficient dose is part of the

overdose requirement, not the logging requirement.)

71

The failure to match is also apparent from the diagrams by taking note of the arrow

heads on the requirement arcs. A requirement arc with an arrow head indicates that

the phenomena labeling that arc are the ones that should change in order to satisfy the

requirement. Requirement arcs without arrow heads indicate that those phenomena

should not be changed. In the information display frame, only the arc to the Display

has an arrow head, indicating that only the Sensor’s phenomena will not be changed.

In contrast, the logging problem diagram has arrow heads on both the Log and the

Patient domains, as both entries and dose units can be changed in order to satisfy

the requirement.

Logging also partly matches the required behavior frame, shown in Figure 3-4. In

a required behavior frame, a Machine issues commands to a Device domain, which

in turn exhibits certain behaviors. There is a requirement on what sorts of behaviors

should occur. The frame concern focuses our attention on characterizing how the

behaviors exhibited by the Device domain depend on the commands issued by the

Machine.

The Logging facility is a required behavior problem in the following sense: The

TCS is the Machine, which issues ReqWrite and ReqBurst commands. The Log, Beam

Equipment, and Patient together constitute the Device domain, whose exhibited

behaviors are DoseUnit and Entries. The requirement on valid behaviors exhibited

by the Device domain is that the DoseUnits match the Entries.

The TCS also does not control a single Device domain, as suggested by the required

behavior frame. The controlled device is really three different domains, one of which

(the Log) has no direct connection to the other two (the Beam Equipment and the

Patient). Lumping those three domains together into a single Device domain hides

the very trait that makes the problem hard – the fact that the Log and Patient cannot

directly communicate with one another. It suggests that we could introduce a domain

assumption that says “the Device keeps the Entries and DoseUnits the same”, missing

the key challenge of the Logging problem.

Neither frame alone captures the nature of the pro-active logging problem that

we are analyzing. One might argue that the system ought to be designed so that

72

one machine delivers successive doses (required behavior) and a separate machine

passively maintains the log (information display). However, with an unreliable

log, there needs to be a communication channel between the log and the delivery

mechanism, as each needs to react to the acknowledgements of the other. Eliminating

that dependence would require changes to the system itself, a luxury not available

when the system is already in place, and forcing the system into a mold that fits

poorly will only produce a correctness argument that fits equally poorly. Rather, we

must approach the system anew.

3.5.5 The Requirement

From the user’s perspective, there are two fundamental sets – a set of radiation dose

units and a set of log entries.

1 sig DoseUnit { }
2 sig Entry { }

The initial requirement is that the number of dose units delivered to the patient

matches the number of entries in the log, with a margin of error of one unit.

1 pred Requirement1 [] {
2 #Entry = #DoseUnit or
3 #Entry = #DoseUnit + 1 or
4 #Entry = #DoseUnit − 1
5 }

This requirement is loose enough to permit behaviors in which a burst is both delivered

and logged (first line), logged but not delivered (second line), or delivered but not

logged (third line). However, in either of the latter two cases, further logging and

treatment cannot continue until the imbalance has been corrected.

The essence of the interaction is that various messages are exchanged about bursts

delivered by the beam machine (or requested of it). Since each message is about a

particular burst, there is no need to introduce a separate notion of a message. Rather,

we simply introduce a set of bursts

1 sig Burst { }

73

and a classification into a collection of (possibly overlapping) sets, consisting of bursts

that are delivered, requested, and acknowledged, and bursts associated with log

entries that are requested and acknowledged.

1 sig DelivBurst , ReqBurst , AckBurst , ReqWrite , AckWrite in Burst { }

That is, a burst in the ReqWrite set is one for which a write request has been issued.

If a write acknowledgement has been issued for that burst, then it will also be in the

set AckWrite.

Our task is to establish a relationship between Entries and DoseUnits, as per

the requirement. We will introduce domain assumptions about the Patient and Beam

Equipment to relate DoseUnit to ReqBurst. Domain assumptions about the Log will

be added to relate Entries to ReqWrite. The TCS specification will then constrain

ReqBurst and ReqWrite requests, thus indirectly enforcing the original requirement.

Figure 3-16 shows the problem diagram before requirement progression begins, and

Figure 3-17 shows the same diagram at upon completion.

3.5.6 Transformation and Derivation

We begin with the requirement we want to enforce. The derivation happens in three

stages: First, we push the requirement from the Log to the TCS, and add a breadcrumb

and rephrase the requirement as needed to permit that push. Second, we push the

requirement from the Patient to the Beam Equipment, adding another breadcrumb

and performing another rephrasing. Finally, we push the requirement from the Beam

Equipment to the TCS, adding a third breadcrumb and performing a third rephrasing.

At that point, the requirement only touches (only mentions phenomena involved in)

the machine domain, and has thus been transformed into a specification. Figure 3-

17 shows the final state of the Problem Frame description, after the transformation

process is complete.

74

Step 1: from Log to TCS

Our first task is to push the requirement from the Log domain onto the TCS domain.

We cannot do so because the requirement mentions the Entry phenomenon, which is

not involved in the TCS. We will thus need to rephrase the requirement to reference

phenomena shared with the TCS (ReqWrite, AckWrite) instead of those known only to

the Log (Entries). However, we first need to introduce a breadcrumb, characterizing

the log, to justify such a rephrasing. That breadcrumb needs to relate the phenomena

that the requirement constraint currently mentions to those that we would like it to

reference. To that end, we add the following breadcrumb representing our domain

assumptions about Log:

1 pred LogBreadcrumb [] {
2 #Entry >= #AckWrite
3 #Entry =< #ReqWrite
4 }

The first constraint says that the number of entries written is greater than or equal

to the number of write acknowledgments; it allows entries to be written without

corresponding acknowledgments. The second constraint says that the number of

entries written is less than or equal to the number of write requests; it allows write

requests to be ignored. With this assumption in hand, we rephrase the requirement

as follows:

1 pred Requirement2 [] {
2 lone ReqWrite − AckWrite and
3 (#ReqWrite = #DoseUnit or #ReqWrite = #DoseUnit + 1)
4 }

The Alloy keyword lone indicates that the following expression has a cardinality of

zero or one. Thus, the formula lone ReqWrite - AckWrite means that there can be

at most one write request for which there is no write acknowledgement.

To confirm that the new breadcrumb and the new requirement together imply the

prior requirement (the original requirement), this is presented to the Alloy Analyzer

as an assertion to be checked:

75

1 assert Step1 {
2 LogBreadcrumb and Requirement2 ⇒ Requirement1
3 }
4 check Step1 for 10

Now that the requirement only mentions phenomena from the recipient domain, it

can be pushed from Log to TCS.

Step 2: from Patient to Equipment

We repeat the process to push the requirement from Patient to Beam Equipment by

characterizing the Patient domain. First, we add the following breadcrumb:

1 pred PatientBreadcrumb [] {
2 #DoseUnit = #Del ivBurst
3 }

which is motivated by the fact that each DelivBurst event delivers exactly one

DoseUnit to the patient, and that the patient receives no DoseUnits of radiation

from other sources. The breadcrumb permits the requirement to be rephrased as

follows:

1 pred Requirement3 [] {
2 lone ReqWrite − AckWrite and
3 (#ReqWrite = #Del ivBurst or #ReqWrite = #Del ivBurst + 1)
4 }

To confirm that the new breadcrumb and the new requirement together imply the

prior requirement, we present the Alloy Analyzer with the following assertion to check:

1 assert Step2 {
2 PatientBreadcrumb and Requirement3 ⇒ Requirement2
3 }
4 check Step2 for 10

We can now push the requirement from Patient to Beam Equipment.

Step 3: from Equipment to TCS

We repeat the process a third time to push the requirement from Beam Equipment

to TCS. First add the following breadcrumb:

76

1 pred EquipBreadcrumb [] {
2 AckBurst in Del ivBurst
3 De l ivBurst in ReqBurst
4 }

which says that an acknowledgement must be sent only when a burst is delivered,

and that a burst may only be delivered when it is requested. Limited unreliability

is permitted; some requests have no matching delivery and some deliveries have no

matching acknowledgement. The requirement can now be rephrased as follows:

1 pred Requirement4 [] {
2 ReqWrite = ReqBurst
3 lone ReqWrite − AckWrite
4 lone ReqBurst − AckBurst
5 }

The first line of the derived specification says that a write must be requested of the

log whenever the beam equipment is requested to deliver a burst and vice versa. The

second line says that no new write requests can be made if any write request remains

unacknowledged. The third says that no new burst request can be made if any burst

request remains unacknowledged. The machine must wait for both acknowledgements

before issuing another pair of requests.

We present the Alloy Analyzer with the following assertion to check that the final

rephrasing was justified by the following breadcrumb:

1 assert Step3 {
2 EquipBreadcrumb and Requirement4 ⇒ Requirement3
3 }
4 check Step3 for 10

Finally, we push the requirement from Beam Equipment to TCS. At this point, the

requirement mentions only phenomena from TCS and has become a specification. If

the TCS issues requests according to this specification, and the other three domains

satisfy their domain assumptions, then the original requirement will be preserved.

The problem diagram resulting from the entire is shown in Figure 3-17.

77

3.6 Handling Time: Automatic Door Controller

In this section, we demonstrate requirement progression on a system with highly

temporal aspects – an automatic door, as one might find in a supermarket. Here is

the Door Controller problem, as defined by Nick Ourusoff [64]:

We wish to specify a software system to control an automatic door.
The automatic door contains a motor, which may either be ON or OFF
and has a polarity, which is either OPEN (indicating that the door will
move to the OPEN position if the motor is ON) or CLOSE (indicating
that the door will move to the CLOSED position if the motor is ON).
The door also contains two sensors: one registers OPEN, when the door
is within 3 cm. of being fully open; the other registers CLOSED, when the
door is within 3 cm. of being fully closed. In addition, there is a motion
sensor. It sends a signal to the controller if the sensor detects motion 6
feet away from door. It isn’t important how it works.

We wish to write a Door Controller to open the door whenever a person
wishes to walk though it; and to keep the door closed when someone isn’t
passing through it.

3.6.1 Designations and Context

First, we build a context diagram describing the automatic door situation (Figure 3-

20) and an accompanying set of designations for the domains and phenomena

(Figures 3-19 and 3-18).

78

Time ⇔ A moment in time, and the associated state of
the world at that time. Measured in seconds.

DistanceToDoor ⇔ The distance (in feet) between the door and
the person closest to the door at a given
point in time. If there is no person, the
distance is considered to be infinite.

DistanceToSensor ⇔ The distance (in feet) between the motion
sensor and the person closest to the motion
sensor (at a given point in time). If there
is no person, the distance is considered to
be infinite.

DoorGap ⇔ The percentage the sliding door is open at
a given point in time.

MotionDetected ⇔ The presence of a signal generated by the
Motion Sensor indicating that it has detected
nearby motion. This variable has the value
“Motion” when the sensor is sending a
signal indicating motion and the value “NoMotion”
when no signal is being sent.

MotorPolarity ⇔ The direction in which the motor has been
instructed to run. It either has the value
“Opening” or “Closing”.

MotorPower ⇔ Whether or not the motor has been instructed
It either has the value “MotorOn” or
“MotorOff”.

DoorGapMeasure ⇔ A value reported by the Position Sensor. A value
of “AlmostOpen” means that the door is
90 percent open or more. A value of “almostClosed” means
that the door is 10 percent open or less. In all other
cases, the sensor reports a value of “UnknownGap”.

AppliedForce ⇔ The force currently being applied to the doors,
directly causing them to open or close.
It either has the value “OpeningForce”
or “ClosingForce”.

MotorSpeed ⇔ The percentage that the motor can open/close
the sliding doors in 1 second, measures in
increments of 10 percent per second.

Figure 3-18: Designations for an automatic door controller.

79

Door ⇔ A pair of sliding doors that the automatic door
system is in place to control.

Position Sensor ⇔ A sensor on the doors that reports on the status
of the door.

Motor ⇔ A machine that applies force the door.
People ⇔ Humans and other moving objects in the vicinity

of the door.
Motion Sensor ⇔ A sensor that detects and reports on nearby motion.
Controller ⇔ The component we are designing to coordinate

the system.

Figure 3-19: Domains for an automatic door controller.

Position
Sensor

C

,otor

C

Door

C

,otion Sensor

C

People

B

Controller

,otorPolarity
,otorPo3er

Door4ap

Door4ap,easure

Applie78orce

,otionDetecte7

DistanceSensor

!"t"r%"&'rit) ∈ :;pening= Closing>
!"t"r%"*er ∈ :Po3er;n= Po3er;??>
!"ti"n-ete.te/ ∈ :,otion= @o,otion>
-""r0'12t'tu4 ∈ :Almost;pen= AlmostClose7= Unkno3n4ap>
511&ie/6"r.e ∈ :;pening8orce= Closing8orce= @o8orce>
-i4t'n.e-""r= -i4t'n.e-en4"r= -""r0'1 ∈ Integer
7'&8in921ee/= !"t"r21ee/ ∈ Integer

DistanceDoor
DistanceSensor
WalkingSpee7

DistanceSensor
,otionDetecte7

,otorPolarity
,otorPo3er
,otionDetecte7
Door4ap,easure

Applie7 8orce
,otorPolarity
,otorPo3er
,otorSpee7

Door4ap
Applie7 8orce

Door4ap,easure
Door4ap

Figure 3-20: Context diagram for an automatic door.

80

3.6.2 Formalizing the Requirement(s)

As is often the case when writing requirements, a number of subtleties arise in the

course of simply writing down what it means for the system to operate properly.

There are actually 3 requirements here, which should be addressed independently.

Informally, they are as follows:

(1) Service Provided The door must be open when a person is close enough to
walk through, or at least open far enough to allow someone through. The door
remains closed the rest of the time.

(2) No Motor Damage The motor does not try to close the door when it is fully
closed or open the door when it is fully open.

(3) No Door Damage The door must not be forced open when already open, or
forced closed when already closed.9

Formally, we interpret and encode those requirements in the Alloy language as follows:

(1) Service Provided Whenever someone is within 1 foot of the door, the door
must be at least 90% open. If nobody is within 11 feet of the door, then the
door must be at most 10% open. Otherwise, the door can be any amount open.

1 a l l t : Time | (DistanceDoor [t] = < 1) ⇒ (DoorGap [t] >= 9)
2 a l l t : Time | (DistanceDoor [t] >= 11) ⇒ (DoorGap [t] = < 1)

Filling in specific values is necessary to build a working model, but those details
must be confirmed or provided by a domain expert. This is a case where the act
of formalization revealed an important omission in the design requirement. It
turns out that the details of what it means for the door to be mostly open/closed
and what it means for a person to be near/far are not details that can be left
for later; they are relevant to high level design. In the absence of an expert, we
have provided plausible placeholder values.

(2) No Motor Damage The Motor is never on and opening when the door is
completely open. The Motor is never on and closing when the door is completely
closed.

9Note that the second and third requirements are subtly different. Door damage and motor
damage are only the same if the motor gets damaged under exactly the same circumstances that
the door is damaged. That assumed both (a) that force is only applied to the door as a result of the
motor running and (b) that the motor only serves to open/close the door. While those properties
may be true, they are not inherent in the problem context, and would need to be introduced as
domain assumptions.

81

1 no t : Time |
2 MotorPower [t] = MotorOn
3 and MotorPolar ity [t] = Opening
4 and DoorGap [t] >= 10
5 no t : Time |
6 MotorPower [t] = MotorOn
7 and MotorPolar ity [t] = Clos ing
8 and DoorGap [t] =< 0

(3) No Door Damage The door is never forced open when it is 100% open or
forced closed when it is 0% open.

1 no t : Time |
2 Appl iedForce [t] = OpeningForce
3 and DoorGap [t] >= 10
4 no t : Time |
5 Appl iedForce [t] = Clos ingForce
6 and DoorGap [t] =< 0

These formal requirements, when added to the context diagram, form the problem

diagram shown in Figure 3-21.

The No Door Damage requirement only mentions phenomena from the Door

domain. According to requirement progression, there is nothing to be done here, as

the requirement is already a domain assumption.

The No Motor Damage and Service Provided requirements each reference

phenomena from multiple domains. The service requirement refences phenomena from

People and Door, and the motor requirement references phenomena from Motor and

Door. We then use requirement progression on both requirements to decompose them

into localized domain assumptions. We have omitted the intervening steps for brevity.

The resulting argument diagram is given in Figure 3-22.

82

!osition
(ensor

+

,otor

+

Door

+

,otion (ensor

+

!eo./e

0

+ontro//er

Service Provi*e*:
 1// t2 3i4e 5
 6Dist1n7eDoor8t9 =; 1= => 6Door?1.8t9 >= @=
 1// t2 3i4e 5
 6Dist1n7eDoor8t9 >= 11= => 6Door?1.8t9 =; 1=

,o -otor Damage:
 no t2 3i4e 5
 ,otor!oAer8t9 = ,otorBn
 1nC ,otor!o/1rity8t9 = B.eninE
 1nC Door?1.8t9 >= 1F
 no t2 3i4e 5
 ,otor!oAer8t9 = ,otorBn
 1nC ,otor!o/1rity8t9 = +/osinE
 1nC Door?1.8t9 =; F

,otor!o/1rity
,otor!oAer

Door?1.

Door?1.,e1sGre

H../ieCIor7e

,otionDete7teC

Dist1n7e(ensor

Dist1n7e Door?1.

,otor!o/1rity
,otor!oAer

,o Door Damage:
 no t2 3i4e 5
 H../ieCIor7e8t9 = B.eninEIor7e
 1nC Door?1.8t9 >= 1F
 no t2 3i4e 5
 H../ieCIor7e8t9 = +/osinEIor7e
 1nC Door?1.8t9 =; F

Door?1.

Door?1.
H../ieCIor7e

Figure 3-21: Problem diagram for an automatic door.

83

!!t#e &en&or i& +ocated on top o0 t#e door
a++ t: 2ime 4 5i&tance5oor6t7 8 5i&tanceSen&or6t7

!!ma: ;a+<in= &peed i& a con&tant bet;een ? and 2 0eet per &econd
a++ tAtB: 2ime 4 Ca+<in=Speed6t7 8 Ca+<in=Speed6tB7
Ca+<in=Speed6!r&t7 D8 ?
Ca+<in=Speed6!r&t7 8E 2

!!peop+e moFe up to t#eir ma: ;a+<in= &peed
a++ t: 2imeA tB: tHne:t I

J5i&tanceSen&or6tB7 D8 5i&tanceSen&or6t7 K Ca+<in=Speed6t7
and
5i&tanceSen&or6tB7 8E 5i&tanceSen&or6t7 L Ca+<in=Speed6t7M

N

!!t#e &en&or #a& a detection ran=e o0 O 0eet
a++ t: 2ime 4 Potion5etected6t7 8 Potion E8D 5i&tanceSen&or6t7 8E O

5i&tanceSen&or
5i&tance5oor
Ca+<in=Speed

5i&tanceSen&or
Potion5etected

a++ t: 2ime I
JPotion5etected6t7 8 Potion and 5oorQapPea&ure6t7 R8 S+mo&tTpenM
8D
JPotorUo;er6t7 8 PotorTn and PotorUo+aritV6t7 8 Tpenin=M

N
a++ t: 2ime I

JPotion5etected6t7 8 WoPotion and 5oorQapPea&ure6t7 R8 S+mo&tX+o&edM
8D
JPotorUo;er6t7 8 PotorTn and PotorUo+aritV6t7 8 X+o&in=M

N
a++ t: 2ime 4

JPotion5etected6t7 8 Potion and 5oorQapPea&ure6t7 8 S+mo&tTpenM
8D PotorUo;er6t7 8 PotorT00

a++ t: 2ime 4
JPotion5etected6t7 8 WoPotion and 5oorQapPea&ure6t7 8 S+mo&tX+o&edM

8D PotorUo;er6t7 8 PotorT00

Potion5etected

SetUo+aritVTpen
SetUo+aritVX+o&e

SetPotorTn
SetPotorT00

5oorQapStatu&

!!2#e app+ied 0orce on t#e door bound& #o; t#e =ap can c#an=eA a& +imited bV motor &peed
a++ t: 2imeA tB: tHne:t I

Spp+iedYorce6t7 8 Tpenin=Yorce 8D J5oorQap6tB7 8 int65oorQap6t77 L int6PotorSpeed6t77M
N

a++ t: 2imeA tB: tHne:t I
JSpp+iedYorce6t7 8 X+o&in=YorceM 8D J5oorQap6tB7 8 int65oorQap6t77 K int6PotorSpeed6t77M

N

a++ t: 2imeA tB: tHne:t I
JSpp+iedYorce6t7 8 WoYorceM 8D J5oorQap6tB7 8 5oorQap6t7M

N

a++ t: 2ime 4
5oorQapPea&ure6t7 8 S+mo&tTpen E8D 5oorQap6t7 D8Z

a++ t: 2ime 4
5oorQapPea&ure6t7 8 S+mo&tX+o&ed E8D 5oorQap6t7 8E 1

Spp+iedYorce
5oorQap

5oorQap
5oorQapStatu&

PotorUo+aritV
PotorUo;er
Spp+iedYorce

!!motor &peed i& \?] per &econdA and remain& con&tant oFer time
a++ tAtB: 2ime 4 PotorSpeed6t7 8 PotorSpeed6tB7
PotorSpeed6!r&t7 8 \

!! 2#e motorB& po;er and po+aritV determine t#e 0orce app+ied to t#e door
a++ t: 2ime 4

PotorUo;er6t7 8 PotorT00 E8D Spp+iedYorce6t7 8 WoYorce
a++ t: 2ime 4

JPotorUo;er6t7 8 PotorTn and PotorUo+aritV6t7 8 Tpenin=M E8D Spp+iedYorce6t7 8 Tpenin=Yorce
a++ t: 2ime 4

JPotorUo;er6t7 8 PotorTn and PotorUo+aritV6t7 8 X+o&in=M E8D Spp+iedYorce6t7 8 X+o&in=Yorce

Uo&ition
Sen&or

X

Potor

X

5oor

X

Potion Sen&or

X

Ueop+e

B

Xontro++er

PotorUo+aritV
PotorUo;er

5oorQap

5oorQapPea&urePotion5etected

5i&tanceSen&or

Spp+iedYorce

Figure 3-22: The argument diagram generated by applying requirement progression
to service and safety requirements for an automatic door controller.

84

3.6.3 Lessons Learnt

Simply writing down the problem in the PF framework and using a formal language

(in this case, Alloy) revealed a number of subtleties. We later worked through the

progression and checked it with the Alloy Analyzer, and discovered another set

of complexities. Only the analysis and consistency checking of an automatic tool

revealed the full depth of the problem, and provided us with a verifiable argument for

correctness. This experience is what Daniel Jackson refers to as the humbling nature

of analysis [35].

Designation Documentation

When writing down all of the designations (shown in Figure 3-18), we discovered that

there were really 2 distances that had been conflated in our original conception: the

distance from a person to the door and the distance from a person to the sensor. The

system requirement is that the door opens and closes according to the distance to the

door, however, our feedback system (the motion sensor) only reports on distance to

the sensor. There is an implicit assumption (which we made explicit) that the two

distances are the same (e.g. that the sensor is located on top of the door). Without

this explicit assumption, one could place the sensor far from the door (e.g. on the

ceiling above it) – doing so would satisfy the domain assumptions but violate the

service requirement.

Building the Problem Diagram

Building the problem diagram, showing which phenomena the requirement referenced,

revealed the fact that there were really 3 separate requirements, each with a different

set of phenomena. By separating the requirements, each one became much more

manageable, and the resulting argument was more structured.

85

Performing Requirement Progression

Our initial attempt at formalizing the requirement was not enforcible by a motor that

was not infinitely fast. We discovered this during attempted progression, when we

were unable to push the requirement across certain arcs without adding unacceptable

domain assumptions.

Initially, we allowed time for the motor to open the door while a person walked

towards it – the sensor detects them at distance 6 but isn’t required to have opened

until distance 1. However, we did not allow time for the motor to close the door as

they walked away – the sensor detects their absence when they are at distance 6,

but we required the door to be closed when distance was 6. We needed to loosen

the requirement to only have the door closed when the closest person is 11 or more

distance units away, thus providing the same margin for response.

Automatic Alloy Analysis

The initial (unchecked) controller specification was too weak. It allowed (but did not

require) that the door oscillate open and closed when nobody was nearby. This error

escaped simulation (since the correct behavior was permitted and often occurred) but

was caught by the automatic check. The incorrect version looked like this:

1 pred ControllerBC [] {
2 a l l t : Time {
3 (MotionDetected [t] = Motion and DoorGapMeasure [t] != AlmostOpen)
4 ⇒
5 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Opening)
6 }
7 a l l t : Time {
8 (MotionDetected [t] = NoMotion and DoorGapMeasure [t] ! = AlmostClosed)
9 ⇒

10 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Clos ing)
11 }
12 a l l t : Time {
13 DoorGapMeasure [t] = AlmostClosed ⇒
14 ! (MotorPower [t] = MotorOn and MotorPolar ity [t] = Clos ing)
15 }
16 a l l t : Time {
17 DoorGapMeasure [t] = AlmostOpen ⇒
18 ! (MotorPower [t] = MotorOn and MotorPolar ity [t] = Opening)
19 }
20 }

86

The corrected specification is more tightly constrained and looks like this:

1 pred ControllerBC [] {
2 a l l t : Time {
3 (MotionDetected [t] = Motion and DoorGapMeasure [t] != AlmostOpen)
4 ⇒
5 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Opening)
6 }
7 a l l t : Time {
8 (MotionDetected [t] = NoMotion and DoorGapMeasure [t] ! = AlmostClosed)
9 ⇒

10 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Clos ing)
11 }
12 a l l t : Time |
13 (MotionDetected [t] = Motion and DoorGapMeasure [t] = AlmostOpen)
14 ⇒ MotorPower [t] = MotorOff
15 a l l t : Time |
16 (MotionDetected [t] = NoMotion and DoorGapMeasure [t] = AlmostClosed)
17 ⇒ MotorPower [t] = MotorOff
18 }

The difference lies in the second two constraints, which more tightly constrain the

acceptable behaviors when the door is already in the desired position. The incorrect

version allows the door to do anything when it is in the correct position, and only

requires it to correct itself once in the wrong position. It can thus close when it is

open (and should be) as long as, in the next time step, it opens again.

The initial (unchecked) formalization of the problem contained an inconsistent

representation of motor speed. When we had to make the model pass automatic

tests, we discovered that they were nonsensical and had to be reworked.

The initial (unchecked) formalization of the motor breadcrumb had a conditional

where it needed a bi-conditional10. The weaker version permitted the system to

violate the service requirement while satisfying the domain assumptions. The intent

of the original phrasing was right, but the actual written constraint was incorrect.

The modeler had 5 years of experience with logical modeling (and Alloy in particular),

but still needed the automatic analysis to get the constraints right.

10A conditional is of the form “A holds if B hold” or “A hold only if B hold”. A bi-conditional is
the stronger statement “A hold if and only if B holds”

87

During Assumption Confirmation

Suppose that the domain expert on doors tells us that the Door Damage requirement

is not enforceable, since the door domain cannot control whether or not force is

applied to the door at the wrong time. However, no other domain involves both

of the phenomena referenced by the requirement (AppliedForce and DoorGap). As

things stand, it is impossible to generate local domain assumptions to enforce the

requirement. In terms of the problem diagram, this difficulty corresponds to the fact

that the AppliedForce phenomenon is mentioned, but not controlled, by the Door

domain.

This reveals the need for an additional shared phenomenon between the Motor

and Door domains. The phenomenon would represent feedback from the door to

the Motor, and would be controllable by the Door. This way, the Door Damage

requirement can be decomposed into two modular assumptions; that the feedback is

generated correctly (assumption about the Door) and that the feedback is reacted to

accordingly (assumption about the Motor).

Constant Phenomena

In the case where WalkingSpeed and MotorSpeed are known constants, the context

diagram shown in Figure 3-20 is an accurate description of the problem context. The

assumptions about their (constant) values appear as domain assumptions on their

controlling domains (People and Motor), as is done in the Alloy model given in

Appendix 8. However, suppose we want to replace our constant-valued assumptions

with a relative-value assumption, such as the following:

1 MotorSpeed >= WalkingSpeed

Doing this might be desirable to permit the same argument to apply to automatic

door controllers used in different contexts. However, we cannot simply add this new

assumption as a breadcrumb, since it is non-local – it references phenomena from

both the Motor and People domains and is thus not a valid breadcrumb.

When we attempt to use progression to decompose that assumption into

88

breadcrumbs, we hit a blockade; there is not an appropriate information

channel between the Motor and People domains to synchronize MotorSpeed and

WalkingSpeed. Furthermore, it is clearly the case that people and motors do not

directly share either of those phenomena between them – people walking through an

automatic door do not communicate with the motor controlling that door! Thus we

cannot simply add another arc to the context diagram linking those domains. What

we can add to solve the problem is a calibration domain, as shown in Figure 3-23.

!osition
(ensor

+

,otor

+

Door

+

,otion (ensor

+

!eo.le

B

+ontroller

,otor!ol1rity
,otor!o3er

Door41.

Door41.,e1sure

A..lie78orce

,otionDetecte7

Dist1nce(ensor

+1li:r1tion

+

,otor(.ee7W1lkin=(.ee7

Figure 3-23: Context diagram for an automatic door with a Calibration domain.

Such a domain represents the fact that, in order to enforce the relation between

WalkingSpeed and MotorSpeed, someone has has to observe the walking speeds of

people and provide adequate speed to the motor. This is a domain that can support

our desired breadcrumb, and thus provides an avenue for progression – we would push

the requirement from People to Calibration and then on to the Motor, leaving the

breadcrumb behind on the calibration domain. Of course, adding a domain to the

problem diagram is not something that can be done merely to ease progression; it

89

must be confirmed with the system experts and is likely to require a significantly

different implementation.

3.7 Encoding Problem Diagrams in Alloy

In this section, we describe an Alloy model of problem diagrams, and define what it

means for a problem diagram to be well formed. In Section 3.8, we extend the model

to describe our method for requirement progression (adding breadcrumbs, rephrasing

goals, and pushing goals). Key parts of the model are introduced in these sections,

and the entire model (including all referenced predicates) is shown as a single unit in

the Appendix. 11

3.7.1 Sets and Relations

The key sets and relations that define a problem diagram are shown in object model

notation [75] in Figure 3-24. Each constraint mentions a set of phenomena and touches

a set of domains. Each domain involves a set of phenomena and connects to a set

of domains. There is a special machine domain and two special kinds of constraints,

specifications and requirements.

To express the anatomy of a problem diagram in Alloy, we start by defining three

sets: the set of phenomena, the set of domain, and the set of constraints. These are

the building blocks of problem diagrams.

1 sig Phenomenon , Domain , Constra int { }

Next we define set Diagram, each element of which represents a complete problem

diagram.

1 sig Diagram {
2 phenomena : set Phenomenon ,
3 domains , machines : set Domain ,

11We use Alloy to formalize problem diagrams and the effect of our transformations on them
(Sections 3.7 and 3.8) and also to express the constraints in particular examples (Sections 3.4
and 3.5). We use the same language only to reduce the number of logics that the reader must
keep track of, not to suggest a connection between the two uses. The two kinds of models are not
currently put together, and need not be written in the same language.

90

4 con s t r a i n t s , requirements , s p e c i f i c a t i o n s : set Constra int ,
5 connects : Domain → Domain ,
6 i nvo l v e s : Domain → Phenomenon ,
7 touches : Constra int → Domain ,
8 mentions : Constra int → Phenomenon
9 }

A problem diagram comprises a set of domains, a set of phenomena, and a set of

constraints. There is a special kind of domain called a machine, and two special

kinds of constraints, called requirements and specifications. The first three lines

encode these as relations. For example, if x is a Diagram, then the expression

x.domains denotes a set of Domains.

Problem diagrams structure their domains, phenomena, and constraints. Each

domain in a diagram involves a set of phenomena and connects to a set of other

domains. Each constraint in a diagram mentions a set of phenomena and touches

a set of domains. The last four lines encode these as relations. For example,

if x is a Diagram, then the expression x.mentions denotes a binary relation that

maps Constraints to Phenomena. More generally, we can get the set of phenomena

mentioned by a constraint c in a diagram x by writing c.(x.mentions) or by the

equivalent expression x.mentions[c].

3.7.2 Well Formedness

Not any collection of domains, phenomena, and constraints constitute a meaningful

description. If the predicate wellFormedDiagram holds on a diagram, then we know

that the diagram has a meaningful structure. Later, we will use this predicate to

check whether or not certain transformations preserve well formedness.

1 pred wellFormedDiagram [x : Diagram] {
2 s e l fConta ined [x]
3 one x . machines
4 c onne c t I f f Sha r e [x]
5 nonTr iv i a l [x]
6 a l l c : x . c o n s t r a i n t s | wel lFormedConstra int [c , x]
7 }

A well formed diagram satisfies five properties.

91

!"#$%&#$%$

'%$()*+,$)-%&+,$

,$.%/.#(&#$),%$(

)%01"#(

2#30,*#&#$)4+1",$#

566$

566$566$1%$$#1)(

566$

78#1,!1+),%$

566$566$

Figure 3-24: A metamodel of problem diagrams, expressed using standard object
model notation.

(1) Diagrams must be self contained. For example, the domains in a diagram cannot
connect to domains in a different diagram. Full definitions of all predicates can
be found in the Appendix.

(2) There must be exactly one machine.

(3) Every domain must be reachable from every other domain by following the
connects relation zero or more times.

(4) Trivial diagrams are forbidden, such as disconnected diagrams or domains that
contain no phenomena. Non-triviality is not technically a requirement of a
problem diagram, but we include it for the sake of not having to worry about
uninteresting corner cases.

(5) Every constraint must be well formed.

92

1 pred wel lFormedConstra int [c : Constra int , x : Diagram] {
2 c in x . c o n s t r a i n t s
3 a l l p : x . mentions [c] | some d : x . touches [c] | p in x . i nvo l v e s [d]
4 a l l d : x . touches [c] | some (x . i nvo l v e s [d] & x . mentions [c])
5 c in x . s p e c i f i c a t i o n s ⇔ x . touches [c] in x . machines
6 x . touches [c] in x . domains
7 x . mentions [c] in x . phenomena
8 }

A well formed constraint satisfies four properties.

(1) Any phenomenon mentioned by the constraint must be involved in at least one
of the domains touched by the constraint. That is, every phenomenon used in
a constraint must come from somewhere.

(2) Any domain touched by the constraint must involve at least one phenomenon
mentioned by the constraint. That is, a constraint cannot touch a domain for
no reason.

(3) A constraint is a specification if it touches only the machine.

(4) A constraint must be completely contained within the diagram. For example, it
cannot touch domains that are not in its own diagram or mention phenomena
that are not it its own diagram.

The Alloy Analyzer can automatically generate sample solutions to the above

constraints by executing a run command:

1 run wellFormedDiagram for 4

The “for 4” specifies a scope for the execution. It tells the Alloy Analyzer to only

consider solutions in which each signature has 4 or fewer elements. That is, we will

only generate solutions with up to 4 diagrams, up to 4 domains, up to 4 phenomena,

and up to 4 constraints.

3.8 Encoding Requirement Progression in Alloy

Now that we have laid the groundwork with a description of well formed problem

diagrams, we will formalize what it means to perform requirement progression on

such diagrams. We do so by extending our previous model to include descriptions of

add, rephrase, and push operations.

93

Since we will be talking about sequences of problem diagrams, we use one of Alloy’s

library modules to impose a total ordering on Diagrams. We can write first[] to

denote the first Diagram in the ordering and next[x] to denote the next Diagram

after a Diagram x.

1 open u t i l / o rde r ing [Diagram] as ord

3.8.1 Requirement Progression Invariant

In requirement progression, only constraints change; the underlying structure of the

domains and phenomena remains constant. We express this invariant as a predicate.

1 pred s t ruc tu r eEqu iva l en t [x , y : Diagram] {
2 x . domains = y . domains
3 x . machines = y . machines
4 x . phenomena = y . phenomena
5 x . connects = y . connects
6 x . i n vo l v e s = y . i nvo l v e s
7 }

Two diagrams are structurally equivalent if and only if their domains, machines,

and phenomena are the same, as well as the connections between domains and

the phenomena involved in each domain. No restriction is placed on constraints,

requirements, or specification, nor on the touches and mentions relations.

3.8.2 The Transformations

The addition of a breadcrumb to a diagram is modeled as a predicate. The only

change to the diagram is the addition of a single constraint. That constraint touches

a single domain, is well formed, but is neither a requirement nor a specification. The

domain structure remains the same, as do all other constraints.

1 pred addBreadcrumb [be fo re , a f t e r : Diagram] {
2 s t ruc tur eEqu iva l ent [be fo r e , a f t e r]
3 some bc : Constra int {
4 addConstra int [bc , be fo re , a f t e r]
5 one a f t e r . touches [bc]
6 wel lFormedConstra int [bc , a f t e r]
7 bc ! in a f t e r . requ i rements + a f t e r . s p e c i f i c a t i o n s
8 }
9 }

94

The rephrasing of a requirement is modeled as another predicate. The only change

to the diagram is the replacement of one requirement (r) by another (r’). The

new requirement must be well formed, mention at least one different phenomenon

than the only one, and touch the same phenomena. The constraints in the final

diagram (comprising the new requirement and the old non-requirement constraints)

must logically imply the old requirement.

1 pred rephraseRequirement [be fo re , a f t e r : Diagram] {
2 s t ruc tur eEqu iva l ent [be fo r e , a f t e r]
3 some r : be fo r e . requirements , r a f t e r . r equ i r ements {
4 wel lFormedConstra int [r ’ , a f t e r]
5 r ep l a c e [r , r ’ , be fo re , a f t e r]
6 onlyChanges [r , r . touches [r ’ , be fo re , a f t e r]
7 be fo r e . mentions [r] ! = a f t e r . mentions [r ’]
8 be fo r e . touches [r] = a f t e r . touches [r ’]
9 imp l i c a t i o n [a f t e r . c o n s t r a i n t s , r , a f t e r]

10 }

A third predicate defines a requirement push. The only change to the diagram is

that one requirement changes what it touches but remains well formed.

1 pred pushRequirement [be fo re , a f t e r : Diagram] {
2 s t ruc tur eEqu iva l ent [be fo r e , a f t e r]
3 onlyTouchesChanges [be fo re , a f t e r]
4 some r : be fo r e . r equ i rements & a f t e r . requ i rements {
5 be fo r e . touches [r] ! = a f t e r . touches [r]
6 be fo r e . touches − (r → univ) = a f t e r . touches − (r → univ)
7 wel lFormedConstra int [r , a f t e r]
8 }
9 }

3.8.3 Well Formedness Preservation

With formal descriptions of the transformations in hand, we can check our belief that

these transformations preserve well formedness. We write an assertion that, if any of

the three operations is performed on a well formed diagram, the resulting diagram

will also be well formed.

95

1 pred someTransformation [x , y : Diagram] {
2 addBreadcrumb [x , y] or
3 rephraseRequirement [x , y] or
4 pushRequirement [x , y] or
5 commonTransformation [x , y]
6 }
7
8 assert wel lFormednessPrese rvat ion {
9 a l l x , y : Diagram |

10 wellFormedDiagram [x] and someTransformation [x , y]
11 ⇒ wellFormedDiagram [y]
12 }
13 check wel lFormednessPrese rvat ion for 4

The check passes for a scope of 4, so we know that the transformations preserve the

well formedness invariant for all small problem diagrams.

3.9 Discussion

3.9.1 Role of the Analyst

The transformation process is systematic but not automatic. The decisions of what

breadcrumbs to add, how to rephrase the requirement, and which enabled pushes

to enact are subjective assessments by the analyst based on experience or a related

frame concern.

This approach is incremental, and justified by assertions that involve, in any step,

assumptions about a single domain and its interface. While the process involves

mostly local reasoning, the resulting guarantee is a global one – that the specification

together with all the domain assumptions together imply the requirement.

Perhaps the biggest shortcoming of requirement progression is the burden placed

on the analyst to come up with breadcrumbs that are both useful for moving forward

with the progression but also consistent with existing knowledge of the domains. The

task of deciding what responsibilities to assign to each domain is a fundamentally a

judgement call and thus not automatable. However, we envision the analyst being

aided by a catalogue of common transformation patterns to help guide her in the right

directions. That is, given the local structure of a problem diagram and a desired push,

what are the right kinds of breadcrumbs and rephrasings to perform? Such heuristics

96

are likely to take into account which domains control which phenomena and the type

of each domain (biddable, causal, lexical) – information which we currently ignore.

Such heuristics can only be properly developed over the course of many applications,

although we will allude to some potential guides as we discussion the BPTC and

Voting case studies in later chapters.

3.9.2 Source of Breadcrumbs

Central to this approach is the introduction of breadcrumb constraints representing

assumptions about the domain behaviors. However, coming up with domain

characterizations that are both useful in moving the progression forward and which

will be certified by an expert can be quite an onerous task. We have considered four

potential sources of breadcrumbs:

analyst’s intuition : The analyst introduces whatever breadcrumbs are useful to
the progression, as long as they seem reasonable. They are later checked by a
domain expert and hopefully validated. If not, the progression will have to be
reworked with a substitute assumption. For this method to be practical, the
analyst must usually generate correct assumptions, as may be the case if the
analyst is one of the system experts or if the system is simple.

explicit list : In a safety critical system, it is may be reasonable to explicitly list all
of the available assumptions for each domain. Such a list might already exist,
or it might be cost effective to generate. The analyst can then browse the list
for useful breadcrumbs. If the list is very large, this method will not be much
different from the first.

implicit encoding : Even if the explicit list of all domain assumptions is large,
there may be a compact encoding of those properties. For example, a state
machine might be an effective way to describe a domain, as opposed to explicitly
describing all of the properties of that state machine. The analyst could use the
compact encoding both as a source of inspiration and as a means of verifying
desired assumptions without consulting the actual domain expert.

informal description : Full formal encodings of each of the domains is often an
unfulfilled wish. Rather, the analyst faces an informal, although perhaps very
detailed and precise, description of the system components. These informal
descriptions might be in the form of natural language documentation or expert
interviews. They suggest to the analyst what sorts of domain assumptions are
likely to be validated by the experts, although, due to their informality, they
will still produce some false positives.

97

Any of these options can be appropriate depending on the type of component in

question. Cutting edge designs are most amenable to using analysts intuition, as they

are not nailed down and can be adapted to fit different sets of assumptions. Simple

mechanical components are likely to be amenable to explicit lists, as they have a

short but well-understood set of relevant properties. Mode-based components (such

as a car’s gearshift) are best described with implicit state machine encodings that

reflect the modal nature of the domain. Human operators are best suited to informal

descriptions, since formal statements about human behavior are deceptively certain.

Our experience has been primarily with the fourth case – informal descriptions based

on expert interviews – and that is how we will present the examples in this thesis.

3.9.3 Progression Mistakes

The power and limitations of our technique can be appreciated by considering some

mistakes an analyst might make while performing the transformations. How each

mistake manifests itself reveals both strengths of our current work and indicates

challenges for future work.

(1) A breadcrumb might be added that is insufficient to permit the desired
rephrasing. In such a case, the analyst would be unable to discharge the required
implication and the rephrasing would not be permitted.

(2) A breadcrumb might be added that represents an invalid assumption. At the
very least, stating that assumption explicitly will increase the likelihood that it
will be corrected by a domain expert.

(3) A breadcrumb might be added that is correct but which is stronger than necessary
to justify the rephrasing. There will be no ill effect on the specification, but a
stronger breadcrumb places additional burden on the domain expert attempting
to validate it.

(4) A breadcrumb might be added that is weaker than necessary, forcing the
rephrased requirement to be stronger than necessary. The resulting specification
will be stronger than it could have been, making it harder (or impossible)
to implement. The analyst would review the trail of breadcrumbs to find
opportunities for weakening the requirement by strengthening the breadcrumbs.

(5) The original requirement might be too strong to be enforced by any (realistically)
implementable specification. In such a case, the analyst will derive an

98

unreasonably (but necessarily) strong specification, and the requirement will
have to be rethought.

Points 3 and 4 get at the fundamental tradeoff between the strength of the domain

assumptions and the strength of the specification. If a domain assumption is weakened

(thus permitting more behaviors), then typically the specification will have to be

strengthened (thus permitting fewer behaviors). Conversely, weaking the specification

typically requires strengthening the domain assumptions.

3.9.4 Reacting to Rejected Breadcrumbs

If a domain assumption (including a specification that resulted from progressing a

requirement) is rejected by domain experts, there are four actions that might be

taken:

rework system : An extreme option is to drop the assumption entirely and re-
negotiate the requirement so that a different assumption is made upon the
domain in question. This option is typically unavailable as it is costly and
probably exceeds the authority of the analyst and scope of the system project.

alter assumption : The best case is that a similar assumption can be written
that will satisfy the domain expert and still provide the needed guarantee for
the argument. This might happen because the domain assumption was too
prescriptive and not sufficient general. Loosening the constraint may allow it to
play the needed role in the argument but to still be consistent with the current
implementation of the domain. This option is often too optimistic and there
really is a fundamental clash between the assumption made and the capabilities
of the domain.

shift assumption : It may be that the assumption in question is enforceable, just
not by the domain to which it connects. In that case, requirement progression
can be used to shift the assumption to another domain. In doing so a new
(weaker) breadcrumb will be added to the old domain, the old breadcrumb
will be rephrased, and the rephrased breadcrumb will be pushed onto another
(adjacent) domain.

For example, this is the case in the traffic light example given earlier in this
chapter, in Figure 3-9. The requirement states that cars will not collide –
an assumption which connects only to the Cars domain. According to our
progression rules, no more need be done since the requirement already is in
the form of a domain assumption. However, the expert on the Cars domain

99

will tell us that the cars domain cannot enforce the non-collision assumption.
In response, we shift the offending assumption over to the Light Unit domain
(using requirement progression, as shown in Figure 3-10). In doing so, we
leave behind a new breadcrumb that is much weaker and is confirmed by the
domain expert. However, now the Light Unit expert tells us that the rephrased
requirement is not enforceable by the Light Unit domain. We repeat the process,
adding a weaker breadcrumb to the Light Unit and shifting the requirement on
to the Control Unit. Finally, the Control Unit expert tells us that the Control
Unit can enforce that constraint, so we can stop.

By shifting the assumption to a different domain, we have satisfied the domain
experts but we have increased the traceability footprint of the requirement. Our
argument now shows that the correctness of the requirement depends on three
domains (Cars, Light Unit, Control Unit). If the system cannot be altered, then
this sort of sacrifice must be made.

change domain : If the domain is a designed or machine domain (in the problem
frames notation) then there is a possibility of changing the domain to match
the requirement, rather than the other way around. This can be the right
option if the requirement is a safety- or mission-critical property, and thus it
is especially important that it have a simple and concise argument (one with a
small traceability footprint). In this case, one may wish to redesign the domain
rather than expand the footprint by shifting the property elsewhere.

For example, back in our traffic light example, we might decide that we cannot
afford to have a footprint that includes all three domains, and that we are willing
to redesign the Cars domain to keep the argument simple. We might install
computer chips into the cars that prevent them from entering an intersection
at the same time. We have increased the complexity of the cars domain and
required that it be redesigned, but we have kept the requirement’s traceability
footprint contained to a single domain.

3.9.5 Progression Uniqueness

One consequence of a human-guided process is that not all humans will produce the

same argument when applying the process. Roughly speaking, deviations can happen

through the selection of different breadcrumbs or through the selection of different

global heuristics.

Adding Different Breadcrumbs

Requirement progression guarantees that the derived breadcrumbs will be sufficient to

enforce the original requirement, but it does not guarantee that they will be necessary

100

or minimal. In the course of performing progression, it is legal to add breadcrumbs

that are stronger than what is necessary to proceed. Doing so does not violate the

guarantee that the breadcrumbs are strong enough, but it can introduce undesired

implementation bias and more expensive validation.

It is important that a human be permitted to add assumptions that are stronger

than needed, as a slightly stronger assumption might be much simpler to express and

therefore easier to interpret by a domain specialist. A logically minimal constraint

may not be minimal in complexity or length, and may not form a coherent statement

to a human reader. Our assumptions are only as good as our ability to discharge

them, so it is acceptable to sacrifice minimality in order to improve clarity.

However, within the set of clear and meaningful assumptions, it is better to

pick the weakest, as that incurs less validation work and less implementation bias.

Requirement progression encourages more minimal statements, even though it permits

stronger ones. When adding a breadcrumb, the analyst is not asking “What do I know

about this domain?” but rather “What would let me push the requirement onward?”.

In general, one should assume that a human will apply as little (intellectual) effort

as possible to complete the argument. If the task is phrased as listing facts that are

true of the domain, then it is less effort to just list everything known. If the task

is phrased as making progress pushing the goal towards the machine, then it is less

effort to just list the facts needed to make one more step.

We saw this happen in the traffic light example. The first time through, we omitted

assumptions about the red lights, since we found that we only needed assumptions

about green lights in order to make progress. If one believes the assumptions

we introduced (challenged in Section 3.4.5), then the reduced assumptions only

mentioning green lights are easier to enforce, understand, and validate.

Choosing Different Targets Domains

In this chapter, we have guided progression with the heuristic of shifting the

requirement towards the machine domain. The correct execution of progressions

does not rely on that heuristic. There need not be a (unique) machine domain, and

101

one could pick any target domain to guide progression. For example, in the BPTC

logging example, we chose the TCS as the target. We could instead have chosen any

of the other domains as the target and still have performed progression.

Having a target articulates the task in the form “Make assumptions that these

domains will handle the parts of the requirement that the target domain cannot

handle”, thus helping to determine what sorts of domain assumptions are likely to be

helpful. Different choices of targets will not change what steps are legal but may affect

which ones are selected by the analyst. From a logical standpoint, given any target,

it is possible to produce the same set of breadcrumbs on the domains. However, from

a process standpoint, different targets may bias humans towards introducing different

assumptions and performing different rephrasings.

Our experience is that it is best to target the domain under design, especially

if it is a software domain. One tends to produce relatively weak breadcrumbs, and

leave much of the strength of the requirement in the goal itself. Breadcrumbs are

often equivalence claims of the form “phenomenon p carries the same information as

phenomenon q if interpreted in this manner...”. Such breadcrumbs lends themselves

to easy rephrasings – just replace references to p in the goal with references to the

indicated interpretation of q. The breadcrumbs introduced in this chapter and in our

later case studies are almost entirely equivalence statements.

Because of this tendency, the harder and more complex parts of the requirement

end up being left over in the final specification constraint (on our target domain),

rather than being spun off as breadcrumbs. This works well if the target is the

domain under design, so that we can ensure the tricky parts are enforced, while only

making weak assumptions about the external environment.

3.9.6 Automatic Analysis

It is not necessary to combine this approach with automatic analysis tools (such

as Alloy), although in practice it is extremely difficult to construct valid arguments

without tool support. The same process could be performed using informal reasoning

or a different formal logic and still be helpful for structuring the argument, making

102

domain assumptions explicit, and providing a trace of the analyst’s reasoning. The

language for representing domain properties and the method for discharging the

rephrasing implications should be chosen based on the analyst’s experience, the type

of requirement being analyzed, and the level of confidence desired.

3.9.7 Are These Examples Too Small?

One might think that requirement progression will only work on small examples such

as the ones shown in this section. Our experience is that most problems, even very

complex ones, can be represented by relatively simple problem diagrams but that

those diagrams do not quite fit existing frames and frame concerns. For example, in

our work with the BPTC, we have never needed a problem diagram with more than

a dozen domains. As we will see in Chapters 4 and 5, even very complex systems

can have small problem frame diagrams for critical cross-cutting concerns. While

these technique may well scale to more complex diagrams, our experience is that

simple diagrams are preferable and provide sufficient detail to build dependability

arguments.

3.9.8 Related Techniques

Central to our efforts to build dependability cases is the use of problem progression

to derive checkable specifications from system requirements. While progression

has proved to be the right technique in the context of the other techniques we

are composing, other techniques might better fill that gap in the context of other

component techniques. In a different context, one might use similar work that has

been done on synthesizing problem frames with assurance cases [83, 58, 57]. That

work does not integrate as well with relational code analysis tools (like Forge [23]),

and we find it to permit less intuitively phrased requirements (during elicitation and

designation). As such, it does not fill the niche we need filled in our end-to-end

argument.

103

104

Chapter 4

Case Study: BPTC Dose Delivery

4.1 The Burr Proton Therapy Center

The Burr Proton Therapy Center (BPTC) is a radiation therapy facility associated

with the Massachusetts General Hospital (MGH). In this section, we demonstrate our

techniques on a key concern of the BPTC radiation delivery stystem. Background of

the BPTC and our collaboration with it are given in Appendix 9.

105

Exposure of Humans to Life Threatening Conditions
General Exposure

Physical Danger from Moving/Mechanical Parts
swinging parts (dangling control pad) --------------------- (Low)
pinching parts (nozzle joints) ---------------------------- (Medium)
crushing force (gantry rotation) -------------------------- (High)

Uncontrolled Electrical Current ------------------------------ (High)
Patient Exposure

Radiation Overdose
major overdose (relative to absolute limit) --------------- (High)
minor overdose (relative to prescription) ----------------- (Medium)
locational overdose (wrong focus or shape) ---------------- (High)
collateral overdose (surrounding organs) ------------------ (Medium)

Patient Not Fully Treated
aware of a certain underdose ------------------------------ (Low)
aware of an uncertain underdose --------------------------- (Medium)
unaware of an underdose ----------------------------------- (High)
treatment visit cancelled --------------------------------- (Low)
many treatment visit cancellations ------------------------ (Medium)
all treatment visits cancelled ---------------------------- (High)

Non-Patient Exposure (staff, maintenance crew, neighbors)
Radiation Exposure

major one-time dose --------------------------------------- (High)
accumulation of minor doses: adult ------------------------ (Low)
accumulation of minor doses: child/fetus ------------------ (High)

Exposure of Critical Machinery to Destructive Conditions
Camera and Sensor Wearout / Accumulated Radiation --------------- (Low)
Physical Mechanisms (e.g. gantry, nozzle arm)

Stress and Wear -- (Low)
Broken or Inoperable --- (Medium)

Permanent Damage to Cyclotron ----------------------------------- (High)

Figure 4-1: High level hazards for the BPTC radiation therapy system. The
hazards are organized according to what assets they endanger and the sources of
that endangerment. Each hazard is assigned a severity rating of High, Medium, or
Low.

106

4.2 BPTC Hazard Analysis

Before we can analyze the sytem, we must examine the system’s context. We will

first perform a high level hazard analysis of the BPTC system, and then focus on one

of those hazards and apply our technique to it.

A Hazard is the exposure of an asset to a dangerous situation, although not

necessarily the realization of the dangers of that situation. Hazards are not the ways

that the particular system may fail, but rather ways that any system filling the role

might put valuable assets in danger. Figure 4-1 gives a high level hazard analysis for

the Burr Proton Therapy Center. Each hazard is assigned a severity (High, Medium,

Low) based on its worst case realistic outcome. The severity levels are interpreted as

follows:

High - loss of human life, complete failure to treat life a threatening condition,

damage to irreplaceable equipment

Medium - human harmed non-fatally, damage to expensive but replaceable

equipment, reduction in effectiveness of treatment, significant treatment delays

Low - minor reduction in effectiveness of treatment, increased but tolerable

maintenance costs, minor treatment delays

We organize the hazards into two broad categories: exposure of humans to life

threatening conditions, and exposure of critical machinery to destructive conditions.

The hazards to humans are classified into general risks to all humans, risks that

pertain only to patients, and risks that pertain only to non-patients (such as

therapists, support staff, or personnel in adjoining buildings). The severities for

some hazards are a bit tricky to assess, and are discussed below. 1

Types of Underdose

Delivering an underdose to a patient – less radiation than prescribed – is not

immediately harmful to the patient. However, the severity can range from Low to

1Our assessments are based on our discussion with BPTC personnel, but have not been certified
by them.

107

High depending on two factors: (a) how aware the therapists are that an underdose

occurred, and (b) how certain the therapists are of the intensity of the underdose. If

the patient is massively underdosed but the therapists are not aware of the problem,

then that patient’s cancer will go untreated (High severity). If the therapist is aware

that the patient was underdosed, but doesn’t know by how much, then treatment

must be interrupted, to avoid overdosing the patient by repeating a dose (Medium

severity). If the patient is underdosed and the therapists are certain of the intensity

delivered, then the remaining dose can be accurately delivered (Low severity).

!ow
Severit*

+edium
Severit*

/igh Severit*

aware of
underdose

unaware of
underdose

certain of
intensit*

uncertain of
intensit*

Figure 4-2: The severity of a treatment underdose depends on whether or not the
therapist is aware of the underdose, and, of so, whether or not the intensity of the
underdose is certain.

Severity of Interrupted Treatments

Physical machinery is threatened by the accumulation of radiation over time. In

contrast, human tissue is threatened by single high doses of radiation, but is largely

resilient to many low doses.

Suppose human tissue will regenerate from radiation damage (and a patient can be

safely treated again) after X days, and suppose that BPTC cancer patients typically

108

have Y days remaining until the cancer becomes untreatable. The increased risk to

the patient of receiving an interrupted (partial) treatment depends on the ratio of X

to Y . If X is much smaller than Y , then preventing interrupted treatments are of

Low or Medium severity. If X and Y are close in value, then interrupted treatments

are High Severity.

If a patient can be retreated after 1 week (X = 7) and the patient needs treatment

within 2 years (Y = 730), then the increased risk of an interrupted treatment to the

patient’s life is 7/730 ≈ 1% (Medium Severity). In contrast, if the patient cannot

be safely retreated for 6 weeks after an interrupted session, and the patient must be

treated within 4 months, then the increased risk to the patient’s life is 42/120 ≈ 30%

(High Severity).

Separation of Equipment and Patient Hazards

The hazards in Figure 4-1 concerning equipment damage are evaluated based on the

cost of repairing or replacing the equipment. The increased risk to the patient’s well

being of operating with damaged components is captured in separate patient hazards.

These are separated both because they have different severities and because they are

often mitigated in different ways.

For example, a broken gantry might fail to stop rotating when instructed, and end

up crushing a patient. The “Broken or Inoperable” hazard has a medium severity, as

gantries are expensive but replaceable. The “Crushing Force” hazard to patients is

high severity, as it can be fatal.

These hazards are kept separate, as the mitigation tactics are likely to be quite

different for the two concerns. Avoiding damage to the gantry might be achieved by

building in bracers so that the gantry motor is not powerful enough to damage the

rotational mechanism. Doing so will protect the gantry, but not the patient. The

patient hazard might be addressed by ensuring that the patient is not in the line of

rotation of the extended nozzle. Doing so will keep the patient out of harm’s way,

but will not stop the machinery from damaging itself by hitting some other surface.

109

4.3 Dose Delivery Argument

Our technique is best explained by application to a real problem. Consider the dose

delivery subproblem:

If the therapist instructs the proton beam to fire, and no explicit error
message is presented to the therapist, then the patient under the nozzle
of the beam will receive the prescription stored in the database for that
patient.

This is a concern about matching the identity of the patient to the prescription

in the database, and then delivering that dose to the patient. Safe error handling,

database initialization, and unsafe prescriptions are separate subproblems and will

not be addressed here. This argument is focused on the problem of coordinating the

therapist’s instructions (entered via a GUI), the database values, and the hardware

device drivers. As a result, we focus primarily on the treatment manager software at

the center of this coordination.

The dose delivery subproblem addresses a medium to high severity hazard; it is

potentially life threatening to the patient. Delivering a random dose of radiation can

be instantly fatal to a patient (high severity). Delivering one patient the prescription

for a different patient could result in minor overdoses (medium severity, since

treatment will have to be delayed). Doing so repeatedly could result in a systematic

unknown underdose (high severity, since the patient’s cancer will unknowingly remain

untreated).

4.3.1 Designations

The designations of a subproblem relate the formal terms used in the argument to

their informal counterparts in the real world and/or code base.

Domains

Patient - The person who has been positioned under the beam nozzle. This is

the person who will be receiving the bulk of the radiation generated by the

110

device, but it is not necessarily the patient who should be receiving it and is

not necessarily the only person receiving it. We assume that there is exactly

one person under the nozzle, and the wording of the other designations reflects

that assumption.

Therapist - The hospital employee who identifies the patient, confirms his or her

prescription, operates the positioning mechanisms, and initiates delivery. The

therapist spends part of the time in the treatment room with the patient and

part of the time in the adjoining treatment control room.

GUI Interface - The graphical user interface used by the therapist to select the

patient, read back the patient’s prescription, and instruct the device to deliver

the selected treatment to the patient under the nozzle. The source code for this

software is in the “hci” directory of the code hierarchy.

TM Treatment Manager - The software that receives GUI commands and

requests, and which sets the beam equipment device drivers to deliver a certain

intensity of radiation for a certain amount of time. The source code for this

software is in the “app/treatmentmgr” directory in the code hierarchy.

Messages on Network - The communication channel between the GUI and the

TM. Communication is handled by atomic messages packed by the sender,

sent via RTworks, and unpacked/interpreted by the receiver. RTworks is third

party software, and provides certain (commercial, not formal) guarantees about

message ordering and persistence. RTworks is no longer an active product,

although it was a reputable one.

DB Prescription Database - The database containing patient information.

Each patient entry includes an identifier (patient id), the patient name, and

information about the prescription. For our purposes, we use the following

relational abstraction for the database:

111

DBnamesInfo : id → string - the name and personal information for the
patient with this id

DBdoses : id → value - the dose value(s) for the patient with this id. An
abstraction of all prescription information.2

inactive ∈ names - the subset of the names mapping for those patients
who are currently active

HW Beam Equipment - The electrical and mechanical systems which generate

and deliver radiation to the patient under the nozzle. This domain ncludes

devices such as the cyclotron (which generates the proton beam) and gantry

(which rotates the nozzle into position above the patient).

Phenomena

nameInfo - Name and personal information of the patient under the nozzle. It is

assumed that any two patients can be distinguished by the personal information

included in nameInfo, such as admission date and home address.

patientDose - The sum total of radiation that is delivered to the patient during the

course of the treatment session. Dose does not include location and distribution,

which are not relevant to this subproblem.

selection - The patient selected by the therapist from the list displayed by the

GUI, with the intention of matching the patient’s name. The mechanism for

selection is not specified in this diagram. Currently, the therapist uses a mouse

and keyboard to select a patient tname from a list of active patients displayed

on a terminal.

Actually, a therapist makes several sequential selections to pull up treatment

data for a delivery. The therapists selects a patient, then a treatment, then

a component of that treatment (if it is compound). For the purposes of this

analysis, we abstract all of those selections into the act of selecting a single

2We use the following naming convention in our designations: a singular phenomenon corresponds
to a single piece of data; e.g. dose refers to a single dose. Plural phenomenon names correspond
to a mapping; e.g. doses is a mapping from each dose to some id. More lucid names are perhaps
desirable in the future, but consistent naming conventions are essential.

112

treatment entry for the patient under the nozzle. There is really another

subproblem here about selecting the wrong treatment for the right patient.

This subproblem considers the possibility of getting the wrong patient.

read id msg - The execution of code that receives a message, interprets it as

containing information about the selected patient, extracts a patient id from

the message, and stores that id.

send id msg - The execution of code that encodes information about the id of the

selected patient into a message and sends that message.

send list msg - The execution of code that encodes the mapping from each active

patient’s nameInfo to that patient’s id, and then sends over the network.

read list msg - The execution of code that receives a message, interprets it as

containing a mapping from patient nameInfo to patient id’s, and stores that

mapping.

query doses - A query formulated, submitted, and answered by the database. A

query has two parts: the request and the response. In this case, the query is

given a patient id and returns the dose prescribed for that patient.

query list - A query as before, but in this case it is a query requesting the set of

active patients, and their name/id mapping. This list only includes the patients

who have an active status flag in the database.

settings - The execution of the code that sets device drivers for the beam equipment.

Among other things, those settings determine the intensity and duration of the

delivery.

interpretation - A function that maps machine settings to dose delivered by a

machine with those settings. This is really just a unit conversion. The HW

embodies this interpretation, and the TM explicitly encodes it in a translation

routine.

113

DBdoses - A mapping from id numbers to prescription dose information.

We abstract all prescription information stored in the database into this

phenomenon. This map is stored in the database, and is intended to describe

the dose that the patient’s physician wants to have delivered to the patient.

DBnamesInfo - A mapping from id numbers to names and personal information

of patients as recorded in the database. We abstract all patient identification

information (e.g. name, address, admission date) into this phenomenon. Names

are not necessarily unique, but personal information is assumed to be so.

Requirement

The requirement given in Figure 4-3 is an interpretation of the informal requirement

that patients receive their prescribed doses, within a certain safe margin of error.

114

!"
!reatment
"anager

+B
prescription
database

456
interface!herapist

Patient
:;

Beam
<=uipment

"essages on
?etwork

dose de&ivery

(names6nfo.name6nfo).doses
= dose

!he patient receives the
dose that is associated with
the patient's name in the
prescription database.

names6nfo
doses

selection

=uerI+osesRe=uest
=uerI+osesResult

=uerIKistResult

settings
interpretationdose

read6+msg
sendK6S!msg

send6+msg
readK6S!msg

name6nfo

dose

names6nfo
doses
inactive
=uerI+osesRe=uest
=uerI+osesResult
=uerIKistResult

name6nfo

name6nfo
dose
margin

selection
name6nfo

selection
map
send6+msg
readK6S!msg

send6+msg
readK6S!msg
read6+msg
sendK6S!msg

read6+msg
sendK6S!msg
=uerI+osesRe=uest
=uerI+osesResult
=uerIKistResult
interpretation
settings

dose
settings
interpretation

Figure 4-3: Problem Frames problem diagram for the patient identity subproblem.

115

!"
!reatment
"anager

+B
prescription
database

456
interface!herapist

Patient
:;

Beam
<=uipment

"essages on
?etwork

do#e%de&'(er*

(names.name).doses = dose

!he patient receives the
dose that is associated with
the patient's name in the
prescription database.

names
doses

selection

=uerI+osesRe=uest
=uerI+osesResult

=uerIKistResult

settings
interpretationdose

read6+msg
sendK6S!msg

send6+msg
readK6S!msg

name

dose

name6nfo

name6nfo

dose

active
names id

M

N O

P

Q

R

S

T

B

C

<

V4

+

Figure 4-4: Flow diagram for the patient identity subproblem.

116

!"
!$%a'(%)'
"a)a*%$

+,
-$%./$01'0o)
+a'a3a.%

G56
6)'%$7a/%!8%$a10.'

-a'0%)'
9:

,%a(
;<=01(%)'

"%..a*%. o)
>%'?o$@

.%l%/'0o)

<=%$B+o.%.C%<=%.'
<=%$B+o.%.C%.=l'

<=%$BD0.'C%.=l'

.%''0)*.
0)'%1%'a'0o)Eo.%

$%aE6+(.*
.%)ED6F!(.*

.%)E6+(.*
$%aED6F!(.*

)a(%6)7o

(") patient is
correctly selected

)a(%6)7o G .%l%/'0o)

(2b) id is interpreted and sent

(a1H.%l%/'0o) G .%)E6+(.*

(4) message are transmitted
authentically

.%)ED6F!(.* G $%aED6F!(.*

.%)E6+(.* G $%aE6+(.*

(9a) queries re!ect db

<=%$BD0.'C%.=l' G
)a(%.6)7o I 0)a/'0J%

<=%$B+o.%.C%.=l' G
<=%$B+o.%.C%<=%.'HEo.%.

(;b) id from message
is sent to db

<=%$B+o.%.C%<=%.' G
$%aE6+(.*

(;c) queried dose is used
to set equipment

.%''0)*.H0)'%1%'a'0o) G
<=%$B+o.%.C%.=l'

(=) dose delivery

K)a(%.6)7oH)a(%6)7oLHEo.%.
G Eo.%

(2a) interpretation re!ects msg

(a1 G $%aED6F!(.*

(;a) list info is sent

<=%$BD0.'C%.=l' G
.%)ED6F!(.*

(?) HW operation

.%''0)*.H0)'%1%'a'0o) G Eo.%

all)M >=(3%$ N
 o)%)H0)'%1%'a'0o)

(9b) there is only one id for
each name

all)M F'$0)* N o)%)a(%.6)7oH)

)a(%.6)7o
Eo.%.

)a(%6)7o
Eo.%

Figure 4-5: Argument diagram for the patient identity subproblem.

117

sig String {}
sig Number { interpretation: set Number }
sig ID {

map, namesInfo, inactive, queryListResult, sendLISTmsg, readLISTmsg: set String,
doses: set Number

}{inactive in namesInfo}

one sig nameInfo, selection in String {}
one sig settings, dose, queryDosesResult in Number {}
one sig sendIDmsg, readIDmsg, queryDosesRequest in ID {}

pred Requirement [] { (namesInfo.nameInfo).doses = dose }
pred allBreadcrumbs [] {

Therapist[] and GUI[] and Network[] and TM[] and DB[] and HW[] }

pred Therapist [] {
nameInfo = selection }

pred GUI[] {
map = readLISTmsg
map.selection = sendIDmsg }

pred Network[] {
sendLISTmsg = readLISTmsg
sendIDmsg = readIDmsg }

pred TM[] {
queryDosesRequest = readIDmsg
queryListResult = sendLISTmsg
settings.interpretation = queryDosesResult }

pred DB[] {
queryListResult = namesInfo - inactive
queryDosesResult = queryDosesRequest.doses
all n: String | one namesInfo.n }

pred HW[] {
settings.interpretation = dose
all n: Number | one n.interpretation }

assert end2end {allBreadcrumbs[] => Requirement[]}
check end2end for 6

Figure 4-6: An Alloy model verifying that the argument diagram is consistent; if the
breadcrumbs hold, then the requirement will hold.

118

4.3.2 Problem Diagram

Figure 4-3 shows the problem diagram for the dose delivery subproblem. It shows

the cross-cutting slice of the BPTC system relevant to the dose delivery concern, lists

the relevant phenomena for each domain involved, and indicates how the domains

interact via shared phenomena.

The Dose Delivery concern relates the names and doses stored in the database

to the name of the Patient under the beam and the dose delivered to that Patient.

Using the Alloy Language formal notation, it specifies that the patient receives the

dose associated with that patient in the prescription database.

4.3.3 Flow Diagram

Figure 4-4 indicates the pattern of information flow through the system with an

annotated version of the problem diagram. The diagram’s semantics are informal,

but it guides the construction of the dependability argument in later stages.

Identifying information about the Patient (nameInfo) flows from the Patient to

the GUI interface via the Therapist. The mapping between names and id’s for active

patients is passes from the database to the GUI via the Treatment Manager and

messaging Network. Those two pieces of information are reconciled to select the

Patient’s id, which is send back to the database via the messaging Network and

Treatment Manager. The database maps the id into a dose, which is transferred to

the patient via the Treatment Manager and Beam Equipment.

4.3.4 Argument Diagram

Figure 4-5 shows the argument diagram derived from the application of requirement

progression to the problem diagram. The cross cutting dose delivery property has

been decomposed into a collection of breadcrumb assumptions, each of which only

references phenomena from a single domain. These domain assumptions can be

handed off to domain experts and independently validated. In our work, we focus on

the software-related assumptions made about the Treatment Manager.

119

4.3.5 Argument Validation

Figure 4-6 gives an Alloy model used to validate the decomposition depicted in

the argument diagram (Figure 4-5). It verifies that, within the given bounds, the

breadcrumb domain assumptions are sufficiently strong to enforce the dose delivery

requirement.

4.3.6 Breadcrumb Interpretation

We then examine each breadcrumb assumption in turn; we interpet each using the

designations relevant to its domain, thus allowing domain-specific tools and experts

to be applied to validating them. For example, breadcrumb 4b is interpreted as the

following post-condition for the code:

pred patient_id_storage [] {

data.data__msg.mixed_array_index[0] == SCR_A1_PATIENT_SELECTION

data.data__msg.mixed_array_index[1] == W_PATIENT_SELECT_BTN

current_id_patient

== arg.scrCrtPatientData.dbs_patient_type__id_patient

}

This property is checked against the code base using the Forge framework [23],

along with some accompanying liveness checks to mitigate the chance of

overconstraint. In order to perform these analyses, the C sourcecode must be

translated into the Forge Intermediate Language. This translation is currently

performed manually, but much of it could be automated, by programs such as

Tochiba’s CForge and Dennis’s JForge [23].

4.3.7 Breadcrumb Assumptions & Hazards

We now examine each breadcrumb assumption in the argument diagram (the result

of requirement progression). We interpet each using the designations relevant to its

domain, thus allowing domain-specific tools and experts to be applied to validating

120

them. As show in Figure 4.3.7, we are essentially reversing our earlier designations.

The designations carried us from the world into the formalism, but we now use them

to carry us back.

Problem
Context

Problem
-rame

/escription

/ecomposed
Breadcrumbs

/erived
Breadcrumbs

designations

interpretation

re9uirement
progression

world formalism

Figure 4-7: Designations carry us from the world into the formalism, where techniques
such as requirement progression can manipulate the problem. The result of such
manipulation is carried back into the world via interpretation.

In doing so, we decompose the breadcrumbs into component claims and classify

those claims in terms of how they should be discharged.

Assumption Types

Each hazard is either entrusted to a domain expert or translated (using the

designations/abstractions) into terms that can be check directly against the code.

Code concerns are either correctness (the things that should happen will happen

correctly) or separability (things that shouldn’t happen won’t happen).

(u) user interface – claims that humans understand and correctly interact with the
mechanized portions of the system. We analyze such properties through an
informal but systematic examination of the human domains, in an attempt to
classify the failure modes.

(c) software correctness – claims that the portions of code that should provide
a given function do provide that function. We analyze software correctness
properties using the Forge program analysis.

121

(s) software separability – Claims that other portions of code do not interfere with
that function. We analyze separability claims with memory safety and data
flow analyses. 3

(x) non-software – All other claims. We delegate the validation of non-software
properties to domain experts. Because the claims have been mapped into the
language of their domains, domain experts should be able to independently
validate or decline them.

Domain Types

It is in this stage of the analysis that classification of Problem Frame domains

into biddable (human), lexical (data), and causal (machine) are relevant, as those

categories suggest how to substantiate each type of assumption. For example, many

domains serve as data transformers; data passes through them and changes form,

but does not change the piece of information it is representing. Data transforming

domains often contain the following pair of assumptions:

(c) The data is correctly transformed between when it is received and when it is
transmitted.

transmitted data =
desired transformation (received data)

(s) The temporary, internal representations of the data are not corrupted during
between reception and transmission. For example, they might be write-once.

data stored = data recalled

In a causal or lexical domain, the second assumption means that the temporary

intermediate variables are not overwritten and are passed along in a variable.

In a biddable (human) domain, this means that the human does not forget or

garble information and correctly/honestly/unambiguously writes down what was

remembered.
3Of course, in a memory-unsafe language like C, this is not strictly possible without a much more

heavyweight analysis than we are willing to apply. However, we can still perform lightweight scans
of the code, to at least identify which poritions of the code are accessing certain globals. For a more
thorough separability analysis, one would either need to use a safer language, or apply a much more
heavyweight analysis, such as Astree [10].

122

The Breadcrumbs

Therapist: (1) “patient is correctly selected”

nameInfo = selection

(x) There is one patient on the table.

The machinery is configured to treat one patient at a time, as patients have

unique treatment plans. We do not consider multiple, simultaneous treatments.

example: We do not allow a parent to hold a child during treatment. We do not

allow a pregnant woman to be treated, as the mother and fetus would be two

patients under the nozzle.

(c) There is one selection made in the GUI. It is not possible for a therapist to select

more or less than exactly one entry and still proceed to treatment.

note: Some prescriptions are compound, and are delivered over the course of several

visits to the center or with several firings of the beam. In such a case, we

consider the delivery to be restarted from the beginning, including selection of

the treatment. Since we are considering a single firing of the beam, we require

that a single entry be selected for that firing.

example: If the therapist does not select an entry from the list, then the GUI must

not permit the therapist to move on to the next stage of treatment. If the

therapist selects a second entry, the GUI must either de-select the old entry, or

deny the new selection. In either case, the therapist must be made aware that

the selection did (or did not) actually change.

(u) The selection made in the GUI matches the patient.

The identity of the patient (nameInfo) is the identity selected from the GUI.

The therapist selects exactly one patient from the list, and that patient is the

one under the nozzle.

123

example: The therapist must not identify the patient as “Fred Smith” but select

“Fred Smyth” in the GUI. One might address this concern by holding the patient

tag up next to the screen, rather than remembering it as one walks across the

room from the patient (and tag) to the GUI screen. Such a routine would require

that the therapist always correctly returns the tag to the patient, and that there

are no other tags lying around that could be confused with the patient tag.

(x) The patient matches at least one entry.

example: As long as a patient is under treatment, she must have an entry in the

database indicating her prescription. If a patient does not have an entry, she

should not be in the treatment room.

(u) The patient matches at most one entry.

If there are two similar entries, then (1) they must be for different patients, (2)

there must be sufficient additional information to disambiguate the entries, (3) it

must be apparent that disambiguation is necessary, and (4) it must be apparent

when disambiguation has been sufficiently established. It is technically ok for a

patient to have several identical entries, but we will establish the stronger claim

that there is only one. Multiple entries would increase the likelihood of errors

being introduced through dual maintenance.

example 1: If a patient is evaluated by two physicians, he must still only have one

prescription in the database, and thus only one entry in the GUI list. If the

patient’s prescription is updated, the old one is overwritten, deleted, or made

inactive. As an invariant on the database, each patient has at most one active

entry. To avoid maintenance risks, it is best if the patient has at most one entry

total, be it active or inactive.

example 2: If there are two “Fred Smith” patients, we assume that they have

distinguishing personal information, and that the therapist is aware of that

information.

124

The therapist might not be permitted to select one without explicitly turning

the other down. If one is visible on the screen, the other must not be hidden

off the screen by a scrollable list or buried in a long unsorted list. If one of the

entries is selected, perhaps all similar entries should be brought to the attention

of the therapist for comparison.

example 3: Consider the case where two names are identical in the primary list

(that just displays names), so additional information is manually pulled up on

each. In the current GUI, this is in an overlaid window showing home addresses

and admission dates. When the extra info window is closed, and the therapist

returns to the primary list after determining the desired patient, he/she must

not accidentally select the other one (since on the primarily list, they are still

identical). For example, the therapist might be allowed to select a patient from

that patient’s expanded info window. Or when the therapist returns from the

expanded info window for a patient, that patient’s entry in the primary (name

only) list is highlighted.

example 4: Two patients with the same name and the same admission data are

active, and one is currently being treated. If the other is first on the list, the

therapist will pull up its disambiguating information (admission date) and see

that it matches, and select. If the therapist does not also look at the other

patient’s data, it will remain hidden that they have the same admission date

and thus require further disambiguation. In this case, being able to select a

patient from that patient’s expanded info window would exacerbate the issue.

Better to identify potential ambiguities and force the therapist to explicitly

eliminate them.

(2a) GUI: “interpretation reflects msg”

map = readLISTmsg

(c) The map from patient nameInfo’s to patient id’s is received in a message from

the database and is correctly stored and accessed

125

example: The locally stored map might use a data structure that resolves

ambiguities differently than the database. For example, if there are duplicate

entries in the database, the local map might choose one of them arbitrarily,

rather than reflecting the ambiguity.

(s) The map is not corrupted while stored.

Ideally, the map should never be altered unless completely replaced by a new

list from a more recent message.

violation: In the current system, a therapist can override the data held in the

treatment manager, for example to override an angle based on image feedback.

This violates our assumptions about synchronization with the database dose

information. The argument presented here holds as long as the therapist does

not use the override feature.

(2b) GUI: “id is interpreted and sent”

map.selection = SendIDmsg

(c) The selected entry is stored into some temporary representation, which must be

the same variable used to retrieve the patient id from the name-id mapping.

(s) The temporary representation of the selected entry is not corrupted between when

it is written and when it is read. The simplest case is when it is write-once.

(c) The selected entry is the entry used to lookup the patient id in th name-id

mapping. The mapping has exactly one id for that entry, and that is the id

that is returned.

(s) The temporary representation of the id extracted from the map is not corrupted.

Preferably, it is write-once.

(c) The id is packed into a msg accurately.

(s) The message is not modified between when it is packed and when it is sent. It

might be write-once, or it might only be modified after transmission.

126

(3) Network: “message are transmitted authentically”

sendLISTmsg = readLISTmsg

sendIDmsg = readIDmsg

(x/s) Messages are transmitted without corruption; their contents when they leave

are the same as their contents when they arrive. At this level of description, we

abstract away any mechanism for detecting corruption and resending messages,

and just consider the entire message transmission (and re-transmission) process

to be a single event.

(c) Messages eventually get to their destinations. This might subsume a re-send

process to account for dropped messages, and refers to the eventual effect of a

send command.

sample problem All patient selection messages from the GUI to the TM are

dropped, preventing treatment from progressing.

(s) Messages do not get sent to other destinations.

sample problem Patient data from the TM is sent to each treatment room, and

two concurrent patients in two treatment rooms receive the prescription for one

of them.

(s) Messages are not corrupted in transit.

sample problem A patient is identified correctly in the GUI, but the message to

the TM is corrupted and the wrong patient is selected.

aside: One might want to make some claim that messages get to their destinations

within a certain acceptable delay. However, for the patient id subproblem,

there is no timing requirement, and the domain assumption we derived for the

messaging domain is simply that messages eventually reach their destinations.

contradiction: In validating this assumption, we learned that this is not how the

BPTC network operates. Here, we modeled it as a send-to-destination system.

127

Actually, it is a publish-subscribe system, using shared variables stored on

the network and duplicated in the subsystems. There are additional relevant

assumptions that we must introduce when viewing the full complexity of the

messaging system, which are abstracted away in the representation here. For

example, can several subsystems publish to the same shared variable? How

often do readers of the shared variables update their local values?

(4a) TM: “list info is sent”

queryListResult = sendLISTmsg

(c) The result of the querry is stored into some internal representation.

(s) The internal representation is not overwritten between its creation and its use

(c) The internal representation is encoded into a message and sent onto the network.

TM: (4b) “id from message is sent to db”

queryDosesRequest = readIDmsg

elaboration: In order to describe the connection between the id read from the

message and the id sent in a query to the database, we are forced to expose

the fact that there is redundancy in the storage of the id value. It is stored

in 3 places. One is only local to the message unpacking, and does not escape.

Another escapes (it is a write to a pointer) but does not appear to ever be read.

The third escapes and is used to form the database query. The dual maintenance

of the two escaping representations does not appear to be necessary, but does

complicate the correctness argument. It does not appear to represent a fault

in the current system, but is certainly a vulnerability: if the code is later

modified, it would be easy to read/write one but not both of the escaped id

representations, creating a potential for stale or inconsistent data.

(c) The message is constructed correctly from intermediate representation(s) of id.

128

This has 2 parts: (a) that the message is stripped and stored in variables, and

(b) that the variables are read and used to build a message.

We can check properties of that code using the Forge Analyzer.

(s) The message, and the data being put into it, are both write-once; all

representations of id are consistent whenever read.

(4c) TM: “queried dose is used to set equipment”

settings.interpretation = queryDosesResult

(c) The dose value is translated and used correctly to set the machine.

(s) the temporary rep of dose is not overwritten

(s) The equipment settings aren’t overridden.

(5a) DB: “queries reflects db”

queryListResult = namesInfo - inactive

queryDosesResult = queryDosesRequest.doses

(s/x) The database itself is not corrupted, and remains constant throughout the

treatment.

example: A query contains an sql injection, either intentional or accidental, might

overwrite patient prescription data. Garbage values for a dose would almost

certainly result in a massive overdose, as most (32 bit) integers correspond to

dangerous levels of radiation (a high severity hazard). Even an error value that

is safe on an absolute scale is still likely to cause a systematic underdose (High

severity).

(x) The result returned by a query is the answer to that query, according to the

information stored in the database at the time.

(x) The subset of the map sent to the GUI correctly reflects the subset of patients

who are currently active in the actual database.

129

example: If there is one patient with the name “Fred Smith”, the patient is active,

but the active flag is mistakenly off, then things are not so bad. The patient will

not show up on the list, and the therapist will realize that there is a problem.

The patient’s treatment will be delayed, but not misdelivered (a low severity

hazard).

example: Similarly, if there is one patient with the name “Fred Smith”, the patient

is no longer active, but the active flag is mistakenly on, the patient will just be

a dead entry in the list. The risk that the therapist will accidentally select this

name instead of the correct one is no greater than the risk that the therapist

will accidentally select another active patient. The only added risk is that the

list will become very long and diluted.

example: However, consider the case where there are two active patients with the

same name (Fred Smith) but different personal information (addresses and

admission dates). If one of them is correctly flagged as active but the other

is incorrectly flagged as inactive, then the therapist will almost certainly select

the wrong one. On the primary list (with just names), there will be just one Fred

Smith, so the therapist will not see a need to consult/confirm the elaborated

entry (with addresses). Both patients will receive the dose prescribed to the

Fred Smith with the active flag on. Worse, they might each receive half of

the treatment segments, causing both to receive systematic underdoses (a high

severity hazard).

(5b) DB: “there is only one id for each name”

all n: String | one namesInfo.n

(c) As an invariant on the database, every name in the database maps to exactly

one id under the names mapping.

(6) HW Beam Equipment: “HW operation”

settings.interpretation = dose

all n: Number | one n.interpretation

130

(x) If the machine changes settings into doses according to the interpretation

mapping, then the settings made by the TM will produce the desired dose

for the patient.

violation: This assumption is not quite correct, as there is a margin of error. The

current model does not represent error margins in the machine, and permissible

error margins in the dose delivery, as doing so does not affect patient identity.

Really, interpretation maps a number to a range of numbers, and the claim is

that any of the range of numbers mapped from the machine settings would be

within the error margin of the patient’s dose.

4.3.8 Arc Assumptions & Hazards

Every problem diagram contains implicit assumptions that phenomena arcs are

atomic (non-interruptible) and accurate (non-corruptible). When we say that two

domains share a phenomenon, we are assuming that they really are viewing the same

phenomenon and that their two different views of that phenomenon are consistent.

Here, we make such assumptions explicit.

A: Therapist → Patient

Therapist.nameInfo = Patient.nameInfo

The nameInfo that the therapist uses to make GUI selections is the same nameInfo

that the patient has.

(u/x) That patient has one nameInfo, the therapist uses exactly one nameInfo, and

the two match. The nameInfo the patient and therapist use must match the

nameInfo the patient has been using for identification in the hospital. The

nameInfo must pass from the patient domain to the therapist domain without

corruption.

sample problem: The therapist might ask the patient for his or her name to double

check, but should not rely on the patient’s answer. The patient might not be

131

mentally acute enough to answer such a question accurately – many alzheimer’s

patients will answer “yes” to any question, so asking “Is your name Fred Smith”

is not adequate.

sample problem: A patient might have multiple names, and give you a different

one than he or she gave to the hospital upon admission. Fred George Smith

might normal go by George, and tells you that his name is George Smith. If the

hospital uses the name “Fred Smith” to identify him, then the wrong treatment

may be delivered.

sample procedure: The therapist might scan a bar code on the patient’s ID tag,

and check the photo on the tag matches the patient’s appearance. We assume

that a photo is sufficient to match an ID with a patient, and that the barcode

system and database are accurate. We assume that the patient’s appearance

has not changed since the photo was taken – e.g. the patient might have gained

or lost weight or hair as a result of hospitalization.

B: Therapist → GUI

Therapist.selection = GUI.selection

(u/c) The therapist selects exactly one entry from the GUI. The GUI records exactly

one patient id. The label on the item selected by the therapist is the patient id

that is recorded.

sample problem: The therapist might select an entry labeled “Fred Smith”, but

the GUI erroneously stores “Sally Queue” as the selected patient.

sample problem: The therapist might change his or her selection. In such a case

the prior selection must be de-selected, and the GUI’s record must reflect the

new selection.

sample problem: If the therapist has not yet made a selection, then the GUI should

be unable to proceed until a selection is made. The GUI must not have a default

recorded value that it could interpret as a patient id.

132

C,D: GUI → Network, TM → Network

(s) Messages sent to the network end up on the network with the same content.

Messages taken off the network were on the network and have the same content.

implication: In particular, this assumption entails the following requirements:

messages are not created on the network except when a message is sent, and

messages are not destroyed on the network except when a message is received.

Two distinct messages have distinct labels. Messages are unambiguously

identified; when a message is received, the receiver knows what type of message

it is, who sent it, and for what purpose. Two messages are never confused for

each other.

sample problem: The GUI sends a message to the TM indicating the current

patient. This message is delayed on the network. The GUI resends the message,

and the TM receives it this time, selecting the correct patient. The TM is now

waiting to hear from the GUI when it should begin firing the beam. The original

selection message now arrives, and the TM interprets it to be a “fire now”

command, and begins treatment while the therapist is still in the treatment

room.

sample problem: The GUI sends a message to the tM indicating the current

patient. The message is delayed on the network, and is resent by the GUI.

Later, another patient is brought in. The previous patient-selection message

arrives, and the TM loads the wrong patient data.

aside: This assumption does not include corruption that occurs during network

transmission, which is a domain assumption about the network message domain.

These assumptions are concerned with message creation and reception.

(c) When unpacked into a datastructure, the data has the same format as when

packed into a message. That is, the unpacked message is correctly interpreted.

sample problem: If the id packed into a message is stored in a different kind of

133

struct than the one it is unpacked into, then erroneous values could be read for

the id. Because the messages are not type safe (they are treated as bits, not as

strings and integers), there is no way to a priori know that a garbage value is

not a valid id.

This concern can be checked at any given point by examining the data structures

used on both ends, but such checks are not very robust across maintenance.

E: TM → DB

TM.queryDoseRequest = DB.queryDoseRequest

TM.queryListRequest = DB.queryListRequest

(c) Queries constructed in the treatment manager C code are the same as the queries

interpreted by the database.

sample problem: The compilation step that translates queries written in C into the

database query language (SQL?) might introduce errors.

(x) The queries made by the treatment manager are authentically transmitted to the

database.

sample problem: The queries might be constructed using one set of semantics but

interpreteed by the database using different semantics.

F: TM → HW

TM.settings = HW.settings

TM.interpretation - HW.interpretation

(x/s) The hardware device driver settings made by the software are conferred to the

hardware without corruption.

(c) The interpretation implicitly embodied by the hardware is the reverse of the

interpretation explicitly applied by the treatment manager. That is, the

treatment manager has been calibrated correctly to reflect the current behavior

of the hardware.

134

G: HW → Patient

HW.dose = Patient.dose

(x) The HW beam equipment completely determines the dose of radiation that the

patient receives. There are no barriers or other sources of radiation that could

make the dose that ends up in the patient different from what would be induced

by the radiation from the beam equipment.

sample problems: Ambient radiation in the room raises the total intensity of the

dose received, so the patient receives an overdose. Lead in the patient’s clothing

dissipates the beam, resulting in an underdose.

contradiction: Actually, this assumption will never hold. The real assumption is

that the radiation received is within a known small margin of error of the

radiation expected to be received. A further assumption is then needed that

the sum of all possible accumulated errors will not produce a treatment that is

too much above or below the prescribed treatment.

4.4 Translation to Forge

To demonstrate our end-to-end synthesis, we use the Forge framework [23] to check

our software properties against the BPTC code base. For this analysis, we only

consider correctness properties, not separability properties. Our translation of the

sourcecode into Forge is done manually, but much of it could be automated. The

purposes of this section is not to propose this technique as the ideal method of code

analysis, but rather to demonstrate how a code analysis technique can be smoothly

intergrated into the larger dependability argument – the relational claims generated

by requirement progression can be fed directly into the Forge analysis engine.

135

4.4.1 Sample Procedure Translation

In the Patient Identity subproblem, the relevant software fragments were manually

abstracted and translated into Forge via a Java API. The translation process is fairly

systematic, and part or all of it could be automated. In this section, we examine

a single procedure from the Patient Identity case study, and follow it through the

translation process.

version lines non-trivial lines

original C code 62 30

reformatted C code 27 26

abstracted C code 17 14

Java API calls 52 41

Forge code 13 12

The non-trivial lines column ignores blank lines, comment lines, and lines that

contain just a curly brace. It gives a rough sense of the human cost of performing

the manual translation, and of the efficiency of the encoding.

136

/**
* tpcrInSelectPatient
* PSEUDO-CODE :
*
* Extracts groups of information in array.
* Checks value of property field.
* Checks value of widgetGroupId field.
* Checks value of widgetId field.
* Extracts patient id and copies to structure scrCrtPatientData.
* Calls function eventsTPCRSelectPatient.
*
*/
BOOLEAN tpcrInSelectPatient(

/* IN */ T_INT4 screenId,
/* IN */ T_INT4 sizeofList,
/* IN */ DATA_MSG_GROUP_ARRAY msgList,
/* IN_OUT */ DBASCR_SCR_DATA_PTR_TYPE pscrData)

{
T_INT4 num;

/* Process list of message */
for(num = 0; num < sizeofList; num++) {

if(msgList[num].property != PDEF_CONTENTS_PROPERTY) {
SW_ERROR_MSG(ERR_APP_WRONG_PROPERTY_TYPE);
return FALSE;

}

switch(msgList[num].widgetGroupId) {

case WG_PATIENT:
switch(msgList[num].widgetId) {

case W_PATIENT_ID:
if(strlen(msgList[num].value) > DBA_PATIENT_ID_LEN) {

SW_ERROR_MSG(ERR_APP_WRONG_STR_VALUE);
return FALSE;

}
strcpy(pscrData -> scrCrtPatientData.id_patient, msgList[num].value);
break;

default: /* Error happens */
SW_ERROR_MSG(ERR_APP_WRONG_WIDGET_ID);
return FALSE;

} /* widgetId */
break;

default: /* Error happens */
SW_ERROR_MSG(ERR_APP_WRONG_WIDGET_GROUP_ID);
return FALSE;

} /* widgetGroupId */
}

/* call events function correspond to ‘‘Select Patient’’ button */
if(!eventsTPCRSelectPatient(screenId, pscrData)) { /* Error happens */

TRACE_ERROR_MSG();
return FALSE;

}

return TRUE;
}

Figure 4-8: Original C source code for the Patient Selection routine, exactly as it
apears in the BPTC code base. 62 lines, 30 of which are non-trivial.

137

4.4.2 Original C Code

Figure 4-8 shows the tpcrInSelectPatient procedure, shown verbatim from the

BPTC code base. This code displays a number of conventions that are persistent

throughout the BPTC code base.

Comments

The style of comment provided for the procedure is typical for the code base – it gives

an overview of what the procedure does, but does not describe why it does it (and

thus is of limited value for the purposes of traceability).

Exception Mechanism

Almost every called procedure returns a boolean, indicating whether or not it

encountered an error If a procedure has information to return (that would normally

be in a return value), then a pointer is passed in which is mutated by the procedure.

In some cases, one of the parameters is mutated to contain information about why

the error occurred, which is only read if false is returned.

In most cases, if a called procedure returns an error, then the calling procedure

returns an error. At the top level, the system handles the error and (typically) halts

the system with an error message. In some cases, the caller ignores the error and tries

something different. These decisions do not appear to be documented in any single

repository, or justified in the code comments.

This technique is a common convention for getting the effect of exception handling

in C. It is not in itself a good or bad coding style. However, consistent and clear use

of this (or any other) style is important if the code is to be trusted and accurately

updated and maintained.

Parameter Annotations

Each parameter to a function is annotated (with a comment), with the following

interpretation:

138

IN This parameter contains information passed in by the caller. It will not be read

after this procedure returns, and any mutations to it are irrelevant.

OUT This parameter contains no information initially, and is a pointer reference. It

will possibly be read after this procedure returns, so mutations to it are relevant.

IN OUT This parameter contains information passed in by the caller. It will possibly

be read after this procedure returns, so any mutations to it are relevant.

There is no check to verify if these comments are correct.

139

BOOLEAN tpcrInSelectPatient(T_INT4 screenId, T_INT4 sizeofList,
DATA_MSG_GROUP_ARRAY msgList,
DBASCR_SCR_DATA_PTR_TYPE pscrData) {

T_INT4 num;
for(num = 0; num < sizeofList; num++) {

if(msgList[num].property != PDEF_CONTENTS_PROPERTY) {
SW_ERROR_MSG(ERR_APP_WRONG_PROPERTY_TYPE);
return FALSE; }

switch(msgList[num].widgetGroupId) {
case WG_PATIENT:

switch(msgList[num].widgetId) {
case W_PATIENT_ID:

if(strlen(msgList[num].value) > DBA_PATIENT_ID_LEN) {
SW_ERROR_MSG(ERR_APP_WRONG_STR_VALUE);
return FALSE; }

strcpy(pscrData -> scrCrtPatientData.id_patient,
msgList[num].value);

break;
default:

SW_ERROR_MSG(ERR_APP_WRONG_WIDGET_ID);
return FALSE; }

break;
default:

SW_ERROR_MSG(ERR_APP_WRONG_WIDGET_GROUP_ID);
return FALSE; } }

if(!eventsTPCRSelectPatient(screenId, pscrData)) {
TRACE_ERROR_MSG();
return FALSE; }

return TRUE;
}

Figure 4-9: A condensed (but semantically identical) version of the C code for the
patient selection procedure. 27 lines, 26 of which are non-trivial.

140

4.4.3 Condensed C Code

Figure 4-9 shows the C source code condensed to eliminate all comments, blank lines,

and unnecessary line breaks. This code listing is used only to provide a better baseline

for comparing the lengths of the different versions and translations of this procedure.

void tpcrInSelectPatient (
T_INT4 screenId,
T_INT4 sizeofList,
DATA_MSG_GROUP_ARRAY msgList,
DBASCR_SCR_DATA_PTR_TYPE pscrData)
{

T_INT4 num;
for(num = 0; num < sizeofList; num++) {
if (msgList[num].widgetGroupId = WG_PATIENT)

if (msgList[num].widgetId = W_PATIENT_ID)
if (strlen(msgList[num].value) > DBA_PATIENT_ID_LEN)

ERROR;
else

strcpy(pscrData -> scrCrtPatientData.id_patient,
msgList[num].value);

}
eventsTPCRSelectPatient(screenId, pscrData);

}

Figure 4-10: An abstracted version of the C code for the patient selection procedure.
17 lines, 14 of which are non-trivial.

4.4.4 Abstracted C Code

Figure 4-10 shows the C code after it has been manually abstracted.

The purpose of abstraction is to eliminate parts of the code base that are not

relevant to the current concern. In doing so, we make the model simpler, increases

the ability of humans to understand it and machines to automatically analyze it.

Our abstraction includes two parts: eliminating parts of the code not relevant to any

analysis (replacing calls to a trusted code with specifications) and eliminating parts

of the code not relevant to this particular concern (focusing on a particular path

through the code).

141

Focusing

Recall that the Patient ID requirement is that the prescribed dose is delivered to the

patient when no explicit errors are returned. As such, our analysis is not concerned

with what happens when explicit errors are generated, so we abstract away such

occurrences. In most cases, we simply assume that no error is generated. In some

cases, we model the code as setting an error flag, but we declare in our analysis that

we are only interested in seeing bad traces in which the error flag was not set. The

end effect is that our analysis will only reveal paths through the code in which the

stated property is violated but no error was raised. A separate analysis (for a different

subproblem) is needed to ensure that error cases are handled safely and properly.

This abstraction was partly done to reduce the branching complexity of the

code, thus improving the scalability of the analysis, and partly done to the aid the

manual translation process. With proper automatic support, this abstraction might

be unnecessary or might be itself automatable.

Called Procedures

For scalability of analysis, and feasibility of the manual translation, we cannot fully

model the behavior of every called procedure. At a certain depth in the call hierarchy,

the human analyst must decide to cut off the translation, and replace the called

procedures with an appropriate (partial) specification. There are a few common

reasons to cut off the translation of a procedure:

trusted code base Calls into trusted code bases are a prime candidate for

replacement with appropriate partial specification. For example, low level

calls, language features, and trusted libraries needn’t be translated. Some of

these can be handled automatically with proper infrastructure (e.g. language

features), the rest might be added manually (e.g. user provided specifications

for trusted/in-house libraries).

For example, the codebase contains calls to a native C function that compute

the length of a string, strlen. We have supplied a full specification for that

142

function, rather than modeling the details of how it executes. We trust that

code base enough to leave it out, thus reducing the total number of lines that

Forge must analyze directly.

We also assume that correctness of a pre-compilation pass that is performed on

the BPTC code. This pre-compilation pass is used to extend the C syntax to

include simple calls into an SQL database. Rather than building up a full SQL

query by hand each time, it permits the programmer to write a simple “SQL

EXEC querytext” command. We did not have access to this precompilation

code, and are thus forced to assume that all SQL EXEC commands do indeed

send the given query to the SQL database and receive the answer correctly.

In general, the analyst may decide to make a judgement call about what

called procedures to trust, and provide a simple specification for them. Such

assumptions must be documented, but are often appropriate (for modularity)

or simply unavoidable (when correctness cannot be directly evaluated). In such

a case, the important thing is that the assumption be recognized, documented,

and consciously accepted.

irrelevant A called procedure might be irrelevant to the property being checked, in

which case it can be replaced with an unconstrained spec or simply removed.

For example, a call to a procedure “state = get current state()” might be

replaced with a constant “state = ’reading data’”, if the property being

check is only relevant when data is being read. Similarly, a call to

“check message content consistency()” might be omitted if the property

being check is about message timings, not content. In both cases, we are

essentially replacing a called procedure with a partial specification based on

our calling context and target property. Such assumptions must be recorded

and documented as part of the code analysis argument.4

In the running example illustrated in this section, we have performed 2 (related)

4Ideally, one might want to use some sort of automatic iterative refinement, in the style of
Taghdiri [84, 85].

143

abstractions that are more elaborate than simply replacing procedure calls with

partial specifications.

The property we are checking is that the correct dose is delivered if no explicit

errors are generated. The behavior of explicit error handling code is not relevant

to this property. We replace all error code with the flag “ERROR”, which we

interpret to mean that a global error flag is set to true. When we check our

property, we check that the dose is correctly set as long as the error flag is

false. Abstracting away explicit error handling code greatly simplifies much of

the code base. We document our assumption that error handling code always

results in an explicit error reaching the user. Whether or not the system behaves

safely in the presence of an explicit error is a separate (but important) safety

concern.

On a related note, the procedure’s Boolean return value is only used as a

mechanism for propagating errors up to the top level control loop. Since we

have abstracted away the error handling code, we can drop the boolean return

values. This abstraction is not strictly necessary, but helps to clean up the code

and enable manual translation. An automatical translation might not need this

abstraction, and dropping it would reduce the number of assumptions being

made about the code base.

144

void define__tpcrInSelectPatient() {
//signature
final LocalVariable
screenId = program.newLocalVariable(‘‘screenId’’, T_INT4),
sizeofList = program.newLocalVariable(‘‘sizeofList’’, T_INT4),
msgList = program.newLocalVariable(‘‘msgList’’, DATA_MSG_GROUP_ARRAY),
pscrData = program.newLocalVariable(‘‘pscrData’’, DBASCR_SCR_DATA_PTR_TYPE);
tpcrInSelectPatient = program.newProcedure(
‘‘tpcrInSelectPatient’’,
Arrays.<LocalVariable>asList(screenId, sizeofList, msgList, pscrData),
Arrays.<LocalVariable>asList(pscrData));

//body
final LocalVariable num = program.newLocalVariable(‘‘num’’, T_INT4);
final AssignStmt initializenum = tpcrInSelectPatient.newAssign(num, zero);
final BranchNode loop_head_condition = tpcrInSelectPatient.newBranch(num.lt(sizeofList));
final LocalVariable current = program.newLocalVariable(‘‘current’’, DATA_MSG_GROUP);
final AssignStmt assign_current = tpcrInSelectPatient.newAssign(current, num.join(msgList.join(msg_grp_array_index)));
final BranchNode check_widgetGroupId = tpcrInSelectPatient.newBranch(current.join(widgetGroupId_field).eq(WG_PATIENT));
final BranchNode check_widgetId = tpcrInSelectPatient.newBranch(current.join(widgetId_field).eq(W_PATIENT_ID));
final BranchNode check_length = tpcrInSelectPatient.newBranch(((current.join(value_field)).join(strlen)).gt(DBA_PATIENT_ID_LEN));
final AssignStmt flag_error = tpcrInSelectPatient.newAssign(error_has_occurred, program.trueLiteral());
final AssignStmt assign__id_patient = tpcrInSelectPatient.newAssign(dba_patient_type__id_patient, dba_patient_type__id_patient.override(
(pscrData.join(scrCrtPatientData)).product(current.join(value_field))));
final AssignStmt loop_end_num_increment = tpcrInSelectPatient.newAssign(num, num.plus(one));
final CallStmt call_eventsTPCRSelectPatient = tpcrInSelectPatient.newCall(
eventsTPCRSelectPatient,
Arrays.<ForgeExpression>asList(screenId, pscrData),
Arrays.<ForgeVariable>asList());

//linkups
initializenum.setEntry();
initializenum.setNext(loop_head_condition);
loop_head_condition.setThen(assign_current);
assign_current.setNext(check_widgetGroupId);
check_widgetGroupId.setThen(check_widgetId);
check_widgetId.setThen(check_length);
check_length.setThen(flag_error);
flag_error.setNext(loop_end_num_increment);
check_length.setElse(assign__id_patient);
assign__id_patient.setNext(loop_end_num_increment);
check_widgetId.setElse(loop_end_num_increment);
check_widgetGroupId.setElse(loop_end_num_increment);
loop_end_num_increment.setNext(loop_head_condition);
loop_head_condition.setElse(call_eventsTPCRSelectPatient);
call_eventsTPCRSelectPatient.setNext(tpcrInSelectPatient.exit());
}

Figure 4-11: A Java program that generates a Forge program that emulates the C
procedure for patient selection. 52 lines, 41 of which are non-trivial.

145

4.4.5 Java Code to Generate Forge Code from C Code

Figure 4-11 shows the Java code that was manually written to generate API calls to

the Forge framework that will generate a Forge program that imitates the abstracted

C code.

proc tpcrInSelectPatient (screenId, sizeofList, msgList, pscrData) : (pscrData) {
Node55: num := 0 goto Node56
Node56: if (num < sizeofList) then Node57 else Node64
Node57: current := (num . (msgList . msg_grp_array_index)) goto Node58
Node58: if ((current . widgetGroupId_field) = WG_PATIENT) then Node59 else Node63
Node59: if ((current . widgetId_field) = W_PATIENT_ID) then Node60 else Node63
Node60: if (((current . value_field) . strlen) > DBA_PATIENT_ID_LEN) then Node61 else Node
Node61: error_has_occurred := true goto Node63
Node63: num := (num plus 1) goto Node56
Node62: dba_patient_type__id_patient :=

(dba_patient_type__id_patient
++ ((pscrData . scrCrtPatientData) -> (current . value_field))) goto Node63

Node64: eventsTPCRSelectPatient(screenId, pscrData) : () goto Node54
Node54: terminate

}

Figure 4-12: The analyzable forge program written based on the C procedure for
patient selection. 13 lines, 12 of which are non-trivial.

4.4.6 Generated Forge Code

Figure 4-12 shows the Forge code generated by the above Java code. Forge represents a

program as a collection of nodes, each representing an atomic program statement (e.g.

a condition, assignment or procedure call). When connected together with control

flow edges, a Forge description compactly represents the set of all valid program

executions, in a form that can be queried and constrainted using the Forge relational

logic. Figure 4-13 shows a control flow view of the Forge program, indicating how the

program nodes are linked together to represent legal execution paths.

146

55
enter

num)= 0

56
if (num 0 si2eofList)

56
current)= (num . (msgList .

msg:grp:array:inde?))

5@
if ((current . widgetGroupId:!eld) =

WG:PATIENT)

5K
if ((current . widgetId:!eld) =

W:PATIENT:ID)

60
if (((current . value:!eld) . strlen) N

DBA:PATIENT:ID:LEN)

61
error:has:occurred)= true

62
dba:patient:type::id:patient)=
dba:patient:type::id:patient TT
((pscrData . scrCrtPatientData) VN

(current . value:!eld)))

63
num)= (num plus 1)

64
eventsTPCRSelectPatient(screenId[

pscrData)

54
terminate

1 0

1 0

1 0

1 0

Figure 4-13: A diagramatic view of the resulting Forge program, showing the control
flow between program nodes.

147

4.4.7 Human Burden: Abstraction & Translation

You cannot treat the software as a complete black box. If you know nothing about

how your software works, then you simply cannot build a safety case for it.

In particular, the user must provide the analysis with abstraction information

on what called procedures to include. A taghdiri-style refinement [84, 85] would

remove the need to manually provide abstractions for some functions, but not all.

Sometimes you need the human’s high level understanding of the property being check

to make that decision – such as ignoring error handling code or replacing function

calls with constant return values to check behavior under specific contexts. The

user may also provide global abstractions, such as eliminating boolean returns and

conflating different integer types, which could not be inferred by a taghdiri-style

iterative refinement.

Of course, an analysis that scale much better than the current Forge could analyze

the software without any help from the human. However, such an analysis is not

possible in the foreseeable future, so we are restricted to only analyzing programs

that we can abstract – i.e. that we have a cursory understanding for.

4.4.8 Forge Analysis of Specification

Next we examine how one checks a constrain against a Forge encoding of a program.

The fragment translated above is one pieces of the code relevant to the dose delivery

concern, but is too small to be of interest by itself. That fragment, together with

about a dozen other procedure definitions, describe the subset of the code related

to how patient identity is received in a message from the GUI and stored in the

Treatment Manager’s heap.

In the language of the problem diagram, our constraint is as follows:

If the patient select button has been pressed on the patient selection
screen, then the id stored in the GUI is communicated to the treatment
manager.

148

Before we can automatically check this claim, we need to map it into the language

of the code base.

Guided by our original set of designations, we interpret this claim in the context

of the treatment manager software. First, let’s be precise about how the information

is received, and what it means for the patient id to be correctly extracted from that

information.

A message is received as a pair of parameters, data and arg. The data
parameter contains a message which is an array of identifiers. The 0th slot
of that array indicates the screen that was displayed when the message
was generated. The 1th slot indicates the button that was pressed to
trigger the message. The arg parameter is a lump of data containing
state information about the gui. Part of that lump of data is the identity
of the patient being treated.

This spec is not yet precise enough for automatic analysis, but it is now expressed

in the language of the program code base. In order to analyze the spec, we must now

formalize it. Because the code manipulates a lot of structured data (pointers and

objects), a relational logic is a good match for formally and intuitively expressing

code properties. Using the Alloy language, the spec looks like this:

pred patient_id_storage [] {

data.data__msg.mixed_array_index[0] == SCR_A1_PATIENT_SELECTION

data.data__msg.mixed_array_index[1] == W_PATIENT_SELECT_BTN

current_id_patient

== arg.scrCrtPatientData.dbs_patient_type__id_patient

}

Figures 4-14 gives Java code that generates a forge expression equivalent to that

Alloy expression. As written, that code performs a liveness check, not a safety check.

It verifies that safe traces can occur, and generates sample safe traces, but does not

check if all traces will be safe. Safety checks can also be performed, in an analogous

manner. Liveness checks increase the confidence that the formal model matches the

149

actual system. Safety checks increase confidence that the formal model has a desired

property. Both are necessary to gain confidence that the actual system has a desired

property.

Here is the safety check (the java that generates the forge that looks for bad

behaviors). The analysis returns no counter-examples, increasing our confidence that

the code obeys the desired assumption.

callingContext.newAssume(

no_error.and(

correct_result.not()).and(

sensible_result)

);

It tells forge to solve for an execution in which no error message is generated, an

incorrect result is returned, and the result is in a form that could be processed by the

system. This represents a dangerous situation in which the machine invisibly delivers

the wrong dose to a patient.

4.4.9 development process

A human developing a Forge model can follow the counterexample driven precondition

discovery process – check the desired property against the Forge encoding of the code,

find a counterexample, add a precondition (assumption about the problem context)

to remove counterexample, repeat. All assumptions must then be verified by an

appropriate specialist.

We followed this process and eventually found a set of reasonable (but

undocumented) assumptions that made the checks pass. Most pertained to the format

of received messages, the initial values of certain global variables defining the system

mode, and the behavior of functions that are not defined in the code to which we

had access. These assumptions were true of the current system, but since they were

undocumented they could easily have been violated as changed were made to the

system.

150

final ForgeExpression correct_result =
current_id_patient
.eq(arg.join(scrCrtPatientData)
.join(dba_patient_type__id_patient))

//arg screen data contains the final patient id

.and(
one.join(data.join(data__msg)
.join(mixed_array_index))
.eq(W_PATIENT_SELECT_BTN)

) //data input contains correct button id

.and(
zero.join(data.join(data__msg)
.join(mixed_array_index))
.eq(SCR_A1_PATIENT_SELECTION)

) //data input contains correct screen id
;

final ForgeExpression sensible_result =
(current_id_patient).one()
.and(original_id_patient
.eq(current_id_patient).not());

final ForgeExpression no_error =
error_has_occurred.eq(program.falseLiteral());

final SpecStmt postconditions =
callingContext.newAssume(
no_error
.and(correct_result)
.and(sensible_result)

);

Figure 4-14: A Java program that generates a Forge spec to check that patient id’s
are correctly extracted from the patient selection message sent by the GUI.

151

4.5 Discoveries

In the course of our analysis, we identified both current and future vulnerabilities

– undocumented assumptions that are critical to system safety. Some of these were

discovered directly by our analysis, and other were discovered simply through the

act of articulating the system architecture and requirements. Our experience is that

much of the safety gains from building a dependability argument come from the mere

act of building the argument, apart from the actual results of the analysis itself. Here,

we make a more general assessment of the primary vulnerabilities of the system.

Current vulnerabilities represent assumptions made in the dependability argument

which are not properly enforced by the relevant components. The major current

vulnerabilities we discovered for the BPTC are the following:

SQL injection: While performing separability analysis on the dose information
stored in the database, we discovered that the system is vulnerable to SQL-
injection attacks. The comment field of a patient entry in the database is
permitted to contain arbitrary text, and provides a place for doctors and other
hospital personnel to write free-form comments about the prescribed treatment.
If the comment field contains fragments of SQL syntax, those fragments will be
executed when a query is made on the patient, in turn causing arbitrary changes
to the prescription database.

Such an attack is unlikely, since the system is on a closed network, does not
have public terminals or access points, and is operated by non-malicious users.
Were a hospital employee malicious, there would be easier forms of sabotage.
An attack could be accidentally introduced if a programmer used the patient
comment field to jot down a note about how to query that patient. However,
the existence of such an attack is more of a concern because it indicates a
lack of care in checking the effects of queries before they are executed. For
example, one might want to include access control to the database, so that
only certain employees can overwrite prescriptions. Doing so would protect
against the scenario in which the treatment manager generates a bad query
that overwrites prescriptions, as the treatment manager would not have write
access and thus could not corrupt the database.

network delays: If a message is delayed on the network and delivered an hour or
more later, then it might arrive during a different treatment session. If this
happens to a message carrying the current patient’s ID, then the system might
deliver the last patient’s dose to the next patient.

We were not able to ascertain from the network documentation whether or not
it guaranteed timely delivery of messages: The network is proprietary, so we

152

cannot directly analyze its sourcecode. The network is no longer commercially
supported, so we cannot ask the network providers. The race conditions and
cache heuristics present in networks make blackbox testing of the system of
limited value.

One could address this concern by adding additional information to each
message, so that old messages can be discarded by the receiver. For example,
messages could include the session ID, and recipients would discard any message
from a prior session. Simply having messages expire after a short time on the
network would help, but would provide less confidence than a direct check –
it would not, for example, protect against expert operators who can send and
resend messages very rapidly.

patient identification: Our largest concern lies in the process by which the human
therapist identifies a patient and selects that patient from a list displayed by
the GUI. As described earlier in this chapter, there are a number of scenarios
whereby a therapist might select the wrong patient, especially if there are many
active patients and several have similar names.

Protecting against such errors is difficult, but there are safeguards that could be
added to the GUI itself. For example, the GUI might recognize similar patient
names (especially ones that are currently not visible on screen), and raise a
warning to the therapist to double check the selection. Alternatively, one might
have an automatic scan of a barcode on the patient ID tag, in parallel to the
human identification process, and halt if the two do not agree.

Future vulnerabilities represent assumptions made in the dependability argument that

were not previously documented, but which turned out to hold when inspected. They

represent properties that might be violated when the system is modified, and thus

should be properly documented in order to permit safe maintenance. For example:

network: We assume that the network does not drop messages, or that it detects
and resends dropped messages. We assume that the network does not corrupt
messages, or that it has error detecting codes to catch corruptions and resend the
data. The current network infrastructure (RTworks) provides these guarantees
in its documentation.

database: Queries generated about the database make assumptions about the
format and organization of information in the prescription database. It makes
assumptions about the names and orders of columns, and that dose information
is stored in certain units (e.g. joules versus rads). Changing the database
format, even slightly, would require changes to many portions of the treatment
manager code involved in sending, receiving, and processing queries and network
messages pertaining to queries.

153

GUI: The GUI was automatically generated with a commercial tool. If it were re-
generated, it would need to be re-evaluated (unless the generation tool itself
were proven correct). Specifically, we rely heavily on the authenticity of the
information shown to the therapist and the influence of mouse and keyboard
clicks upon the messages the GUI sends to the treatment manager.

code structure: The code is overall poorly structured and lacks useful
documentation. As a result, the code is much less transparent than it could
have been, limiting the value of manual code reviews.

The code is written in C and manipulates memory references directly. C is not a
memory safe language, although there are subsets and coding styles that reduce
the risk of memory conflicts.

The code makes extensive use of global variables that are shared between
portions of the code with widely varying functions. There is no access control
to the globals, so non-critical portions of the software can corrupt the data used
by critical portions. As such, the entire code base must be considered critical.

The code has unnecessary redundancy in its data and algorithms. For example,
some data about patient dose is stored in two different global variables, one of
which is used in some procedures and other of which is used in other procedures.
They are currently kept in synch, but such redundancy is a recipe for introducing
errors during modification. Similarly, portions of the algorithmic code are
repeated in different locations, producing a dual-maintenance problem if the
algorithm is updated.

Future vulnerabilities would be a minor concern if the system were never modified.

However, there are a couple of likely scenarios in which the system will be significantly

modified.

discontinued systems: The network infrastructure currently used (RTworks) has
not been commercially supported for about 5 years. At the time that it was
installed, it was a reputable system that provided the necessary guarantees
for safe operation. However, if new functionality is needed, or if an error is
discovered, an entirely new network infrastructure might need to be added. At
that time, it will be essential to know what guarantees about message delivery
are important to system safety.

hospital additions: The BPTC has plans to add a new firing mode to the system.
Under current firing modes, the beam is fired in a broad and fairly low-
intensity pattern, bathing the tumor in radiation. The proposed mode, called
pencil beam scanning, would rapidly sweep a narrow, high-intensity beam back
and forth across the tumor. Pencil beam scanning provides a more precise
boundary around the tumor and thus causes less collateral damage. Apart
from adding new failure modes to the system (the beam moving too slowly or

154

halting in place), adding a new firing mode would involve significant changes
to the Treatment Manager and other components in the system. When such a
change is implemented, it will be vital know the set of assumptions that must
be maintained as the components are altered.

In the long term, the BPTC plans to add new treatment rooms, to accommodate
the high demand for proton therapy. Doing so requires changes to the software
running in the master control room and to the shared database. These changes
would be less pervasive than adding a new firing mode, but would still require a
clear set of assumptions, lest those assumptions be inadvertently violated during
modification. The last time that a room was added (room number three), it
violated the emergency stop button’s ability to halt the beam [68].

Further reflections on our analysis of the BPTC are described in Chapter 7.

!"a"$% a! '(o'$("* o+,,,

($
-a

!"
 a

!
'(

o'
$(

".$
!

o+
,,,

-o+"$/"

!*!"$0

-o0'o+$+"

0o%1l$

3lo-4

-o
+"$

/"

!*
!"$

0

-o
0'o

+$
+"

0o%
1l$

3lo
-4

.+"$(5.$6! "o
1+%$(!"a+% !*!"$0

o5$(5.$6 a+% +$$%!7
! da%s

8a9a(% a+al*!.!7
' da%()' ha+ards

."$(a".5$ ($5.!.o+ o: '(o3l$0
%.a;(a0 a+% :o(0al.!07

) da%s('-- lines prose(
!4 loc 6llo%

($<1.($0$+"
'(o;($!!.o+7

' da%(
'7- loc 6llo%

.+"$('($"".+; => a!!10'".o+!
.+"o %o0a.+ "$(0.+olo;*7
7 da%s(!-- lines prose

-o%$ 1+%$(!"a+%.+;?
'(o;(a00$(.+"$(5.$6!7

4 da%s()-- lines prose(
code base:).4 ;loc C

"(a+!la".+;@a3!"(a-".+; A
"o Bo(;$ C+"$(0$% D$'7
)- ()) da%s(' ?loc C(

' ?loc @ava(B-- loc CDR

."$(a".5$l* (1++.+; Bo(;$
a+% a%%.+; a!!10'".o+!7

) da%s('-- loc @ava

Bo(;$ a+al*!.!7
4 sec per run

Figure 4-15: Time spent building the BPTC dependability argument for dose delivery.

155

4.5.1 Effort

Our analysis required about two months of person-time, counting both the time spent

by our research group and the time spend by MGH employees. Figure 4.5 uses the

BPTC CDAD to break this time down, and reveals that almost half of this time

(three of the eight weeks) was spent on manual translation tasks that have since been

rendered obsolete by automation such as CForge and JForge [23]. Of the remaining

five weeks, one was spent gathering a basic understanding of the system – work that

can be re-used on future dependability arguments for the BPTC. The remaining time

is one person-month of work, and we estimate that matching dependability arguments

could be built for the other high priority concerns for the BPTC in about one month

each, adding up to around a year of work. This cost is a bit high, but is a fraction of

the cost of building and testing the system. Less critical systems would justify using

lighter weight analyses, as they could tolerate dependability arguments with lower

confidence.

156

Chapter 5

Case Study: Voting Auditability

The previous case study, and indeed requirement progressions in general, focuses on

a traditional engineering notion of correctness – that the system generates correct

values. However, many systems have additional types of correctness to consider

besides fidelity, such as secrecy and auditability.

• A fidelity argument establishes a conventional engineering notion of correctness
– that the system will generate well formed outputs and behaviors under normal
operating conditions, and that it will fail safely and gracefully under abnormal
conditions.

• A secrecy argument addresses security and anonymity concerns. It assures that
the system protects sensative information from outsiders, even outsiders who
know the design and implementation of the system.

• An auditability argument ensures that the working system is demonstrably
correct in implementation, not just that the system is correct in theory. It
provides a means by which outsiders can be confident that the system is
operating correctly, and has not been replaced by a malicious or careless
imitation.

In applications such as medical databases and political elections, secrecy and

auditability are often considered to be of equal importance as fidelity. Legally, medical

physicians are obliged not only to provide effective treatment but also to protect the

patient’s privacy, and technical systems involved in patient treatment and data must

be certified by federal agencies, such as the FDA [61]. A voting system must not

157

only count votes correctly, but it must also protect the anonymity of voters (to avoid

coercion) and provide auditability (to avoid corrupted systems being installed in place

of real ones).

Conventionally, these three types of arguments are built independently. In

this Chapter, we describe a framework in which one can build these three types

of arguments in tandem, which makes the overall analysis more systematic, less

vulnerable to omissions, and less time-consuming to perform. The key to this

framework is to build the fidelity and secrecy arguments using compatible lexicons,

and then to build the auditability argument based on the intersection of those lexicons.

We illustrate our integrated approach on a the Pret a Voter cryptographic voting

system developed at the Universities of Surrey of Newcastle [76].

5.1 Verifiable Voting

It is not enough for a voting system to be correct in a classic engineering sense of

matching its specification at build-time. A leading concern in political voting systems

is that of auditability [14, 82, 69] – the ability for users of the system (voters) to

determine if the system works, rather than having to trust the system provider.

Even if individual voters are not technically competent enough to assess the system,

auditability allows them to choose whom they trust enlist a trusted auditor.

For simple systems, auditability is simply a matter of publishing the design

documents for the system. A user can examine the design and confirm that the

operating machine matches that design. However, secrecy concerns complicate this

process. If certain information in the system is to be kept secret from users, then it

becomes hard (or impossible) for users to assess if that system is operating according

to its design. For example, in an non-secret election, auditability is simply a matter

of making all voter’s votes public, so that anyone can count them. However, once we

decide that votes should be anonymous, such an audit is impossible without a much

more sophisticated methodology.

We apply our technique to a cryptographic voting system proposed by Peter

158

Ryan in 2004, and currently being developed at the Universities of Surrey and

Newcastle [76]. The system is called Pret a Voter – literally, “ready to vote” – and

stands out among voting systems for providing auditability without compromising

secrecy. It allows us to illustrate the suitability of our approach to the construction of

fidelity arguments that integrate smoothly with secrecy and auditability arguments.

The rest of this section describes the existing system and the intuition for why it

should work. In the following sections, we apply our technique to building compatible

fidelity, secrecy, and auditability arguments. In the last section of the chapter, we

describe a method for leveraging the fidelity argument to help build a compatible

secrecy argument.

5.1.1 Overview of the System

Prior to our analysis, the system designers had mathematically validated

cryptographic properties about particular components and had an intuition for why

those properties should collectively provide fidelity, secrecy, and auditability. There

was no unifying system argument, and there were not precise definitions for what

fidelity, secrecy, and auditability meant. The designers’ intuitions proved to be very

helpful in building the dependability argument, and the proven properties were indeed

necessary to establish that argument. Our analysis confirms their intuition about the

system, documents that intuition in precise and re-usabled fashion, and reveals some

unstated (but reasonable) assumptions necessary for system correctness.

5.1.2 Flow of a Vote

Figure 5-1 shows a sample ballot that has been used to cast a vote for Candidate B.1

Figure 5-2 illustrates the path of a vote through the system, and is narrated below.

A voter receives a ballot and takes it to a private voting booth. The ballot displays

a list of candidates, with check boxes next to them. The voter checks the box next

to one of the candidates, then tears off the list of boxes (along a perforation). The

1The system also works for ranked and multiple-vote voting systems, but for simplicity we have
describe it as applied to a single-approval election (e.g. a presidential election in the U.S.).

159

!a#$%$a&')

!a#$%$a&' *

!a#$%$a&' +

!a#$%$a&' ,

!a#$%$a&' !

!a#$%$a&' -

....)*+,!-....

/'0'%1&

2a34%#5

6#%o#

-33a#5'8'#&

Figure 5-1: What the ballot looks like to a voter, who has just cast a vote for
Candidate B.

list of candidates is discarded, and the voter turns in just the “receipt” – the list

of check boxes, one of which is marked. At the bottom of the receipt is an “onion”

which encodes the order in which the candidate names appeared on the ballot. It’s

encrypted, so no one without the private key can tell who the voter voted for.

The receipt is turned into the Voting Board, along with everyone else’s votes for

the day. The ballot receipt that a voter carries over to the ballot box is just a check

on a blank page. Since different ballots used different candiate orderings, there is no

indication which candidate the check corresponds to. The onion at the bottom of

the page encodes that information, but it can only be deciphered with a private key,

which is not available to observers.

The receipts then undergo a series of re-encryption steps, each of which changes

the onion on each receipt to look different to the eye but to still represent the same

ordering of candidate names. The vote recorded on the receipt is not changed, but

voter anonymity is preserved – without the secret key, it is impossible to tell which

record coming out of the machine corresponds to which receipt going into the machine.

The re-encrypted receipts are then decrypted into voting records. Each voting record

160

Candidate)

Candidate *

Candidate +

Candidate B

Candidate C

Candidate -

....)*+BC-....

Candidate)

Candidate *

Candidate +

Candidate B

Candidate C

Candidate -

....)*+BC-....

....)*+BC-.... ////)*+BC-////

....)*+BC-.... ////)*+BC-////

Candidate)

Candidate *

Candidate +

Candidate B

Candidate C

Candidate -

0000)*+BC-0000

0000)*+BC-0000

Stack of Ballots 8sed Ballot

Receipt
Scrambled

Receipt

*ecr>pted Record

Scrambled
Receipt

Figure 5-2: The flow of a vote through the system.

indicates the candidate ordering (from the decrypted onion) and the checked box next

to one of them (from the voter). The voting records can be read by a human or a

machine and tallied to determine the winning candidate.

5.2 Representing the Problem

The first step to building a dependability argument is to provide a set of desigantions,

domains, and definitions. These artifacts serve to bridge the inescapable gap

between the informal world of the actual system and the formal world of documented

requirements [40]. Designations connecting our formalism to the informal problem

domain are given in Figure 5-4. Supporting definitions are given in Figure 5-5, and

supporting domains are given in Figure 5-3. Figure 5-6 gives an Alloy model that

precisely records the structure of those phenomena and domains, and that model is

narrated in Figure 5-7. 2

2An elaboration of that model, with more extensive comments, is integrated into the fidelity
model, which is given in Appendix 11 and introduced in Section 5.3.

161

The Alloy model declares sets and relations to represent the relevant phenomena.

At this point, the constraints and assumptions about how these phenomena relate

are not represented, just the problem structure. Using these phenomena (as they

are formalized in the Alloy model), we build the Problem Frame context diagram

shown in Figure 5-8. It shows how the phenomena relate to the domains and which

phenomena are shared between which domains.

c ∈ Candidate ⇔ c is a person running in this election.
v ∈ Voter ⇔ v is a person who is capable of voting.
b ∈ Ballot ⇔ b is a ballot – a piece of paper with a list of candidate

names, attached to a receipt.
r ∈ Receipt ⇔ r is a receipt – a list of checkboxes attached to a ballot.
o ∈ Onion ⇔ o is an onion – a cryptographic string representing an

ordering of candidates.
r ∈ Record ⇔ r is a record – a piece of paper with a list of candidates

and a check next to one of them.
vb ∈ Board ⇔ vb is the voting board – the device that re-encrypts

receipts, and then decrypts them into records.

Figure 5-3: Domains for verifiable voting

162

(c → i) ∈ score ⇔ Candidate c has been assigned i votes.
The candidate with the most votes wins.

(v) ∈ RegisteredVoter ⇔ Voter v is authorized to vote in this election.
(b → p → c) ∈ ballotArrangement ⇔ On ballot b, candidate c’s name appears at

position p.
(b → r) ∈ ballotReceipt ⇔ Receipt r was originally attached to ballot b.
(v → b) ∈ voterBallot ⇔ Voter v was given ballot b to use to vote.
(v → c) ∈ intention ⇔ Voter v wants candidate c to win the election.
(r → p) ∈ receiptMarked ⇔ Receipt r is marked at position p.
(r → o) ∈ receiptOnion ⇔ Onion o is written at the bottom of receipt r.
(o → p → c) ∈ onionArrangement ⇔ According to onion o, candidate c’s name

appears at position p.
(d → p → c) ∈ recordArrangement ⇔ On record d, candidate c’s name appears

at position p.
(r → p) ∈ recordMarked ⇔ Record d is marked at position p.
(r → d) ∈ mix ⇔ Record d is generated by the voting board

as the result of re-encrypting receipt r.

Figure 5-4: Designations for verifiable voting

(b → c) ∈ ballotCandidate ⇔ Ballot b indicates a vote for candidate c,
according to the arrangement of candidates
on b and the marking on b’s receipt.

(r → c) ∈ receiptCandidate ⇔ Receipt r indicates a vote for candidate c,
according to the arrangement of candidates
defined by r’s onion and r’s marking.

(d → c) ∈ recordCandidate ⇔ Record d indicates a vote for candidate x,
according to the arrangement of candidates
on d and d’s marking.

Figure 5-5: Definitions for verifiable voting.

163

1 sig Candidate { s co r e : one Int }
2 sig Voter {
3 i n t en t i o n : lone Candidate ,
4 vo t e rBa l l o t : set Bal lo t ,
5 }
6 sig Regi s teredVoter extends Voter {}
7 sig Ba l l o t {
8 bal lotArrangement : Po s i t i on one → one Candidate ,
9 ba l l o tRe c e i p t : one Receipt ,

10 ba l lo tCandidate : lone Candidate ,
11 }{ ba l lo tCandidate = ba l l o tRe c e i p t . rece iptMarked . bal lotArrangement }
12 sig Pos i t i on {}
13 sig Receipt {
14 rece iptOnion : one Onion ,
15 rece iptMarked : lone Pos i t ion ,
16 r e ce ip tCand idate : lone Candidate
17 }{ r e c e ip tCand idate = rece iptMarked . (rece iptOnion . onionArrangement) }
18 sig Onion { onionArrangement : Po s i t i on one → one Candidate }
19 sig Record {
20 recordArrangement : Po s i t i on one → one Candidate ,
21 recordMarked : lone Pos i t ion ,
22 recordCandidate : lone Candidate
23 }{ recordCandidate = recordMarked . recordArrangement }
24 one sig Board { scramble : Receipt lone → lone Record }
25 fun mix [] : Receipt → Record { Board . scramble }

Figure 5-6: An Alloy model formalizing the designations, definitions, and domains
defining the problem context for a voting system. This model is narrated in Figure 5-
7.

164

Line 1: There is a set of candidates. Each Candidate has an (integer) score,
representing that candidate’s score at the end of the election process.

Lines 2-6: Each Voter has an intention to vote for zero or one Candidate
and is given a set of zero or more Ballots. A subset of the Voters are
RegisteredVoters.

Lines 7-11: Each Ballot has an arrangement that determines an ordering on
candidate names (a mapping from each Position to one Candidate and
vice versa). A Ballot is attached to a single Receipt. The relation
ballotCandidate is constrained to match the definition given in Figure 5-5,
and represents the intended interpretation of the ballot.

Lines 12-17: Each Receipt is marked at zero or one positions. It also bears an
Onion. The relation receiptCandidate is constrained (in an appended fact)
to match the definition given in Figure 5-5.

Line 18: Each Onion encodes an arrangement – an ordering of candidate names.
Like the arrangement on a ballot, it is represented as a bijection between
Positions and Candidates.

Lines 19-23: Each Record has an arrangement and is marked, just like Onions
and Receipts. The relation recordCandidate is constrainted to match the
definition given in Figure 5-5.

Lines 24-25: The voting Board relates each receipt with zero or one Records, and
vice versa. The mix function mirrors that relation, in a form that is more
convenient for modeling.

Figure 5-7: A narration of the Alloy model given in Figure 5-6.

165

!o#$%&

'#a)* o,
-allo#& !o#/01 -oa%2

345l/) 6$)o%2

5allo#7a02/2a#$
5allo#8%%a01$9$0#

5allo#6$)$/:#
%$)$/:#;a%*$2

5allo#6$)$/:#
%$)$/:#7a02/2a#$

%$)$/:#;a%*$2
%$)$/:#<0/o0

o0/o08%%a01$9$0#

9/=
%$)o%28%%a01$9$0#

%$)o%2;a%*$2
%$)o%27a02/2a#$

5allo#7a02/2a#$
5allo#8%%a01$9$0#
5allo#6$)$/:#
%$)$/:#;a%*$2
6$1/&#$%$2!o#$%
/0#$0#/o0
>o#$%-allo#

5allo#7a02/2a#$
5allo#8%%a01$9$0#
5allo#6$)$/:#
%$)$/:#;a%*$2
%$)$/:#7a02/2a#$
%$)$/:#<0/o0
o0/o08%%a01$9$0#

5allo#6$)$/:#
%$)$/:#7a02/2a#$
%$)$/:#;a%*$2
%$)$/:#<0/o0
9/=
%$)o%28%%a01$9$0#
%$)o%2;a%*$2
%$)o%27a02/2a#$
o0/o08%%a01$9$0#
%$)$/:#7a02/2a#$

9/=
%$)o%28%%a01$9$0#
%$)o%2;a%*$2
%$)o%27a02/2a#$
&)o%$

Figure 5-8: Context diagram for the voting example, showing the phenomena known
to each domain, and thus which phenomena are shared between each domain.

166

stated as propert* on...

re
ca

st
 a

s
pr

op
er

tie
s

on
...

context

s*stem

component

module

co
nte

xt

s*
ste

m

co
mpo

ne
nt

mod
ule

blo
ck

re#$irement
pro+ression

crypto+rap0ic
proofs

component
ass$mptions

fidelity re#$irement5
desi+nations5

problem dia+ram

mat0ematical
t0eorems

Figure 5-9: A CDAD showing how requirement progression and cryptographic proofs
link together to build a composite argument.

5.3 Fidelity Goal

We approach the fidelity goal with requirement progression, as seen in our previous

examples. The resulting breadcrumbs were discharged (by Peter Ryan and his

collegues) using cryptographic proofs. The CDAD for this (quite simple) composition

is shown in Figure 5.2.

5.3.1 Formalization of the Requirement

We begin by translating the informal fidelity requirement into precise language and

then into a formal language (Alloy).

167

informal

The public record reflects the ballots cast.

precise

For each candidate, the number of votes the public records shows for
that candidate is the same as the number of registered voters who marked
their ballots for that candidate.

formal

1 a l l c : Candidate |
2 c . s co r e = #(Reg i s te redVoter & in t en t i o n . c)

For each candidate c, c’s score should be the number of voters who are
both registered and intended to vote for c.

5.3.2 Requirement Progression for Fidelity Goal

First, we sketch out the shape we expect the argument to take, as shown in Figure 5-

10. This sketch guides progression, suggesting what breadcrumbs and pushes will be

helpful. With that intuitive argument flow in mind, we begin requirement progression

formally. Figure 5-11 shows the problem diagram with the formal constraint, ready

for requirement progression to begin.

The initial goal is the requirement that the public record reflect the number of

candidates who intended to vote for each candidate. It references phenomena from

both the Voters and Public Record domains, although those domains are only

indirectly related to each other. As such, progression is needed to decompose the

requirement into localized domain assumptions. s Figures 5-12 to 5-21 show the steps

of the requirement progression. Initially, the requirement connects to both the Voters

and Public Record Domains. In a series of transformations, we shift the left arc from

Voters to Stack of Ballots to Voting Board and finally to Public Record.

168

!oter&

'tack o,
Ba..ot& !oting Board

345.ic Record

5a..ot& and receipt

receipt& and onion&

record&

Eac9 candidate:& &core
i& t9e n4m5er o, record&
marked in ,a<or o, t9at
candidate=

Eac9 regi&tered <oter
mark& 9er 5a..ot:&
receipt ne>t to t9e
candidate t9at &9e
?ant& to ?in=

@94& eac9 candidate:& &core
i& t9e n4m5er o, regi&tered
<oter& ?9o ?anted t9at
candidate to ?in=

@9e onion on eac9
receipt ,ait9,4..A encode&
t9e arrangement o,
candidate& on t9at
receipt:& 5a..ot=

E<erA receipt
corre&pond& to
one record t9at
indicate& t9e
&ame candidate=

Figure 5-10: An informal sketch of how we expect the argument diagam to look, what
sorts of breadcrumbs will be helpful, and how the argument will flow.

169

Voters

Stack of
Ballots Voting Board

Public Record

Goal #'
all c: Candidate |

c.score = #(RegisteredVoter & intention.c)

ballotCandidate
ballot@rrangement

ballotReceipt
receiptCarked

ballotReceipt
receiptCandidate

receiptCarked
receiptOnion

onion@rrangement

mix
record@rrangement

recordCarked
recordCandidate

scoreintention
RegisteredVoter

Figure 5-11: Problem diagram for the voting example, showing the fidelity
requirement (Goal0), which relates the Voters and Public Record domains.

170

Voters

Stack of
Ballots Voting Board

Public Record

ballotCandidate
ballot8rrangement

ballotReceipt
receipt;arked

ballotReceipt
receiptCandidate

receipt;arked
receiptOnion

onion8rrangement

mix
record8rrangement

record;arked
recordCandidate

intention
RegisteredVoter score

Goal #'
all c: Candidate |

c.score = #(RegisteredVoter & intention.c)

all b: Ballot - Voter.voterBallot |
no b.ballotReceipt.receipt;arked

all v: RegisteredVoter | one v.voterBallot
all v: Voter - RegisteredVoter | no v.voterBallot
all b: Ballot | lone voterBallot.b
all v: RegisteredVoter | let b = v.voterBallot |

b.ballotReceipt.receipt;arked.(b.ballot8rrangement) = v.intention
all b: Ballot |

(b.ballotCandidate) = (b.ballotReceipt).receipt;arked.(b.ballot8rrangement)

RegisteredVoter
intention

voterBallot
ballot8rrangement

BallotReceipt
receipt;arked

Figure 5-12: Step 1, Part 1. Adding a breadcrumb to the Voters domain.

171

Voters

Stack of
Ballots Voting Board

Public Record

ballotCandidate
ballot8rrangement

ballotReceipt
receipt;arked

ballotReceipt
receiptCandidate

receipt;arked
receiptOnion

onion8rrangement

mix
record8rrangement

record;arked
recordCandidate

BallotCandidate score

!oa$%&'
all c: Candidate |

c.score = #(ballotCandidate.c & Ballot)

all b: Ballot - Voter.voterBallot |
no b.ballotReceipt.receipt;arked

all v: RegisteredVoter | one v.voterBallot
all v: Voter - RegisteredVoter | no v.voterBallot
all b: Ballot | lone voterBallot.b
all v: RegisteredVoter | let b = v.voterBallot |

b.ballotReceipt.receipt;arked.(b.ballot8rrangement) = v.intention
all b: Ballot |

(b.ballotCandidate) = (b.ballotReceipt).receipt;arked.(b.ballot8rrangement)

RegisteredVoter
intention

voterBallot
ballot8rrangement

BallotReceipt
receipt;arked

Figure 5-13: Step 1, Part 2. Rewriting the goal to reference different phenomena.

172

!o#$%&

'#a)* o,
-allo#& !o#/01 -oa%2

345l/) 6$)o%2

5allo#7a02/2a#$
5allo#8%%a01$9$0#

5allo#6$)$/:#
%$)$/:#;a%*$2

5allo#6$)$/:#
%$)$/:#7a02/2a#$

%$)$/:#;a%*$2
%$)$/:#<0/o0

o0/o08%%a01$9$0#

9/=
%$)o%28%%a01$9$0#

%$)o%2;a%*$2
%$)o%27a02/2a#$

-allo#>-allo#7a02/2a#$

&)o%$

!oal #'
all)? 7a02/2a#$ @

)>&)o%$ A #C5allo#7a02/2a#$>) D -allo#E

all 5? -allo# F !o#$%>Go#$%-allo# @
0o 5>5allo#6$)$/:#>%$)$/:#;a%*$2

all G? 6$1/&#$%$2!o#$% @ o0$ G>Go#$%-allo#
all G? !o#$% F 6$1/&#$%$2!o#$% @ 0o G>Go#$%-allo#
all 5? -allo# @ lo0$ Go#$%-allo#>5
all G? 6$1/&#$%$2!o#$% @ l$# 5 A G>Go#$%-allo# @

5>5allo#6$)$/:#>%$)$/:#;a%*$2>C5>5allo#8%%a01$9$0#E A G>/0#$0#/o0
all 5? -allo# @

C5>5allo#7a02/2a#$E A C5>5allo#6$)$/:#E>%$)$/:#;a%*$2>C5>5allo#8%%a01$9$0#E

6$1/&#$%$2!o#$%
/0#$0#/o0

Go#$%-allo#
5allo#8%%a01$9$0#

-allo#6$)$/:#
%$)$/:#;a%*$2

Figure 5-14: Step 1, Part 3. Pushing the goal from the Voters domain to the Stack
of Ballots domain.

173

!o#$%&

'#a)* o,
-allo#& !o#/01 -oa%2

345l/) 6$)o%2

5allo#7a02/2a#$
5allo#8%%a01$9$0#

5allo#6$)$/:#
%$)$/:#;a%*$2

5allo#6$)$/:#
%$)$/:#7a02/2a#$

%$)$/:#;a%*$2
%$)$/:#<0/o0

o0/o08%%a01$9$0#

9/=
%$)o%28%%a01$9$0#

%$)o%2;a%*$2
%$)o%27a02/2a#$

-allo#>-allo#7a02/2a#$

&)o%$

!oal #'
all)? 7a02/2a#$ @

)>&)o%$ A #C5allo#7a02/2a#$>) D -allo#E

all 2/&F 5G5H? -allo# @
5>5allo#6$)$/:# IA 5H>5allo#6$)$/:#

all 5? -allo# @
5>5allo#8%%a01$9$0# A
5>5allo#6$)$/:#>%$)$/:#<0/o0>o0/o08%%a01$9$0#

all %? 6$)$/:# @
%>%$)$/:#7a02/2a#$ A
C%>%$)$/:#;a%*$2E>C%>%$)$/:#<0/o0>o0/o08%%a01$9$0#E

5allo#6$)$/:#
5allo#8%%a01$9$0#

%$)$/:#;a%*$2
%$)$/:#<0/o0

o0/o08%%a01$9$0#

all 5? -allo# J !o#$%>Ko#$%-allo# @
0o 5>5allo#6$)$/:#>%$)$/:#;a%*$2

all K? 6$1/&#$%$2!o#$% @ o0$ K>Ko#$%-allo#
all K? !o#$% J 6$1/&#$%$2!o#$% @ 0o K>Ko#$%-allo#
all 5? -allo# @ lo0$ Ko#$%-allo#>5
all K? 6$1/&#$%$2!o#$% @ l$# 5 A K>Ko#$%-allo# @

5>5allo#6$)$/:#>%$)$/:#;a%*$2>C5>5allo#8%%a01$9$0#E A K>/0#$0#/o0
all 5? -allo# @

C5>5allo#7a02/2a#$E A C5>5allo#6$)$/:#E>%$)$/:#;a%*$2>C5>5allo#8%%a01$9$0#E

6$1/&#$%$2!o#$%
/0#$0#/o0

Ko#$%-allo#
5allo#8%%a01$9$0#

-allo#6$)$/:#
%$)$/:#;a%*$2

Figure 5-15: Step 2, Part 1. Adding a breadcrumb to the Stack of Ballots domain.

174

ballotReceipt
receiptCandidate

score

!oal #'
all c: Candidate |

c.score = #(Ballot.ballotReceipt & receiptCandidate.c)

Voters

Stack of
Ballots Voting Board

Public Record

ballotCandidate
ballotArrangement

ballotReceipt
receiptCarked

ballotReceipt
receiptCandidate

receiptCarked
receiptOnion

onionArrangement

mix
recordArrangement

recordCarked
recordCandidate

all b: Ballot - Voter.voterBallot |
no b.ballotReceipt.receiptCarked

all v: RegisteredVoter | one v.voterBallot
all v: Voter - RegisteredVoter | no v.voterBallot
all b: Ballot | lone voterBallot.b
all v: RegisteredVoter | let b = v.voterBallot |

b.ballotReceipt.receiptCarked.(b.ballotArrangement) = v.intention
all b: Ballot |

(b.ballotCandidate) = (b.ballotReceipt).receiptCarked.(b.ballotArrangement)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptCarked

all disj b,b': Ballot |
b.ballotReceipt != b'.ballotReceipt

all b: Ballot |
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt |
r.receiptCandidate =
(r.receiptCarked).(r.receiptOnion.onionArrangement)

ballotReceipt
ballotArrangement

receiptCarked
receiptOnion

onionArrangement

Figure 5-16: Step 2, Part 2. Rewriting the goal to reference different phenomena.

175

!allo%&'(')*%
+'(')*%,a-.).a%'

/(o+'

!oal #'
all (1 ,a-.).a%' 2

(3/(o+' 4 #67allo%3!allo%&'(')*% 8 +'(')*%,a-.).a%'3(9

:o%'+/

;%a(< o=
7allo%/ :o%)-> 7oa+.

?@!l)(&'(o+.

!allo%,a-.).a%'
!allo%A++a->'B'-%

!allo%&'(')*%
+'(')*%Ca+<'.

!allo%&'(')*%
+'(')*%,a-.).a%'

+'(')*%Ca+<'.
+'(')*%D-)o-

o-)o-A++a->'B'-%

B)E
+'(o+.A++a->'B'-%

+'(o+.Ca+<'.
+'(o+.,a-.).a%'

all !1 7allo% F :o%'+3Go%'+7allo% 2
-o !3!allo%&'(')*%3+'(')*%Ca+<'.

all G1 &'>)/%'+'.:o%'+ 2 o-' G3Go%'+7allo%
all G1 :o%'+ F &'>)/%'+'.:o%'+ 2 -o G3Go%'+7allo%
all !1 7allo% 2 lo-' Go%'+7allo%3!
all G1 &'>)/%'+'.:o%'+ 2 l'% ! 4 G3Go%'+7allo% 2

!3!allo%&'(')*%3+'(')*%Ca+<'.36!3!allo%A++a->'B'-%9 4 G3)-%'-%)o-
all !1 7allo% 2

6!3!allo%,a-.).a%'9 4 6!3!allo%&'(')*%93+'(')*%Ca+<'.36!3!allo%A++a->'B'-%9

&'>)/%'+'.:o%'+
)-%'-%)o-

Go%'+7allo%
!allo%A++a->'B'-%

7allo%&'(')*%
+'(')*%Ca+<'.

all .)/H !I!J1 7allo% 2
!3!allo%&'(')*% K4 !J3!allo%&'(')*%

all !1 7allo% 2
!3!allo%A++a->'B'-% 4
!3!allo%&'(')*%3+'(')*%D-)o-3o-)o-A++a->'B'-%

all +1 &'(')*% 2
+3+'(')*%,a-.).a%' 4
6+3+'(')*%Ca+<'.936+3+'(')*%D-)o-3o-)o-A++a->'B'-%9

!allo%&'(')*%
!allo%A++a->'B'-%

+'(')*%Ca+<'.
+'(')*%D-)o-

o-)o-A++a->'B'-%

Figure 5-17: Step 2, Part 3. Pushing the goal frrom the Stack of Ballots domain
to the Voting Board domain.

176

all $%&'() *allo(,-allo(./0/$&(1 o%/ $%&'(,2$3
all o'(&'() ./0/$&(,2$3 1 o%/ 2$3,o'(&'(
all -) *allo(1 -,-allo(./0/$&($% 2$3,./0o45
all 4) 2$3,./0o45 1 4 $% *allo(,-allo(./0/$&(
all $%&'() 2$3,./0o45 1 l/(o'(&'(6 $%&'(,2$3 7

$%&'(,4/0/$&(8%$o%,a44a%9/2/%(6 o'(&'(,4/0o45:44a%9/2/%(
$%&'(,4/0/$&(;a4</5 6 o'(&'(,4/0o45;a4</5

=
all 5) ./0o45 1

5,4/0o45>a%5$5a(/ 6 ?5,4/0o45;a4</5@,?5,4/0o45:44a%9/2/%(@

2$3
-allo(./0/$&(
4/0/$&(8%$o%

4/0/$&(;a4<$%9
4/0o45;a4<$%9

4/0o45:44a%9/2/%(
o%$o%:44a%9/2/%(

-allo(./0/$&(
4/0/$&(>a%5$5a(/

A0o4/

!oal #'
all 0) >a%5$5a(/ 1

0,A0o4/ 6 #?*allo(,-allo(./0/$&(C 4/0/$&(>a%5$5a(/,0@

Do(/4A

E(a0< oF
*allo(A Do($%9 *oa45

G'-l$0 ./0o45

-allo(>a%5$5a(/
-allo(:44a%9/2/%(

-allo(./0/$&(
4/0/$&(;a4</5

-allo(./0/$&(
4/0/$&(>a%5$5a(/

4/0/$&(;a4</5
4/0/$&(8%$o%

o%$o%:44a%9/2/%(

2$3
4/0o45:44a%9/2/%(

4/0o45;a4</5
4/0o45>a%5$5a(/

all -) *allo(H Do(/4,Io(/4*allo(1
%o -,-allo(./0/$&(,4/0/$&(;a4</5

all I) ./9$A(/4/5Do(/4 1 o%/ I,Io(/4*allo(
all I) Do(/4 H ./9$A(/4/5Do(/4 1 %o I,Io(/4*allo(
all -) *allo(1 lo%/ Io(/4*allo(,-
all I) ./9$A(/4/5Do(/4 1 l/(- 6 I,Io(/4*allo(1

-,-allo(./0/$&(,4/0/$&(;a4</5,?-,-allo(:44a%9/2/%(@ 6 I,$%(/%($o%
all -) *allo(1

?-,-allo(>a%5$5a(/@ 6 ?-,-allo(./0/$&(@,4/0/$&(;a4</5,?-,-allo(:44a%9/2/%(@

./9$A(/4/5Do(/4
$%(/%($o%

Io(/4*allo(
-allo(:44a%9/2/%(

*allo(./0/$&(
4/0/$&(;a4</5

all 5$AJ -K-L) *allo(1
-,-allo(./0/$&(M6 -L,-allo(./0/$&(

all -) *allo(1
-,-allo(:44a%9/2/%(6
-,-allo(./0/$&(,4/0/$&(8%$o%,o%$o%:44a%9/2/%(

all 4) ./0/$&(1
4,4/0/$&(>a%5$5a(/ 6
?4,4/0/$&(;a4</5@,?4,4/0/$&(8%$o%,o%$o%:44a%9/2/%(@

-allo(./0/$&(
-allo(:44a%9/2/%(

4/0/$&(;a4</5
4/0/$&(8%$o%

o%$o%:44a%9/2/%(

Figure 5-18: Step 3, Part 1. Adding a breadcrumb to the Voting Board domain.

177

!"#
$%&o$()a+("(a,%

$%&o$(-$$a+.!%+,
$%&o$(/a$0%(

1&o$%

!oal #'
all &4)a+("(a,% 5

&61&o$% 7 #9:%&%";,6!"# < $%&o$()a+("(a,%6&=

>o,%$1

?,a&0 o@
Aallo,1 >o,"+. Aoa$(

BCDl"& :%&o$(

Dallo,)a+("(a,%
Dallo,-$$a+.%!%+,

Dallo,:%&%";,
$%&%";,/a$0%(

Dallo,:%&%";,
$%&%";,)a+("(a,%

$%&%";,/a$0%(
$%&%";,E+"o+

o+"o+-$$a+.%!%+,

!"#
$%&o$(-$$a+.%!%+,

$%&o$(/a$0%(
$%&o$()a+("(a,%

all "+;C,4 Aallo,6Dallo,:%&%";, 5 o+% "+;C,6!"#
all oC,;C,4 :%&%";,6!"# 5 o+% !"#6oC,;C,
all D4 Aallo, 5 D6Dallo,:%&%";, "+ !"#6:%&o$(
all $4 !"#6:%&o$(5 $ "+ Aallo,6Dallo,:%&%";,
all "+;C,4 !"#6:%&o$(5 l%, oC,;C, 7 "+;C,6!"# F

"+;C,6$%&%";,E+"o+6a$$a+.%!%+, 7 oC,;C,6$%&o$(-$$a+.%!%+,
"+;C,6$%&%";,/a$0%(7 oC,;C,6$%&o$(/a$0%(

G
all (4 :%&o$(5

(6$%&o$()a+("(a,% 7 9(6$%&o$(/a$0%(=69(6$%&o$(-$$a+.%!%+,=

!"#
Dallo,:%&%";,
$%&%";,E+"o+

$%&%";,/a$0"+.
$%&o$(/a$0"+.

$%&o$(-$$a+.%!%+,
o+"o+-$$a+.%!%+,

all D4 Aallo, H >o,%$6Io,%$Aallo, 5
+o D6Dallo,:%&%";,6$%&%";,/a$0%(

all I4 :%."1,%$%(>o,%$ 5 o+% I6Io,%$Aallo,
all I4 >o,%$ H :%."1,%$%(>o,%$ 5 +o I6Io,%$Aallo,
all D4 Aallo, 5 lo+% Io,%$Aallo,6D
all I4 :%."1,%$%(>o,%$ 5 l%, D 7 I6Io,%$Aallo, 5

D6Dallo,:%&%";,6$%&%";,/a$0%(69D6Dallo,-$$a+.%!%+,= 7 I6"+,%+,"o+
all D4 Aallo, 5

9D6Dallo,)a+("(a,%= 7 9D6Dallo,:%&%";,=6$%&%";,/a$0%(69D6Dallo,-$$a+.%!%+,=

:%."1,%$%(>o,%$
"+,%+,"o+

Io,%$Aallo,
Dallo,-$$a+.%!%+,

Aallo,:%&%";,
$%&%";,/a$0%(

all ("1J DKDL4 Aallo, 5
D6Dallo,:%&%";, M7 DL6Dallo,:%&%";,

all D4 Aallo, 5
D6Dallo,-$$a+.%!%+, 7
D6Dallo,:%&%";,6$%&%";,E+"o+6o+"o+-$$a+.%!%+,

all $4 :%&%";, 5
6%&%";,)a+("(a,% 7
9$6$%&%";,/a$0%(=69$6$%&%";,E+"o+6o+"o+-$$a+.%!%+,=

Dallo,:%&%";,
Dallo,-$$a+.%!%+,

$%&%";,/a$0%(
$%&%";,E+"o+

o+"o+-$$a+.%!%+,

Figure 5-19: Step 3, Part 2. Rewriting the goal to reference different phenomena.

178

m"#
record)and"date
record-rrangment
record/arked

1core

Goal #3
a223c43)and"date35

c.1core37389Rece";t.m"#3<3record)and"date.c=

>oter1

?tack3o@3
Aa22ot1 >ot"ng3Aoard

BCD2"c3Record

Da22ot)and"date
Da22ot-rrangement
Da22otRece";t
rece";t/arked

Da22otRece";t
rece";t)and"date
rece";t/arked
rece";tEn"on

on"on-rrangement

m"#
record-rrangement
record/arked
record)and"date

a223"n;Ct43Aa22ot.Da22otRece";t353one3"n;Ct.m"#
a223oCt;Ct43Rece";t.m"#353one3m"#.oCt;Ct
a223D43Aa22ot353D.Da22otRece";t3"n3m"#.Record
a223r43m"#.Record353r3"n3Aa22ot.Da22otRece";t
a223"n;Ct43m"#.Record3532et3oCt;Ct373"n;Ct.m"#3F

"n;Ct.rece";tEn"on.arrangement373oCt;Ct.record-rrangement
"n;Ct.rece";t/arked373oCt;Ct.record/arked

G
a223d43Record35

d.record)and"date3739d.record/arked=.9d.record-rrangement=

m"#
Da22otRece";t
rece";tEn"on
rece";t/ark"ng
record/ark"ng

record-rrangement
on"on-rrangement

a223D43Aa22ot3H3>oter.IoterAa22ot35
no3D.Da22otRece";t.rece";t/arked

a223I43Reg"1tered>oter353one3I.IoterAa22ot
a223I43>oter3H3Reg"1tered>oter353no3I.IoterAa22ot
a223D43Aa22ot3532one3IoterAa22ot.D
a223I43Reg"1tered>oter3532et3D373I.IoterAa22ot35

D.Da22otRece";t.rece";t/arked.9D.Da22ot-rrangement=373I."ntent"on
a223D43Aa22ot35

9D.Da22ot)and"date=3739D.Da22otRece";t=.rece";t/arked.9D.Da22ot-rrangement=

Reg"1tered>oter
"ntent"on
IoterAa22ot

Da22ot-rrangement
Aa22otRece";t
rece";t/arked

a223d"1J3DKDL43Aa22ot35
D.Da22otRece";t3M73DL.Da22otRece";t

a223D43Aa22ot35
D.Da22ot-rrangement37
D.Da22otRece";t.rece";tEn"on.on"on-rrangement

a223r43Rece";t35
r.rece";t)and"date37
9r.rece";t/arked=.9r.rece";tEn"on.on"on-rrangement=

Da22otRece";t
Da22ot-rrangement
rece";t/arked
rece";tEn"on

on"on-rrangement

Figure 5-20: Step 3, Part 3. Pushing the goal from the Voting Board domain to the
Public Record domain.

179

Voters

Stack of
Ballots Voting Board

Public Record

ballotCandidate
ballotArrangement

ballotReceipt
receiptMarked

ballotReceipt
receiptCandidate

receiptMarked
receiptOnion

onionArrangement

mix
recordArrangement

recordMarked
recordCandidate

all c: Candidate |
c.score =
#(Receipt.mix & recordCandidate.c)

score
mix

recordCandidate

all input: Ballot.ballotReceipt | one input.mix
all output: Receipt.mix | one mix.output
all b: Ballot | b.ballotReceipt in mix.Record
all r: mix.Record | r in Ballot.ballotReceipt
all input: mix.Record | let output = input.mix {

input.receiptOnion.arrangement = output.recordArrangement
input.receiptMarked = output.recordMarked

}
all d: Record |

d.recordCandidate = (d.recordMarked).(d.recordArrangement)

mix
ballotReceipt
receiptOnion

receiptMarking
recordMarking

recordArrangement
onionArrangement

all b: Ballot - Voter.voterBallot |
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter | one v.voterBallot
all v: Voter - RegisteredVoter | no v.voterBallot
all b: Ballot | lone voterBallot.b
all v: RegisteredVoter | let b = v.voterBallot |

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = v.intention
all b: Ballot |

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

all disj b,b': Ballot |
b.ballotReceipt != b'.ballotReceipt

all b: Ballot |
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt |
r.receiptCandidate =
(r.receiptMarked).(r.receiptOnion.onionArrangement)

ballotReceipt
ballotArrangement

receiptMarked
receiptOnion

onionArrangement

Figure 5-21: Cleaning up the final argument diagram. Each assumption references
only a single domain, so progression is complete.

180

We extend the earlier Alloy model to check the requirement progression rewrite

steps. The initial goal is the system requirement; each candidate’s final score is equal

to the number of registered voters who intended to vote for that candidate.

1 pred Goal0 [] {
2 a l l c : Candidate |
3 c . s co r e = #(Reg i s te redVoter & in t en t i o n . c)
4 }

Our first rewrite replaces the expression “registered voters who intended to vote for

that candidate” to instead say “candidates marked on the ballots”.

1 pred Goal1 [] {
2 a l l c : Candidate |
3 c . s co r e = #(ba l lo tCandidate . c & Ba l l o t)
4 }

To justify this rewrite, we have to justify the fact that the markings on the ballots

reflect the intentions of the registered voters (and only registered voters). These

constraints are added as a breadcrumb on Voters.

1 pred VoterBreadcrumb [] {
2 a l l b : Ba l l o t − Voter . v o t e rBa l l o t | no b . ba l l o tRe c e i p t . rece iptMarked
3 a l l v : Reg i s teredVoter | one v . v o t e rBa l l o t
4 a l l v : Voter − Regi s teredVoter | no v . v o t e rBa l l o t
5 a l l b : Ba l l o t | lone vo t e rBa l l o t . b
6 a l l v : Reg i s teredVoter | l e t b = v . v o t e rBa l l o t |
7 b . ba l l o tRe c e i p t . rece iptMarked . (b . bal lotArrangement) = v . i n t en t i o n
8 }

These constraints can be interpreted as follows:

Line 2: ballots not given to voters are not marked,

Line 3: every registered voter gets exactly one ballot,

Line 4: non-registered voters get no ballots,

Line 5: each ballot is given to only one voter, and

Lines 6-7: the ballots given to registered voters are marked to reflect that voter’s
intention.

We check that this breadcrumb is sufficiently strong to enforce the rewrite, by showing

that the breadcrumb conjoined with the new goal logically imply the prior goal.

181

1 assert pa r t i a lC la im1 {
2 VoterBreadcrumb and Goal1 ⇒ Goal0
3 }
4 check pa r t i a lC la im1 expect 0

The check passes, so we proceed to the next rewrite. The second rewrite replaces the

expression “candidates marked on the ballots” to instead say “candidates marked on

the receipts of the ballots”.

1 pred Goal2 [] {
2 a l l c : Candidate |
3 c . s co r e = #(Ba l l o t . b a l l o tRe c e i p t & rece ip tCand idate . c)
4 }

To justify this rewrite, we add a breadcrumb to Ballots. It articulates why it is ok to

refer to ballot receipts instead of the ballots themselves.

1 pred BallotBreadcrumb [] {
2 a l l d i s j b , b ’ : Ba l l o t |
3 b . ba l l o tRe c e i p t != b ’ . b a l l o tRe c e i p t
4 a l l b : Ba l l o t |
5 b . bal lotArrangement = b . ba l l o tRe c e i p t . r ece iptOnion . onionArrangement
6 }

These constraints can be interpreted as follows:

Lines 2-3: no two ballots have the same receipt, and

Line 4-5: the arrangement or candidate names on each ballot is the same as the
arrangement encoded in the onion on that ballot’s receipt.

We check that this breadcrumb is sufficiently strong to enforce the rewrite, by showing

that the breadcrumb conjoined with the new goal logically imply the prior goal.

1 assert pa r t i a lC la im2 {
2 BallotBreadcrumb and Goal2 ⇒ Goal1
3 }
4 check pa r t i a lC la im2 expect 0

The check passes, so we proceed to the next rewrite. The third rewrite replaces

the expression “candidates marked on the receipts of the ballots” to instead say

“candidates marked on the records that result from feeding the ballot receipts into

the voting board scrambler”.

182

1 pred Goal3 [] {
2 a l l c : Candidate |
3 c . s co r e = #(Receipt . mix & recordCandidate . c)
4 }

To justify referencing processed records instead of unprocessed receipts, we add a

breadcrumb to the Voting Board.

1 pred BoardBreadcrumb [] {
2 a l l input : Ba l l o t . b a l l o tRe c e i p t | one input . mix
3 a l l output : Receipt . mix | one mix . output
4 a l l b : Ba l l o t | b . ba l l o tRe c e i p t in mix . Record
5 a l l r : mix . Record | r in Ba l l o t . b a l l o tRe c e i p t
6 a l l input : mix . Record | l e t output = input . mix {
7 input . r ece iptOnion . onionArrangement = output . recordArrangement
8 input . rece iptMarked = output . recordMarked
9 }

10 }

These constraints can be interpreted as follows:

Line 2: no records are created except those that correspond to receipts,

Line 3: one record is generated for each receipt sent into the voting board,

Line 4: all receipts from ballots are sent to the voting board,

Line 5: only receipts from ballots are sent to the voting board, and

Lines 6-8: the record that result from a receipt indicates the same candidate (has
the same arrangement and marking).

We check that this breadcrumb is sufficiently strong to enforce the rewrite, by showing

that the breadcrumb conjoined with the new goal logically imply the prior goal.

1 assert pa r t i a lC la im3 {
2 BoardBreadcrumb and Goal3 ⇒ Goal2
3 }
4 check pa r t i a lC la im3 expect 0

The check passes, so we are done. Together, the breadcrumbs are sufficiently strong

to justify replacing the original goal (goal0) with the final goal (goal3).

The full Alloy model, with additional liveness simulations and inlined comments,

is given in the Appendix 11.

183

5.4 Secrecy Goal

It is not enough for a voting system to correctly tally votes. It must also provide

anonymity to the voters; an outsider should not be able to deduce for whom a

given voter cast a vote (and thereby influence that voter with threats or bribes). To

represent an attack on the system’s secret information, we build upon our previous

model of the system to create a model of what information can be known by an

adversary and how an adversary might deduce that information. A secrecy model

has four components:

Information – A description of what is knowable about the system. For example,
it represents the fact that a candidate has a score and a receipt is attached to
a ballot.

Initial Data – A list of the information that is initially available to an adversary. For
example, it includes the fact that the adversary is permitted to initially know
how records are marked but not permitted to (initially) know voter intentions.

Incognito Data – A list of the information that ought to be kept hidden from an
adversary. It specifies that the adversary should not be able to deduce how
voters marked their ballots.

Inferences – Rules describing the conditions underwhich pieces of information can
be learned by an adversary. For example, they include the fact that one can
deduce a candidate’s score from the set of records, or that one can deduce a
voter’s intention by examining that voter’s ballot.

Put together, these four parts allow us to automatically answer the question

“Given the initial information made available, can an adversary infer incognito

information?”. The rest of this section describes how we model each of these four

pieces in Alloy, thus permitting automatic detection of secrecy vulnerabilities. The

full text of the model is given in Appendix 12.

Our goal here is not to provide a method capable of performing new analyses, but

rather to perform existing analyses in a manner that integrates smoothly with the

fidelity and auditability goals. As we will see in Section 5.5, if the secrecy model is

built using the same phenomena as the fidelity model, then the auditability argument

is easy to structure.

184

(c → i → t) ⇔ As of inference step t, candidate c is known
∈ known score to have score i.

(v → t) ⇔ As of inference step t, voter is known to
∈ known RegisteredVoter be a registered voter.

(b → p → c → t) ⇔ As of inference step t, candidate c is
∈ known ballotArrangement known to be at position p on ballob b.

(b → r → t) ⇔ As of inference step t, receipt r is known
∈ known ballotReceipt to have been attached to ballot b.

(v → b → t) ⇔ As of inference step t, ballot b is known
∈ known voterBallot to have been given to voter v.

(v → c → t) ⇔ As of inference step t, voter v is known
∈ known intention to want candidate c to win.

(r → p → t) ⇔ As of inference step t, receipt r is
∈ known receiptMarked known to be marked as potision p.

(r → o → t) ⇔ As of inference step t, onion o is known
∈ known receiptOnion to be written on receipt r.

(o → p → c → t) ⇔ As of inference step t, candidate c is
∈ known onionArrangement known to be at position p on the ordering

encoded by onion o.
(d → p → c → t) ⇔ As of inference step t, candidate c is known

∈ known recordArrangement to be at position p on record d.
(d → p) ⇔ As of inference step t, record d is known

∈ known recordMarked to be marked at position p.
(r → d) ⇔ As of inference step t, record d is known

∈ known mix to have derived from the re-encryption of
receipt r.

Figure 5-22: Designations for describing an adversary’s inferrable knowledge about
the voting system. For each relation in the fidelity model, there is an additional
knowledge relation in the secrecy model with the same type signature but an extra
time column at the end. A knowledge relation records the subset of the corresponding
relation that the adversary has inferred at a given point in time.

5.4.1 Modeling Information

We build upon the designated phenomena used in the fidelity model (and given

in Figure 5-4). We augment those designations with a parallel set of knowledge

phenomena, shown in Figure 5-22.

Each relation in the prior model is mirrored with a copy that has the same type

signature but which has an extra time column. The old relations represent the actual

185

state of the world (how each voter voted, how the receipts were encrypted, who won

the election, and so on). The knowledge relations represent knowledge the adversary

has learned about the true world (the fact that voter X marked candidate Y on her

ballot, the fact that Candidate Q has 10 votes, the fact that ballot A was attached

to receipt B, and so on).

In our model, time represents steps during the inference process. The election (and

all of the relations from the fidelity model) is a static model – it remains constant

throughout the inference process. However, the knowledge relations are dynamic –

they vary over time, as the adversary uses inferences to expand them.

For example, we expand the Voter signature as shown in Figure 5-23. The

intention relation (line 2) maps a voter to a candidate, and has the same

interpretation (designation) as in the fidelity model. The known intention relation

(line 3) maps a voter to a candidate to a time, representing the set of times at which

the adversary knows that voter intended to vote for that candidate.

5.4.2 Modeling Initial Data

Line 13 of Figure 5-23 says that initial knowledge is never erroneous. It may be

incomplete (and indeed we expect it to be), but it must not contradict the actual

world. The keyword first refers to the first point in time, so an expression such

as known intention.first gives the set of known intentions at the beginning of the

attack.

Lines 24-26 prevent the adversary from initially knowing any defined variables.

Defined variables are derived properties of the world, and are not directly observable,

so it would not make sense for the adversary to be able to intuit them. However,

there are inferences provided in the model that permit the adversary to infer defined

variables according to their definitions (as shown in Appendix 12).

For example, ballotCandidate represents the candidate indicated by a ballot –

if you know how to interpret it by looking at the arrangement of names and how its

receipt is marked. One cannot directly observe what candidate a ballot indicates (a

defined phenomenon), but one can observe the arrangement, receipt, and receipt

186

marking (designated phenomena) and from that infer the meaning of the ballot.

The information about how to interpret a ballot to deduce its candidate is not a

priori apparent from the world, and the extra knowledge required to make that

interpretation is encoded in the inference. We discuss inferences in greater depth in

Section 5.4.4.

Lines 29-32 prevent the adversary from knowing some crucial pieces of information.

These are designated phenomena, so we have to justify the claim that an adversary

cannot directly observe them (by appealing to domain experts).

Line 29: voter intentions cannot be observed because they are hidden inside of
the voters’ heads. We assume that the adversary cannot forcibly extract
that knowledge from a voter (and be confident of its accuracy). A bribed or
threatened voter might lie.

Line 30: the ordering of names on a ballot cannot be observed, because the ballot
(with that list) is torn off of the receipt before the voter leaves the voting
booth. The booth might be equipped with a stack of different half-ballots
(without receipts), so a voter could carry out a different one than the one
actually attached to the receipt used.

Line 31: the ordering of names encoded in an onion cannot be observed, since they
are encrypted with public key cryptography (and the private key is kept secret).

Line 32: the link between receipts going into the voting board and records coming
out of it is obscured by the re-encryption process. This line is commented out
since it was omitted from an early version of the model, and doing so permits
the attack described in Section 5.4.5.

5.4.3 Modeling Incognito Data

First, we consider the informal secrecy requirement, as described to us by the system

designers. Then we restate it precisely and rewrite it formally in Alloy.

informal

Do not allow an outside observer to deduce how an individual voter
voted.

187

precise

An outside observer making reasonable inferences and observations
must not be able to deduce (with certainty) for whom a particular voter
voted.

formal

1 no v : Voter |
2 some v . (known voterBa l lo t . l a s t) . (known bal lotCandidate . l a s t)

There must not be any voter whose ballot is known if the candidate
indicated by that ballot is decipherable. Appears as line 35 in Figure 5-23.

5.4.4 Modeling Inferences

The model uses a variation on the event-based idiom [34]. Each inference is reified

in its own signature, which allows us to write constraints about inferences as first

class objects. For example, we can easily write a constraint that says that only one

inference is made each time step, that a particular inference is never made, or that

a particular inference is only made under certain conditions. Figure 5-24 shows a

typical inference signature written as a reified event.

The event based idiom allows us to build history and prophecy variables, as shown

in Figure 5-25 , which make counterexamples much easier to interpret. A history

variable maps a point in time to the inference that leads to that point in time (Line

2). A prophecy variable maps a point in time to the inference that will lead it to the

next point in time (Line 3).

The event-based idiom also eases our use of the the justified-change idiom. Rather

than writing constraints of the form “if inference X is used then (only) information

Y is learned” (enforced-change idiom), we write them in the form “if information Y

is learned then inference X must have been used” (justified-change idiom).

Lines 22-26 of Figure 5-25 show how we enforce the justified change idiom in

Alloy. In order for the adversary to learn a new tuple of known intention, he must

satisfy the constraints given in at least one of the inference rules for intention. One

188

such inference rule is shown in Figure 5-24, which says that the adversary can use

information from a fully marked ballot to infer a voter’s intention.

This pattern permits us to have several inferences trigger in the same time step,

without having their frame conditions interfere with each other. Under the enforced-

change idiom, an inference X1 cannot allow the adversary to learn information Y1 in

the same time step that inference X2 allows the adversary to learn information Y2,

because the frame condition on inference X1 says that only information Y1 is learned.3

However, the justified-change idiom allows any number of pieces of information to be

learned as long as each addition is justified by some inference. The benefit of this

is that it allows complex attacks to be made in fewer time steps, meaning that an

analysis in a given scope provides a stronger guarantee and thus greater confidence

in the secrecy of the system. When examining counterexamples, it is helpful to

prevent simultaneous inferences rule (Lines 14-17 of Figure 5-25), but when checking

assertions we relax that constraint to provide a stronger guarantee.

5.4.5 Identifying an Attack

Lines 19-38 of Figure 5-23 instruct Alloy to find a sequence of inferences that

successfully attack the system’s secret data.

Lines 20-21 import some predicates that constrain how learning happens and

which make the resulting solutions easier to interpret. All but one have been elided

from this excerpt; the remaining constraint says that only one inference is made

each time step (which makes counterexamples easier to interpret). Lines 23-32 define

restrictions on the adversary’s initial knowledge, as discussed earlier.

Line 35 defines what it means for the adversary’s attack to succeed. We force it

to be true, thereby telling Alloy to find us a solution showing a successful attack.

Lines 37-38 are run statements that instruct Alloy to search for solutions to

the predicate within the stated bounds. The first one has a solution, indicating

3If X1 did not say that only Y1 changes, then X1 would be implicitly allowing anything at all
to change when it triggers, which is clearly not a valid inference. The problem centers around the
need for so called frame conditions in declarative logic – statements of the form “and nothing else
changes”.

189

a successfully attack (discussed below). The second one does not have solutions,

indicating that there are no viable attacks that take only 2 inferences.

5.4.6 Interpreting the Solutions

Running the analysis on Line 37 of Figure 5-23 returns a solution – a case where the

adversary succeeds at making an attack despite obeying the restrictions placed on his

initial knowledge. Figures 5-26 through 5-29 show one such solution as displayed by

the Alloy visualizer. The solution has been projected over Time, meaning that we

will see a sequence of diagrams each representing the state of the world at a particular

point in time.

We can see the actual election information in any of the diagrams, since it is not

time dependent. There is one voter, and that voter intended to vote for the only

candidate. That voter is given the only ballot, which has a receipt with an onion.

That receipt is sent to the voting board where is is re-encrypted (the mix relation) and

turned into a record. Both the receipt and record are marked at the same position,

next to the sole candidate in the race. The candidate thus has a score of 1. These

relations have no time column, so they are are the same in each Time-dependent

diagram.

By looking at the sequence of diagrams, one for each time step, we see the

sequence of inferences the adversary used. In each diagram, the trapezoid node

pastAttractions is a history variable that gives the inference that result in that

time step. The trapezoid labeled comingAttractions is a prophecy variable giving

the inference that is about to happen.

190

1 sig Voter {
2 i n t en t i o n : set Candidate ,
3 known intent ion : Candidate → Time ,
4 vo t e rBa l l o t : set Bal lo t ,
5 known voterBa l lo t : Ba l l o t → Time ,
6 . . .
7 }
8
9 . . .

10
11 // i n i t i a l knowledge i s correc t , bu t p o s s i b l y incomple te
12 pred seededKnowledge [] {
13 known intent ion . f i r s t in i n t en t i o n
14 . . .
15 }
16
17 . . .
18
19 pred s u c c e s s f u l h a r d a t t a c k [] {
20 . . .
21 seededKnowledge
22
23 //you cannot i n i t i a l l y know de f ined phenom , on ly des i gna t ed ones
24 no known bal lotCandidate . f i r s t
25 no known receiptCandidate . f i r s t
26 no known recordCandidate . f i r s t
27
28 //domain−s p e c i f i c r e s t r i c t i o n s
29 no known intent ion . f i r s t //no t e l e p a t h y
30 no known ballotArrangement . f i r s t // tear−o f f r e c e i p t s
31 no known onionArrangement . f i r s t // encrypt ion
32 −−no known mix . f i r s t // re−encrypt ion scrambl ing
33
34 // ma l i c iou s goa l
35 some v : Voter | some v . (known voterBa l lot . l a s t) . (known bal lotCandidate . l a s t)
36 }
37 run s u c c e s s f u l h a r d a t t a c k for 2 but 3 In f e r ence , 4 Time , 3 int , 1 Record expect 1
38 run s u c c e s s f u l h a r d a t t a c k for 2 but 2 In f e r ence , 3 Time , 3 int , 1 Record expect 0

Figure 5-23: Selections from the voting secrecy model that define the information
and temporal structure. Full text is given in Appendix 12.

191

1 abs t r a c t sig I n f e r en c e {
2 pre , post : one Time
3 }
4 sig pause extends I n f e r en c e { } { } // the t r i v i a l i n f e r en c e t ha t l e a rn s nothing
5
6 abs t r a c t sig i n t e n t i o n I n f e r e n c e extends I n f e r en c e {
7 u s ed vo t e r f r om in t en t i o n : one Voter ,
8 u s ed cand ida t e f r om in t en t i o n : one Candidate ,
9 }

10 sig i n t e n t i o n i n f e r e n c e 1 extends i n t e n t i o n I n f e r e n c e {}{
11 //what you l earn
12 (u s ed vo t e r f r om in t en t i o n → u s ed cand ida t e f r om in t en t i o n)
13 in known intent ion . post
14 (u s ed vo t e r f r om in t en t i o n → u s ed cand ida t e f r om in t en t i o n)
15 not in known intent ion . pre
16
17 //when you can l earn i t
18 u s ed vo t e r f r om in t en t i o n in known RegisteredVoter . pre
19 l e t b = us ed vo t e r f r om in t en t i o n . (known voterBa l lo t . pre) |
20 b . (known bal lotRece ipt . pre) . (known receiptMarked . pre)
21 . (b . (known ballotArrangement . pre)) = us ed cand ida t e f r om in t en t i o n
22 }

Figure 5-24: A typical inference written in the event-based idiom. Adding inferences
under this idiom is modular. To add an inference, only one signature paragraph need
be added – the rest of the model remains untouched. This particular inference is for
deducing a tuple in the intention relation – learning that a particular voter definitely
intends to vote for a particular candidate by examining that voter’s ballot.

192

1 sig Time {
2 comingAttract ions : set In f e r ence , // prophecy
3 pa s tAtt r a c t i ons : set In f e r ence , // h i s t o r y
4 }
5 fact his tory matches prophesy {
6 a l l t : Time | t . comingAttract ions = t . next . pa s tAtt r a c t i ons
7 no f i r s t . pa s tAtt r a c t i ons
8 a l l t : Time − l a s t | t . comingAttract ions . pre = t
9 a l l t : Time − f i r s t | t . pa s tAtt r a c t i ons . post = t

10 }
11
12 . . .
13
14 pred s e q u e n t i a l I n f e r e n c e s [] {
15 a l l t : Time | lone t . comingAttract ions
16 a l l t : Time | lone t . pa s tAtt r a c t i ons
17 }
18
19 . . .
20
21 pred exp la inAdd i t i ons {
22 a l l t : Time − f i r s t , v : Voter , c : Candidate |
23 (v → c) in known intent ion . t − known intent ion . (t . prev)
24 ⇒ some i n f : i n t e n t i o n I n f e r e n c e & t . pa s tAtt r a c t i ons |
25 i n f . u s ed vo t e r f r om in t en t i o n = v
26 and i n f . u s ed cand ida t e f r om in t en t i o n =c
27 . . .
28 }

Figure 5-25: Selections from the voting secrecy model that define predicates that
constrain how inferences are made. Full text is given in Appendix 12.

193

Receipt
receiptCandidate: Candidate

Record
dArrange: Position->Candidate

kn_dArrange: Position->Candidate
recordCandidate: Candidate

known_mix mix

Position

known_receiptMarked receiptMarked

Onion
oArrange: Position->Candidate

known_receiptOnion receiptOnion

recordMarked

Ballot
bArrange: Position->Candidate

ballotCandidate: Candidate

ballotReceipt known_ballotReceipt

Voter
(Victim, known_RegisteredVoter, RegisteredVoter)

voterBallot known_voterBallot

Candidate

intention

1

score

onionArrangement_inference_3
(comingAttractions, pre)

candidate: Candidate
onion: Onion

position: Position

Figure 5-26: The first time step (Time0) in a successful attack on the voting system’s
voter records. This timestep represents the static structure of the election that
happened, and the initial knowledge available to the adversary.

Initially (Time0), the adversary knows which ballot the voter was given, the receipt

attached to that ballot, the onion for that receipt, which record that receipt turned

into, and how the receipt was marked. This is not yet enough information to deduce

for whom the voter voted, since it is not (yet) apparent how the ballot was arranged,

how the receipt was marked, or how the voter intended to vote. In fact, in this attack,

the final score for the candidate isn’t known and doesn’t need to be inferred.

194

Receipt
receiptCandidate: Candidate

Record
dArrange: Position->Candidate

kn_dArrange: Position->Candidate
recordCandidate: Candidate

known_mix mix

Position

known_receiptMarked receiptMarked

Onion
kn_oArrange: Position->Candidate

oArrange: Position->Candidate

known_receiptOnion receiptOnion

recordMarked

Ballot
bArrange: Position->Candidate

ballotCandidate: Candidate

ballotReceipt known_ballotReceipt

Voter
(Victim, known_RegisteredVoter, RegisteredVoter)

voterBallot known_voterBallot

Candidate

intention

1

score

ballotArrangement_inference_2
(comingAttractions, pre)

ballot: Ballot
candidate: Candidate

position: Position

onionArrangement_inference_3
(pastAttractions, post)
candidate: Candidate

onion: Onion
position: Position

Figure 5-27: The second time step (Time1) in a successful attack on the voting
system’s voter records. In this step, the adversary has just inferrred the ordering
represented by the onion by looking at the ordering of the record associated with
that onion’s receipt.

The first inference used is onionArrangement Inference 3, which says that one

can deduce the arrangement of an onion if one knows the arrangement of the record

that the onion’s receipt turned into when fed into the voting board. Specifically, it

relies on the fact that those two orderings must be identical (as stated in the voting

board bread crumb). In the second time step (Time1), we see the result of this

inference – that the adversary now knows the onion’s arrangement (a kn oArrange

entry has been added to the onion’s pentagonal box, which mirrors that portion of

the actual onion arrangement, oArrange).

From the second to the third time steps, the adversary uses

ballotArrangement inference 2 to deduce the arrangement of candidates on

the ballot based on the arrangement of candidates encoded in the now-revealed

195

Receipt
receiptCandidate: Candidate

Record
dArrange: Position->Candidate

kn_dArrange: Position->Candidate
recordCandidate: Candidate

known_mix mix

Position

known_receiptMarked receiptMarked

Onion
kn_oArrange: Position->Candidate

oArrange: Position->Candidate

known_receiptOnion receiptOnion

recordMarked

Ballot
bArrange: Position->Candidate

ballotCandidate: Candidate
kn_bArrange: Position->Candidate

ballotReceipt known_ballotReceipt

Voter
(Victim, known_RegisteredVoter, RegisteredVoter)

voterBallot known_voterBallot

Candidate

intention

1

score

ballotArrangement_inference_2
(pastAttractions, post)

ballot: Ballot
candidate: Candidate

position: Position

ballotCandidate_inference_5
(comingAttractions, pre)

ballot: Ballot
candidate: Candidate

Figure 5-28: The third time step (time2) in a successful attack on the voting system’s
voter records. The adversary has just inferred the candidate ordering on the ballot
by noting the ordering represented by that ballot’s receipt’s onion.

onion.

From the third to fourth time steps, the adversary uses

ballotCandidate inference 5 to deduce the candidate marked on the ballot

from a combination of that ballot’s arrangement (just deduced) and how that ballot’s

receipt was marked (already known). This inference concludes a successfully attack

for the adversary, since the voter’s voting behavior has been revealed.

Alloy guarantees sound counterexamples, so we know that this attack is a valid

one (given the inference rules provided). Our analysis does not have solutions for a

smaller time bound (line 38 of Figure 5-23), so we know that no shorter attack exists

(in the given scope).

If we add an assumption that the adversary cannot know the voting boards

196

scrambling pattern (Line 32 of Figure 5-23), then Alloy is unable to find an attack,

even if permitted larger bounds. This gives us confidence (but not a guarantee) that

no attack against the system can succeed with this arsenal of inferences. It is still

possible that an attack exists in a larger scope, or that one is possible with additional

(unstated) inference rules. However, with the given inferences and given bounds, we

are guaranteed that no attack exists.

Small Elections

An earlier version of our model included another class of inferences pertaining to

attacks on small elections. For example, if there is only one voter, then one can

determine his or her vote simply by looking at the final candidate scores. Similarly, if

you know how all but one voter voted, then you can use the candidate scores to deduce

the last voter’s vote. More subtle attacks include the fact that an adversary might

himself be a voter, and thus might know how one of the voter voted, and attempt

to leverage that information. These inferences were not derived directly from the

fidelity model (as described in Section 5.6), but rather were added directly to the

model according to outside knowledge.

The final version of the model omits these inferences, partly to show the power

available from using just the derived inferences, and partly because attacks on small

systems are usually considered uninteresting from a security perspective. With the

small-attack inferences in place, we had to include a set of assumptions in the attack

simulations assuming that there were at least 3 elements of each domain, and at

least 3 votes were cast for each candidate. Those assumptions inflated the size of the

resulting counterexamples, but did not show more interesting attacks. Analysis time

for the slightly larger solutions was not noticeably slower.

197

Receipt
receiptCandidate: Candidate

Record
dArrange: Position->Candidate

kn_dArrange: Position->Candidate
recordCandidate: Candidate

known_mix mix

Position

known_receiptMarked receiptMarked

Onion
kn_oArrange: Position->Candidate

oArrange: Position->Candidate

known_receiptOnion receiptOnion

recordMarked

Ballot
bArrange: Position->Candidate

ballotCandidate: Candidate
kn_bArrange: Position->Candidate
known_ballotCandidate: Candidate

ballotReceipt known_ballotReceipt

Voter
(Victim, known_RegisteredVoter, RegisteredVoter)

voterBallot known_voterBallot

Candidate

intention

1

score

ballotCandidate_inference_5
(pastAttractions, post)

ballot: Ballot
candidate: Candidate

Figure 5-29: The final time step (time3) in a successful attack on the voting system’s
voter records. The adversary has just inferred what candidate is indicated by the
voter’s ballot, be examining its ordering (just inferred) and its receipt’s marking
(initially known). This constitutes a successful attack on the systems secrecy, since
the adversary now knows how this voter voted.

198

5.5 Auditability Goal

It is not enough for the engineers who built the voting system to be sure that it works;

public observers must also be able to check that the operating implementation is

functioning correctly. In the absence of security and secrecy requirements, auditability

can be as simple as publishing the fidelity argument associated with the system – the

argument that the designers used to get the system right. However, the fidelity

argument is likely to make reference to phenomena that are forbidden from being

made public by the secrecy argument, and the censored fidelity argument is not

complete enough to provide auditors with confidence.

The typical solution to this problem is to introduce statistical audits of the secure

portions of the system [5]. The details of how such a statistical sample is gathered is

a domain-dependent question – the question relevant to our analysis is that of which

phenomena should be audited. By building the secrecy and fidelity arguments with

the same lexicon, we can see which phenomena need to be audited by comparing the

phenomena used in the two models (as described below, in Section 5.5.3).

The view of auditability that we use in this section is based on Rivest and

Wack’s [74] notion of software independence – the notion that a voting (or other

high profile) system should not rely upon the correct (and honest) implementation

of its software components. It should be possible to know if the system has failed,

no matter what malicious component has been substituted in. In other words, one

should not merely rely upon a good system design but one should also provide a way

to directly audit particular implementations of that design as they are running.

5.5.1 Types of Audits

There are three forms of auditability to consider. Applied to a voting system, they

are as follows:

• A design audit is when the system design is assessed to determine if it will satisfy
its requirements (accurately tally votes, protect voter anonymity). Publishing
the system’s fidelity argument is sufficient to provide design auditability, as it

199

gives observers access to the same information used by the engineers to design
the system.

• A system audit is when an installation is evaluated by an independent authority,
such as a government agency, a newspaper, or a university. It might involve
a review of the hardware and software used to implement the design, and it
confirms that the machines installed in actual election booths implement the
validated design [12, 5].

• A personal audit is when individual voters can confirm that their votes were
tallied. Perhaps the voter is given a receipt with an ID number, and the final
tally lists the ID numbers it included. This process confirms that the vote was
counted without revealing how the voter voted [77, 73, 1].

The system audit is at the core of all three styles. The design audit establishes

a system-level property like the ones we establish using requirement progression –

that the assumptions made about the components are sufficient to enforce a given

requirement for the system as a whole. However, it does not actually validate that

the components obey their assumptions; that is the job of a system audit. Similarly,

the merit of a personal audit relies on the merit of the system audit. The fact that

an individual voter’s ID appears in the final tally is only meaningful if a system audit

has confirmed that IDs only appear in the final tally if they were counted. For these

reasons, we will focus on providing system auditability.

5.5.2 A Precise Formulation

We begin with the informal auditability goal, then rewrite it in more precise language.

informal

Outside public observers need to be confident that the system has not
been tampered with.

precise

If the election does not choose the most popular candidate, then there
must be a high probability that this fact is apparent to public observers.

200

This phrasing has two important implications on how we perform the necessary audits,

which enable statistical audits of any phenomena in question.

• There is no need for error recovery, just error detection – one can re-run an
election that is deemed to be fraudulent. Thus an audit does not need to catch
all fraudulent elements of a corrupted system (as would be needed to fix the
problem). Rather, it is sufficient to identify just one fraudulent element and
denounce the entire system.

• There is no need to catch all tamperings, just those that alter the outcome of the
election. One can tolerate both a small chance that many votes were changed
or a high chance that very few votes were changed. In both cases, there is only
a small chance that the election result will be altered.

5.5.3 Identifying Necessary Audits

As discussed earlier, auditability would be easy if it were not for secret data – one

could simply publish the fidelity argument and reveal all information used in the

operation of the system. Even in the presence of secrecy requirements, some parts of

the system can be audited in this direct fashion. To determine which parts require

special treatment, note the set of designated phenomena that are kept secret from

the public. In our case, as given by lines 29-32 of Figure 5-23, they are intention,

ballotArrangement, onionArrangement, and mix.

Now consider each domain assumption in the fidelity argument. If it makes no

reference to the hidden phenomena, then it can be audited directly (by observing the

values of non-secret phenomena). If it references one or more hidden phenomena,

then it cannot be audited directly and calls for a statistical audit. The assumptions

we must audit are given in figure 5-30 and interpreted below.

Lines 2-3: We must provide an audit of voter intentions to assure the public that

they are well formed without revealing enough data to an adversary to attack

the system’s secrecy.

The system designers did not record this assumption or provide a mechanism

for ensuring it. The audit might involve a user study showing that voters do

201

1 // from Voter breadcrumb
2 a l l v : Reg i s teredVoter | l e t b = v . v o t e rBa l l o t |
3 b . ba l l o tRe c e i p t . rece iptMarked . (b . bal lotArrangement) = v . i n t en t i o n
4
5 // from Ba l l o t breadcrumb
6 a l l b : Ba l l o t |
7 b . bal lotArrangment = b . ba l l o tRe c e i p t . r ece iptOnion . onionArrangement
8
9 // from Board breadcrumb

10 a l l output : Receipt . mix | one mix . output
11 a l l b : Ba l l o t | b . ba l l o tRe c e i p t in mix . Record
12 a l l r : mix . Record | r in Ba l l o t . b a l l o tRe c e i p t
13 a l l input : mix . Record | l e t output = input . mix {
14 input . r ece iptOnion . arrangement = output . recordArrangement
15 input . rece iptMarked = output . recordMarked
16 }

Figure 5-30: Domain assumptions that cannot be audited directly (without violating
secrecy) and thus call for statistical audits.

indeed intend to vote for one candidate – they are not confused about the rules

of the election, the implications of their vote, or the meaning of marking the

ballot. Put another way, we are assuming that voters know whom they want to

win and understand how to mark a ballot to make that happen.

Lines 6-7: Since we are hiding the content of the onions (the arrangements they

represent), we must provide an audit of them. Specifically, we must check that

the arrangements on the ballots matches the arrangements represented by the

onions on the receipts of those ballots.

To address the corrupt ballot concern, the system designers suggest a random

audit of ballots – randomly select a subset of the unused ballots to be audited

and discarded. Each selected ballot’s onion is decrypted (using the private

key) to confirm that the onion reflects the printed list of candidates. Outside

observers can confirm that the decryption is accurate (using the public key)

even though they cannot themselves perform the decryption step. The audited

ballots are invalidated and discarded. If any ballots are invalid, they must all

be re-generated. For example, if one percent of the ballots are corrupt, and one

audits 1000 random ballots, then the chance of all bad ballots going undetected

202

is around 1 in 25, 000.

Lines 10-15: We must also randomly audit that the receipt scrambling process is

working. Since we have hidden the mix relation from directly observation, we

need to audit the properties we assume about it (given in the voting board

breadcrumb).

To address the corrupt voting board concern, the system designers provide

a cryptographic mechanism for auditing individual re-encryption steps. Each

receipt is re-encrypted several times before being outputted as a record (and

decrypted). However, for secrecy to be maintained, there only needs to be one

re-encryption step. As illustrated in Figure 5-31, consider all of the receipts

after the first re-encryption step. Randomly select half of them and reveal what

receipts they came from. For the other half, reveal what receipts they went to in

the next re-encryption step. Reveal no other re-encryption steps. Note that no

receipt can be fully tracked through the re-encryption process, and thus secrecy

has been preserved. However, if the machine is performing bad re-encryptions,

there is a high chance of detecting it. If 1 percent of the ballots are corrupt,

and there are 12 re-encryption steps, then the chance of all bad re-encryptions

going undetected is about 1 in 25, 000.

5.6 Deriving Inferences from Breadcrumbs

While the primary benefit of building compatible fidelity and secrecy arguments is to

aid auditability, there are other benefits. They will share a common set of signature

declarations and can both make use of a common set of domain assumptions (the

fidelity argument checks their consistency and the secrecy argument enforces them

as invariants). Furthermore, as we discuss in this section, the domain assumptions

developed in the fidelity argument can be leveraged to derive a core set of inferences

for the secrecy model.

The set of derived inferences is not complete – indeed no set of inferences is ever

203

!"#"$%& (

!"#"$%&)

!"#"$%& 3

!"#"$%& +

!"#"$%& ,

!"#"$%& -

!"#"$%& 3

!"#"$%& (

!"#"$%& ,

!"#"$%&)

!"#"$%& -

!"#"$%& +

!"#"$%& 3

!"#"$%&)

!"#"$%& (

!"#"$%& ,

!"#"$%& +

!"#"$%& -

!!.& !"/"0#!1%&$o0 ."#o03 !"/"0#!1%&$o0

Figure 5-31: Auditing the receipt-scrambling re-encryption process of the voting
board. Each column represents the set of receipts after a re-encryption step. We have
selected half of the receipts (red / dark gray) and revealed the prior re-encryption step
for them (dark arrows) and kept the other re-encryptions hidden (dashed arrows). For
the other half of the receipts (green / light gray), we reveal the next re-encryption
step. An observer cannot track a receipt through the entire encryption process, but
we have had two chances to catch a bad re-encryption step.

complete, as one can never predict the full computational and inferential power of

an adversary. These inferences should be augmented by security experts – standard

practice is for all inferences to be provided by experts.4 However, the set of inferences

derived in this way are sufficient to mount basic attacks against the system’s secret

data, even without additional inferences provided by an expert (see Section 5.4.5).

The derived inferences not only make developing the secrecy model easier, but they

also make the set of inferences more thorough and thus increase the confidence gained

4As described in section 5.4, the secrecy model is written in a modular fashion, so an expert can
add inferences to the model without making global changes or requiring a global understanding.

204

when the model reports that no attacks are possible.

5.6.1 Derivation Process

The key insight to deriving inferences from breadcrumbs is that any property the

system relies upon is also a property the adversary can rely upon. For example,

if the system relies upon the fact that voters mark their ballots according to their

intentions, then the adversary can also make that assumption. The technical challenge

is to translate declarative assumptions about valid states of the world (breadcrumbs)

into operational inferences about what information can be deduced from what other

information (inferences).

Currently, our approach can only derive inferences from a narrow (but common)

type of assumption: a universal quantifier surrounding an equality between two

sequences of relational joins. This pattern is sufficient to subsume most of the

breadcrumbs in our fidelity model (Section 5.3), and was used to derive all the

numbered inferences given in the secrecy model (Section 5.4).

To derive an inference, follow these steps:

(1) Identify a legal target constraint and relation.

(1a) Confirm that the constraint is in the required form – a universal quantifier
surrounding an equality of two strings of relational joins.

(1b) Identify one of the relations in the constraint, for which we will attempt to
learn a new tuple. That relation cannot have more than one column with
the same type.

(1c) Determine if the target constraint is strong enough to permit an inference
of the target relation. This evaluation examines the multiplicities of the
other relations in the constraint, aided by an object-model diagram of the
constraint.

(1d) Create a place-holder tuple of the target relation, representing the new
tuple that will be learned. Provide fresh variables for the entries of that
tuple.

(2) Transform the target constraint to become a precondition for learning a new
tuple of the target relation.

205

(2a) Drop the universal quantifier if it over a domain that match the types of
any of the variables in the send-in tuple.

(2b) If the universal quantifier does not match any of those domains, replace it
with an existential quantifier.

(2c) Replace all instances of the target relation in the constraint with the place-
holder tuple.

(2d) Replace the equality operator in the constraint with a non-empty equality
operator. Non-empty equality is the same as equality, except that it
resolves to false if either side of the equation is empty.

(2e) Manipulate the equation as necessary to get rid of the place-holder tuple.
The resulting equation, or set of equations, will still contain the variables
used in that tuple.

(2f) Replace all relations with their matching knowledge relations, joined with
a time variable T.

(3) Piece together the inference. The resulting inference states that, if the resulting
constraint holds on the knowledge relations in the pre-state, then the place-
holder tuple can be added to the target relation’s knowledge relation in the
post state.

5.6.2 Sample Derivation

For example, from the Voting Board Breadcrumb, we spot the following constraint in

the required form:

1 a l l input : mix . Record |
2 input . rece iptMarked = input . mix . recordMarked

We decide to build an inference for the receiptMarked relation, which maps each

receipt to the position (if any) that is marked on that receipt. Examining the object-

model diagram, we confirm that this constraint is strong enough to permit an inference

of the target relation. The details of that process are described in Section 5.6.4.

We build a place-holder tuple of the target relation, with fresh variables for each

entry of that tuple. The relation maps receipts to positions, so we create the tuple

rm = (r → p).

Next, we manipulate the target constraint to transform it into the precondition

for adding rm to our knowledge of receiptMarked. The quantified variable is

over receipts; that is the type of one of the variables in the tuple, so we drop the

206

quantifier. We then replace all instances of receiptMarked with (r → p), producing

the following:

1 r . (r → p) = r . mix . recordMarked

We manipulate that equation to get rid of the tuples. The left-hand side reduces

to p by the definition of relational join. The right-hand side does not reduce. The

equation is now the following, taking care to note that “=” now represents non-empty

equality.

1 p = r . mix . recordMarked

Replacing the relations with the corresponding knowledge relations gives us the

following:

1 p = r . (known mix . pre) . (known recordMarked . pre)

Putting this into the Alloy model, we get the following inference:

1 sig r e c e i p tMark ed i n f e r en c e 4 extends r e c e ip tMarked In f e r ence {}{
2 //what you l earn
3 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
4 in known receiptMarked . post
5 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
6 not in known receiptMarked . pre
7
8 //when you can l earn i t
9 used po s i t i on f r om rece ip tMarked =

10 used rece ip t f r om rece ip tMarked . (known mix . pre) . (known recordMarked . pre)
11 }

Intuitively, we have taken a constraint that says “The positions marked on receipts

going into the re-encryption process is the same as the positions marked on the

corresponding records coming out.” and transformed it into an inference that says

“The adversary can infer that receipt R is marked at position P if he knows that R

was mapped to a record D and that D is marked at position P.”.

5.6.3 Another Example

Now consider the same constraint but instead target the recordMarked relation,

which maps records to positions. The tuple we wish to infer is now dm = (d → p).

This time, the universal quantification is over a domain not used in the tuple, so the

207

it is replaced by an existential quantifier. We splice the tuple into the constraint in

place of the target relation, producing the following:

1 some input : mix . Record |
2 input . rece iptMarked = input . mix . (d → p)

Manipulating that expression (using the fact that the “=” represents non-empty

equality), we get the following:

1 some input : mix . Record {
2 input . rece iptMarked = d
3 input . mix = p
4 }

If we had instead targeted mix, we could go through all the steps to generate

an inference. However, the resulting inference would be invalid, and would be

preemptively caught by step 1c, as described next.

5.6.4 Validation via Multiplicities

To determine if a given constraint can produce an inference for a given relation,

consider the object-model representation of the relations used in the constraint,

annotated with multiplicity marking on all relations.5 Note the target relation and

which node represents the type of the equality – the type of both the left and right

hand sides of the equation. Consider all paths along relations from the nodes used in

the relation to the equality node. If more than one of them has a * on the origin of

the arc or if any of them have a * on the destination of the arc, then the inference is

rejected. Otherwise, the derived inference will be valid.

Figure 5-32 shows the diagram that describes the target constraint from the voting

board breadcrumb used in the preceding examples.

Looking at the multiplicities, we see that we can derive valid inferences for the

receiptMarked and recordMarked relations, but not for the mix relation.

All of the numbered inferences in the secrecy model (described in Section 5.4 and

given in full in Appendix 12) were derived in this fashion. The target constraints and

5Ternary relations are shown as two merging arrows. Multiplicity markings on ternary relations
should be interpreted as “given values for the other two slots of a tuple of this relation, how many
possible values are there for the remaining slot in that tuple?”.

208

all $% &$'()*+o-. /
$(-*+*$012a-3*.

4
$(&$'(-*+o-.2a-3*.

)*+*$01
$)*+o-.

5o6$1$o7
4

&$'

-*+o-.2a-3*.

88

99

:;9 :;9

-*+*$012a-3*.

Figure 5-32: The second part of the voting board breadcrumb viewed graphically in
preparation for deriving inferences from it.

corresponding multiplicity diagrams are shown in Figures 5-33 through 5-38.

209

all v: Voter |
v.voterBallot.ballotReceipt.receiptMarked.(v.voterBallot.ballotArrangement)

=
v.intention

Ballot

Candidate
(=)

Receipt

Position
ballotArrangement

voterBallot ballotReceipt

receiptMarked

Voter
v

intention

@

A

B-A

@@

A

AAB-A B-A

B-A

Figure 5-33: The voter breadcrumb viewed graphically in preparation for deriving
inferences from it.

!"" $% &!""ot)
$*$!""ot+rr!n.e0ent

1
$*$!""ot2eceipt*receipt6nion*onion+rr!n.e0ent

&!""ot
$

7!ndid!te
1

2eceipt

9osition

$!""ot+rr!n.e0ent

$!""ot2eceipt receipt6nion

1

<
<

1

11

6nion

onion+rr!n.e0ent

1 1 1 1

<

Figure 5-34: The ballot breadcrumb viewed graphically in preparation for deriving
inferences from it.

210

!""#$%#&$'()*+,-.#/
$(-*+*$0123$,3(23$,34--!35*&*31

6
$(&$'(-*+,-.4--!35*&*31

)*+,-.

7!3.$.!1*
6

)*+*$01
$

8,9$1$,3
-*+,-.4--!35*&*31

&$'

-*+*0123,3

:

;

:

:

:

23$,3 ,3$,34--!35*&*31

:

:

:

:

;

Figure 5-35: The first part of the voting board breadcrumb viewed graphically in
preparation for deriving inferences from it.

211

all $: &allot |
$.$allot+andidate

=
$.$allotReceipt.receiptMarked.7$.$allot8rran9ement;

&allot
$

+andidate
=

Receipt Position

$allot8rran9ement

$allot+andidate

$allotReceipt

receiptMarked

*1

0-1

*

*
1

1

1

1

Figure 5-36: The ballot appended fact viewed graphically in preparation for deriving
inferences from it.

all r: Receipt |
r.receiptCandidate

=
r.receipt2ar3ed.4r.receiptOnion.onionArrangement:

Receipt
r

Candidate
=

Onion Position

onionArrangement

receiptCandidate

receiptOnion receipt2ar3ed*1 ?@1

*

1

1

1

Figure 5-37: The receipt appended fact viewed graphically in preparation for deriving
inferences from it.

212

all d: Record |
d.recordCandidate

=
d.recordMarked.(d.recordArrangement)

Record
d

Candidate
=

Position

recordArrangement

recordCandidate

*

0-1

*

*

1

1

1

recordMarked

Figure 5-38: The record appended fact viewed graphically in preparation for deriving
inferences from it.

213

5.7 Achievements

We articulated the existing intuition for the fidelity, secrecy, and auditability of the

Pret a Voter system, using an unambiguous formal model, and confirmed those

three arguments through automatic analysis of our model. Our analysis not only

demonstrates that the desired properties hold, but it also provides a structured,

traceable, and readable argument describing why the system satisfies its requirements.

5.7.1 Clean Division

In building the argument, we separated the system-level arguments from low-level

cryptographic arguments. The designers had previously conflated the arguments

together, making reasoning about the system more difficult. Requirement progression

provided such a boundary – it argues why a certain set of assumptions enforce the

requirement, separate from the argument that those assumptions are provided by the

proposed cryptographic protocols. Put another way, we identified the appropriate

level of detail for the system argument – exposing certain properties about the

cryptographic theorems and protocols while hiding others. The automatic analysis

confirms that we exposed an appropriate level of detail.

We also re-enforced our belief that requirement progression is faster and easier

when supported by an expert-provided intuitive outline for how we expect the

argument to look. That argument guided progression, and allowed us to finish the

process in just a few hours.

5.7.2 Leveraging Fidelity for Secrecy and Auditability

We demonstrated how building the fidelity, secrecy, and auditability arguments in

tandem can make them not only easier but also more thorough.

- We built the fidelity argument using requirement progression, which provided
automatic analysis to confirm the argument. The resulting set of breadcrumb
assumptions were encoded in an Alloy model.

214

- When we built secrecy, we leveraged that Alloy model in two ways: We used
the structure of the data (the sets and relations) to build the structure of the
adversary’s knowledge base. We used the breadcrumb assumptions to derive a
core set of inferences. Those inferences can be expanded, but we found that just
the derived inferences were enough to model basic attacks against the system’s
secure information.

- The auditability argument rests upon identifying the correct set of properties to
audit. We showed how to read that list off the fidelity and secrecy arguments
– one must audit any assumption in the fidelity argument that references
phenomena that are initially hidden in the secrecy argument. The means by
which one audits those assumptions is a domain-specific question, but we easily
produce a complete list of what needs to be audited.

5.7.3 Discoveries

For the most part, our analysis confirmed the system as proposed. In a couple of

cases, we discovered some minor surprises.

- The Pret a Voter system as proposed uses onions to encode not only the list
of candidate names but also the position of the marking on the re-encrypted
receipts. Our analysis shows that encoding just the list of names is sufficient to
provide the three goals (fidelity, secrecy, auditability). Encoding the markings
does not interfere with those goals, but adds unnecessary complication. In an
actual implementation, it may be useful to encode the markings simply to more
fully automate the re-encryption process – so that the entire receipt is encoded
in an onion and there are no slips of paper to pass around.

- Before our collaboration, Peter Ryan had proposed a method for obfuscating
what list of candidates was given to a particular voter, but he was not sure if
that mechanism was necessary. Our analysis shows that it is indeed necessary
to provide secrecy.

5.7.4 Effort

Our analysis required two weeks (10 days) of work, counting time spent by all

participants. The fidelity argument took five days of work, four of which were

spent just understanding the system and one of which was spend performing the

actual requirement progression. See Figure 5.7.3. The secrecy argument took four

215

stated as propert* on...

re
ca

st
 a

s
pr

op
er

tie
s

on
...

conte/t

s*stem

component

mod1le

co
nte

/t

s*
ste

m

co
mpo

ne
nt

mod
1le

3lo
ck

inter5ie6s to 1nderstand
s*stem o5er5ie6 and needs:

! da%s'
(0 lines Allo%

00 lines comments

re81irement progression:
1 da% 56man'

0 seconds anal%sis'
100 lines Allo%'

100 lines comments

interpret ass1mptions into
cr*ptograp:ic properties:

1 5o6r'
!0 lines 8rose

cr*prograp:ic
proo;s:

09: da%s

cr*prograp:ic
t:eorems:
09: da%s

Figure 5-39: Time spent building the fidelity argument.

days, two of which were spent building the model framework and two of which were

spent deriving inferences for the adversary. See Figure 5.7.3. Identifying the list of

properties to audit required less than one day.

These counts do not include the time spent by Peter Ryan and his collegues to

establish the assumptions with cryptographic protocols. That work had already been

completed when we performed our analysis, and this timing data only reflects the

additional work needed to build the dependability argument on top of prior work.

216

stated as propert* on...

re
ca

st
 a

s
pr

op
er

tie
s

on
...

conte/t

s*stem

component

mod1le

co
nte

/t

s*
ste

m

co
mpo

ne
nt

mod
1le

3lo
ck

31ilding model 6rame7ork8
artic1lating attack goal:

! da%s'
!(0 lines Allo% 0rame3ork

deri:ing in6erences 6rom
ass1mptions:

! da%s'
(00 lines Allo% in0erences

interpret ass1mptions into
cr*ptograp;ic properties:

1 7o8r 78man time'
!(0 lines Allo% c7ecks

Allo* Anal*sis:
1 second

Allo* model:
1000 total lines

Figure 5-40: Time spent building the secrecy argument.

217

218

Chapter 6

Related Work

6.1 Related Work

6.1.1 Requirement Decomposition

Like our Requirement Progression technique, many approaches to system analysis

involve some kind of decomposition of end-to-end requirements into subconstraints,

often recursively.

Assurance and Safety Cases

Assurance and safety cases [4, 49], for example, decompose a critical safety property.

They tend to operate at a larger granularity than problem frames, in which the

elements represent arguments or large groupings of evidence, rather than constraints.

Another class of analyses focus on failures rather than requirements (such as

HAZOP [65]), in which decomposition is used to identify the root causes of failures.

Our work, like that of assurance cases, provides confidence that a given requirement

will hold, rather than establishing that a particular type of error will not occur.

Leveson’s STAMP approach involves decomposing design constriants, with a focus

on managerial control over the operation of a system [51, 52].

219

I*, Tropos, KAOS

More similar to our approach are frameworks, such as i* [87] and KAOS [21, 22, 18, 8],

that decompose system-level properties by assigning properties to agents that work

together to achieve the goal. For KAOS, patterns have been developed for refining

a requirement into subgoals [22]. In our approach, we have not given a constructive

method for obtaining the new constraint systematically, and the refinement strategies

of KAOS may fill this gap.

Similar to i*, Tropos [15, 28, 67] is based on actors with different goals for the

system and different measures of success. It is focused on early design stages, and

is mostly for human-human communication plus some simulation/evaluation support

for making sense of larger models.

KAOS refinements has been applied to agent-oriented policy decomposition and

applied to Systems of Systems (SoS) [32]. It is used as a means for combatting

emergent behaviors that result from independently designed systems combined into

a single system.

Four Variable Model

The four-variable model [66, 86] makes a distinction, like Problem Frames, between

the requirements, the specification, and domain assumptions. However, in Problem

Frame terminology, it assumes that a particular frame always applies, in which there

is a machine, an input device domain, an output device domain, and a domain of

controlled and monitored phenomena.

Requirement Elicitation

Letier and Lamsweerde show how a goal (requirement) produced from requirement

elicitation can be transformed into a specification that is formal and precise enough to

guide implementation [48]. That approach is centered around producing operational

specifications from requirements expressed in temporal logic, and focuses on proving

the correctness of a set of inference patterns. Such inference patterns are correct

220

regardless of context, in contrast to our approach in which transformations are only

justified by context-specific domain assumptions.

Refinement

Johnson made an early use of the phrase “deriving specifications from requirements”

in 1988 when he showed how requirements written in the relational logic language

Gist can be transformed into specifications through iterative refinement [43]. Each

refinement step places limits on what domains may know and on their ability to

control the world, and exceptions are added to global constraints. A specification

is not guaranteed to logically imply the requirement it grew out of, and the two

descriptions may even be logically inconsistent with each other. In contrast, as we

refine (transform) a requirement, the breadcrumbs we add expand our assumptions

about the domains rather than restricting them, and a specification will always be

consistent with the requirement it enforces.

6.1.2 Problem Frames

Problem Progression

Michael Jackson sketches out a notion of problem progression in the Problem Frames

book [40]. A problem progression is a sequence of Problem Frame descriptions,

beginning with the full description (including the original requirement) and ending

with a description containing only the machine and its specification. In each

successive description, the domains connected to the requirement are eliminated and

the requirement is reconnected and altered as needed. He does not work out the

details of how one would derive the successive descriptions, but it seems that he had

a similar vision to our own. However, rather than eliminating elements (domains)

from the diagram at each step, our approach adds elements (domain assumptions),

providing a trace of the analyst’s reasoning in a single diagram.

Jackson and Zave use a coin-operated turnstyle to demonstrate how to turn

a requirement into a specification by adding appropriate environmental properties

221

(domain assumptions) [41]. Their approach is quite similar to our own, and uses

a logical constraint language to express domain assumptions. Our work strives to

generalize the process to be applicable in broader and more complex circumstances,

and to help guide the analyst through the process with the visual notion of pushing

the requirement towards the machine.

Problem Reduction

Rapanotti, Hall, and Li recently introduced problem reduction, a technique that uses

causal logic to formalize problem progression in Problem Frames [71]. Like our own

work, they seek to formalize and generalize problem progression in a way that provides

traceability as well as a guarantee of sufficiency. Problem reduction follows the style

of problem progression described in the Problem Frames book [40], in which the

requirement is moved closer to the machine by eliminating intervening domains.

Calculus of Requirements Engineering

Hall, Rapanotti, Li, and M. Jackson are developing a calculus of requirements

engineering based on the Problem Frames approach [44, 54, 55, 70]. They examine

how problems and solutions can be restructured to fit known patterns. Part of

their technique involves transformation rules for problem progression, in which a

requirement (expressed in CSP) is replaced by an equivalent requirement in an

alternate form. In contrast, our technique is a form of requirement progression, in

which the transformations only change the constraints, not the underlying domain

structure. Furthermore, our transformations are not semantics-preserving; they are

justified by a set of explicit assumptions rather than proofs of equivalence.

6.1.3 Analysis of the BPTC

Jackson and Jackson have examined the gantry creep in the BPTC, in which the angle

of delivery slowly shifts over the course of many treatments of the same patient [20].

Rae et al have used lightweight code analysis to determine conditions under which

222

the BPTC emergency stop button would not operate correctly [68].

Dennis et al have shown how commutitivity analysis can be used to detect race

conditions between operators of a system, even when that system uses atomic single

threaded operations. They apply the technique to the automatic beam scheduler

currently employed in the BPTC [24]

In earlier work, we have used the BPTC to motivate the development of a

technique for performing requirement progression [78, 79, 80, 81].

223

224

Chapter 7

Conclusions

We have proposed and applied a methodology with which a skilled analyst can build

end-to-end dependability arguments for complex, software-intensive systems with

reasonable human effort. These arguments not only validate the system design as

whole, but they also provide traceability – linking system level requirements to low

level assumptions about individual components in the system.

7.1 Contributions and Achievements

We introduced requirement progression (Chapter 3), a systematic, guided method

for decomposing a system requirement into a set of component assumptions.

A system requirement articulates the needs of the overall system, but no one

engineer or specialist is qualified to confirm or deny that broad of a requirement,

since it references aspects of many components. The component assumptions

(breadcrumbs) generated by requirement progression articulate important properties

about individual components, which can be independently assessed by appropriate

domain specialists.

The progression process is incremental and local – each step of a progression only

requires the analyst to reason about one domain and its interfaces. We provide a

set of guidelines to help the analyst develop the progression efficiently, which are

based on the structure of the system’s Problem Diagram [40]. The analyst can

225

automatically check the steps of the progression (using Alloy [30, 34]), ensuring that

the resulting set of domain assumptions will indeed be strong enough to enforce the

original requirement.

We introduced the Component Dependability Argument Diagrams (Chapter 2), a

notation for classifying analysis techniques and for composing them together to form

an integrated end-to-end argument. CDADs show how requirement progression links

into other analyses from related fields of study, helping the analyst select and compose

techniques to build an end-to-end dependability argument.

In the proton therapy case study (Chapter 4), we saw how requirement progression

can be combined with automatic code analysis to discharge domain assumptions on

software components. The resulting argument, illustrated with a CDAD, constitutes

a dependability argument for a critical aspect of a working radiation therapy medical

device.

In the voting case study (Chapter 5), we saw how to analyze a system with

multiple, apparently contradictory, requirements – fidelity, secrecy, and auditability.

By using requirement progression to build an Alloy model of fidelity, we saw how

it was then easier and more systematic to build secrecy and auditability arguments.

The resulting analysis validates the design of the Pret a Voter election scheme [76].

7.2 Limitations

To understand an approach, one must understand its limits – both the incidental

limitations of the particular approach and the inherent limitations of all approaches

in that style. The limitations we discuss below are reasonable restrictions if one wants

to build end-to-end confidence in a system, but it is important to be aware of the sort

of investment one must make and results one can obtain. Much of the future work

(Section 7.4) revolves around reducing or eliminating these limitations.

226

7.2.1 Vulnerabilities Versus Errors

This sort of system analysis fundamentally discovers vulnerabilities rather than

errors. One sometimes discovers errors in the course of building the argument

and understanding the needs for the system, but the focus is on the discovery and

documentation of component assumptions. Sometimes the mere act of building

a dependability case will increase dependability simply by focusing attention and

prioritizing concerns about the different components. More typically, errors are

discovered when one attempts to discharge and validate component assumptions,

and the ability to perform that validation limits the errors that can be uncovered in

this manner.

7.2.2 Human Domains

In some domains, discharging assumptions is relatively easy and thorough. For

example, in the BPTC case study (Chapter 4), we saw how to link requirements

progression and system analysis to automatic code analysis. Other technical domains,

such as electro-mechanical devices, can similarly be analyzed by well-established

means.

However, it was hard to analyze human domains – such as a therapist who

identifies a BPTC patient and selects the matching name from a list in the GUI.

Interpreting assumptions made about human processes is low cost but not as

systematic as the rest of our analyses. Even our ad-hoc analysis of such components,

in the BPTC example, revealed a large number of vulnerabilities and critical

undocumented assumptions (Section 4.3.7). However, it was unclear now to build

proper confidence that more such assumptions and vulnerabilities do not exist.

Even with trained, experienced operators, it is hard to build confidence. One

of the big concerns in human controlled systems is habituation – experienced

operators get used to the normal modes of operations, and thus become less likely

to notice deviations from the norm. As such, systems with human operators can

actually become less safe the longer they operate, even as the humans become more

227

experienced. We suspect that extending the type of classification proposed by Donald

Norman [60] would help to provide such confidence.

7.2.3 Support from Domain Specialists

Building an argument focused on identifying and assessing component assumptions

requires that the analyst have access to experts on the system components – probably

engineers and operators working on particular components of the system under

analysis. We found that the analyst did not need a lot of time from those specialists,

but did need to meet with them in a few key capacities:

initial interviews: The analyst will perform up-front specialist interviews for each
component, to build a rough understanding of the basic structure of the domains
and their roles in the system. This helps the analyst to build the initial
problem diagram, provides intuition for the overall shape of the argument, and
gives an idea of what sorts of assumptions can be reasonably made about each
component.

assisting analysis: If the analyst directly participates in the analysis of the domain
(as we did with the software of the Treatment Manager at the BPTC), then
additional time will be incurred, depending on the efficiency of the techniques
and confidence demanded.

identifying interface: A skilled analyst must separate the internal details of the
domain (the realm of the specialist) from the interface of the domain (the realm
of the generalist). Assumptions are made about (and phrased in terms of) the
interface, but exactly what internal details are relevant to the interface is not
always obvious. The analyst must resist the pressure from specialists to expose
in inner workings of a domain, and be able to abstract the interface out of the
specialist’s (much more detailed) explanation of the entire component.

interpreting assumptions: For each assumption made about a domain, the analyst
must interpret that assumption back into the language of the domain, thus
putting it in a form that the specialists can understand and evaluate. Doing
so requires an understanding of the language and terminology used by the
domain experts, at least at a high level. For example, interpreting a code
assumption involves phrasing it in terms of input and output variables in the
code. In contrast, assumptions about physics devices (e.g. the cyclotron) are
best phrased in terms of the properties of the beam generated (e.g. intensity
and duration).

228

discharging assumptions: As the argument takes form, the analyst begins to need
to discharge assumptions made about the components, which involves frequent
(but small) questions to be answered by particular specialists.

If no expert is available for one of the components, there are several options available

to the analyst:

(1) Accept lower confidence in the system as a whole. If one cannot confidently
discharge assumptions about one of the domains, then it becomes a weak link
in the argument and will reduce confidence in the dependability of the system
as a whole.

(2) Rework or replace the component, effectively building a new component for
which you now have an expert. This option can be costly, but is can also fit
with an iterative development process, such as those adhering to Fred Brook’s
advice:

Plan to throw one away. You will do that, anyway. Your only choice
is whether to try to sell the throwaway to customers.

Fred Brooks [27]

(3) Use components that are transparent, clear, or simple. That is, use components
for whom anyone can become an expert through careful examination. Some
components are fundamentally too complex to make transparent to outsiders,
but the general engineering experience is that simpler components are better.

Everything should be made as simple as possible, but not simpler.
Albert Einstein

Confidence in the system relies on both confidence in the system argument and

confidence in the component assumptions that underly that argument. Without both,

confidence is impaired.

7.2.4 Analyst Expertise

The role of analyst – actually building the dependability argument – should, itself,

be treated as a specialized task demanding proper background and training. Only

229

a small number of analysts are needed, perhaps as few as just one, but that analyst

must have a certain technical aptitude

In general, the analyst must be capable of system level reasoning – a generalist

not a specialist. It is the analyst’s job to to communicate with different kinds of

engineers and extract the relevant information – both a technical skill (getting past

domain specific terminology) and a social skill (convincing engineers to help build the

safety argument and managers that it is a worthwhile expenditure of resources).

For our approach, the analyst must be capable of using and interpreting formal

notation. We used Alloy as our formal language, although other formalisms can also

be used to articulate the assumptions made during requirement progression. However,

some sort of formal language is needed, both to unambiguously communicate and

record the assumption, and also so that the system argument is amenable to automatic

analysis. The analyst must both translate assumptions and requirements into the

formal language (based on informal descriptions provided by specialists), as well as

being able to interpret the assumptions discovered during requirement progression

back into language that makes sense to the specialists (whose job it is to confirm or

deny those assumptions). The analyst must also be comfortable at rephrasing the

requirement (during the requirement progression process) and structuring/debugging

the associated model.

Relational logic provided us with a useful formalism. We found it to be a fairly

intuitive way to precisely describe requirements (and found that most technical

people, even from other engineering disciplines, could make sense of Alloy statements).

It also fit nicely with the Forge analysis tool [23], which was capable of automatically

discharging relational claims about code fragments.

Domain Knowledge During Validation

When analyzing and interpreting assumptions into domain language (e.g. the code

analysis for the BPTC case study), the analyst must be aware of the kinds of failures

possible in that domain. That is, how might the domain violate the assumption made

about it? This knowledge can come partly from talking to domain experts (personnel

230

working on the system) but the analyst needs to have a basic idea of what to look

for. Put another way, an analyst should be a generalist capable to talking to a range

of specialists in order to gain an understanding of the relevant domains.

For example, one vulnerability we found on the BPTC involved an SQL injection

attack. We discovered the attack while we were performing a separability analysis to

determine if the data read out of the database could have been overwritten. While

we did not initially look for SQL injection attacks, we only discovered the attack

because were were (peripherally) aware of the existence of such attacks. The analysis

uncovered the assumption – the database values are currently the same as when they

were initialized – but the analyst had to come up with the particular failure mode

that could violate that constraint – SQL injection attacks.

This observation ties into our philosophy of providing a technique that is

systematic but not automatic. No tool or technique can substitute for domain

expertise, although our technique helps an analyst decompose a system requirement

(that no one person is qualified to confirm) into a set of domain assumptions (that

individual domain experts are qualified to confirm). We aid the analyst in identifying

what question to ask what specialist, but do not replace the need for the specialists

nor do we replace the need for an analyst who can reason about abstract, system-level

concerns.

7.2.5 Code Analysis

A particular instance of relying on expert specialists to validate assumptions is the

reliance on expert software engineers when analyzing software. We found that, while

automatic analysis eased the process and make it more thorough, it did not substitute

for a well structured or well explained code base. Our analysis of the BPTC code

was dependent on the head programmer (Doug Miller) and his broad understanding

of how the code fit together. When he moved away, our ability to discharge code

assumptions with confidence went down, as it became much harder to identify the

subset of the code relevant to particular assumptions (which was necessary, since our

analysis tools could not scale to the entire code base).

231

In order to keep performing analyses without an expert on the code base, we would

either have needed a tool that scaled better than Forge (but which could still discharge

arbitrary relational claims), or the code base would have had to be better structured,

so that we could have more easily identified the relevant subset. We suspect that tools

(like Forge) that are expressive enough to handle relational claims about real code

(including loops, recursion, conditionals, arithmetic) will never scale well enough to

handle millions of lines of code without some amount of human assistance.

The more reasonable path is to demand that the code be structured to reflect

the safety argument and execution modes, thus making it possible to easily and

confidently identify a small portion of the code relevant to a particular concern. While

in theory this might not be possible for an arbitrary algorithm implemented in code, in

practice our impression was that there were no such obstacles facing the BPTC code.

Having written the code once, a complete rewrite of the code (i.e. iterative design)

would have produced code that was transparently correct to an outside observer.

For example, the BPTC code uses many globals that are only used in a few places

(and thus could instead be passed around, have access control, or have not be global

to the entire code). The code also lumps all data of one type together, rather than

all data of one purpose together. For example, all messages are listed in one huge

case statement (which must be kept synchronized with other lists which declare the

valid types of messagers). Modes and sub-modes are kept as separate variables, with

no assertions to maintain the invariant that you are not in mode A while you are also

in a submode of mode B.

In spite of these limitations, this work does show that (even without automatic

tool support or better code structure) it is possible to link requirement progression

to code analysis, thereby building deep end-to-end arguments. The cost of manual

analysis was still a fraction of the cost of building and testing the system, and was

quite reasonable for a safety critical system like the BPTC. If one reduced the cost,

then our techniques would be applicable to a wider range of systems.

232

7.3 Experience and Reflections

While the research focuses on the technical aspects of building and checking an

argument, a lot of the skill involved is communicating effectively with the specialists

involved in the system.

The art of fortifying does not consist of applying rules or following a
procedure, but of good sense and experience.

Marechal Sebastien le Prestre de Vauban
(1633-1707, Military Engineer to King Louis XIV)

7.3.1 Types of Personnel

In the course of building the BPTC dependability argument, we talked with the

following types of specialists (ordered with the most frequently accessed personnel

first):

- The lead software engineer and programmer – Doug Miller. Extensive contact
and support during the code analysis. Provided overview of code fragments and
answers to particular questions about blocks of the code.

- The head of the BPTC, responsible for managing, certifying, and providing
funding for the project – Jay Flanz. Extensive contact early in the project,
but less as the analysis moved to lower levels. Useful for identifying whom we
should speak to, and determining the correct set of requirements.

- The head physicist, who works both on calibrating the system, performing
research on it, and helping physicians translate their prescriptions into radiation
treatments. Moderate contact early in the project. Limited contact late in
project. Useful for understanding the precise definition of a correct dose,
including the somewhat subtle definition of location. He also helped describe
the overall system structure.

- Operators who work in the Master Control Room (MCR), coordinating the
therapists in the individual treatment rooms. Moderate contact mid-way
through project. Helpful in understanding day-to-day process and what normal
operating conditions are like, and what sorts of minor errors occur routinely.

- Therapists who directly contact patients and prep them for treatment. Limited
contact due to hospital restrictions about access during operating hours.

233

Potentially helpful to analyzing patient identification protocol, but not helpful
in practice due to limited availability.

- Physicians who write prescriptions for patients undergoing radiation treatment.
Limited contact during analysis of database. Relevant to the initial assignment
of criticality to hazards, to determine the danger posed by different failure
modes. Would be key to building a more thorough hazard analysis or
requirement elicitation phase.

- Patients undergoing treatment. No contact due to privacy restrictions. Might
have helped understand the patient identification process better, to better
understand the likelihood of different sorts of false-identification scenarios.

For the voting case study, we spoke almost exclusively with Peter Ryan, who

originally proposed the system and is currently one of the leading researchers

developing it. It is a much smaller system than the BPTC, involving fewer different

types of engineers, and our total analysis took about a quarter of the time (two weeks

instead of two months). Peter Ryan is an academic researcher, with a background

in cryptography and voting systems, and a side interest in system analysis. He thus

played both the role of a specialist (knowing what assumptions could be guaranteed

by cryptographic proofs) and a generalist (giving a summary of the overall system).

Before our collaboration, he already had an intuitive safety argument, which proved

helpful in guiding progression.

7.3.2 Mediums of Communication

Initially, we used the problem diagrams themselves as a means of guiding

communication with the BPTC personnel. However, this proved to be less fruitful

than using the assumptions (generated via requirement progression), as isolated

concrete questions. When shown a high-level overview of the system, the specialists

tended to trust the diagram’s accuracy more than we wanted, and thus not provide

proper feedback on our understanding of the system structure. In contrast, concrete

claims or questions produced elaborate and informed responses.

For example, an early version of the BPTC problem diagram had a direct

connection between the GUI and the prescription database. At one point, the software

234

lead made an aside along the lines “I guess that’s some sort of abstracted view of

dataflow” when actually it was a mistake – the database information only gets to

the GUI via the TM and network (which were also on that diagram). However,

when shown the matching domain assumption that the messages sent by the GUI are

received by the DB, he immediately pointed out that no such message existed, and

explained the indirect path of communication between those two points. Furthermore,

he pointed to the particular parts of the code relevant to passing that message along

and processing it.

In general, we found that using breadcrumbs as a medium of communication

was more productive, as they provide concrete questions. The engineers and

specialists tended to be concrete thinkers who were deeply grounded in their particular

component. As such, they were very able to answer very hard (and slightly vague)

questions about their components, but were not able to give us a useful overview of

how the component worked and what key properties it provided.

When we did end up showing problem diagrams to the programmers, we ended up

just pretending they were dataflow diagrams – a more concrete and familiar notation

for a programmer. For the most part, phenomena in our diagrams represented the

flow of information (or the issuing of commands) between components, and so viewing

them as dataflow diagrams was fine for checking our broad understanding.

In the voting case study, Peter Ryan was able to directly understand the Problem

Frames notation, but still needed help in making sense of the details of larger Alloy

models.

7.3.3 Styles of Thinking

While we interacted with only a small sample number of engineers, a few patterns

did emerge about how the different types of engineers tended to describe their

components. The physicists were more apt to think declaratively than the

programmers – they were more apt to give a declarative statement about the

system (such-and-such a property will always be true of the beam) and less likely

to make an operational statement (X happens and so Y then happens). In contrast,

235

programmers were more able to separate abstraction layers, describing the overall

shape of information in the system without diving into the details of the code (the

A-related stuff happens in this part of the code, and the B-related stuff happen in

this chunk of code). The physicists seemed comfortable with thinking about non-

temporal invariants (X is always greater than Y), but less comfortable deciding what

details to leave out of an explanation. Roughly speaking, physicists told us too much,

programmers told us too little, and we had to adapt our questions accordingly.

7.3.4 BPTC Safety Culture

The BPTC specialists tended to have broad and deep understandings of their own

domains. The overall system was small enough that there were only a few specialists

of each type, and thus individual people could answer fairly broad questions about a

component. This made it easy to find a specialist qualified to validate a given domain

assumption, or at least to help us in validating it.

However, while the individuals were knowledgeable, the system documentation

was too vague and too sparse. It gave little or no overview of the system nor any

argument for why the system would work, and simply described details of how the

system actually operated. As such, a lot of the relevant knowledge to maintaining

safety is in the heads of the specialists, and is lost when those specialists are replaced

or retire.

The head of the center, Jay Flanz, was very concerned with safety issues, and very

supportive of our efforts to analyze the system. He was unsure of how to build an

appropriate safety argument, and was concerned that the FDA certification process

did not provide the confidence he wanted in the system. He knew that the testing

was not enough, but he was not sure what to do other than add additional safety

interlocks in response to incidents as they occurred.

Overall, the personnel had a conscious understanding of the safety-critical nature

of their device. They understood the different types of dangers presented, reinforced

by their physical proximity to the device (and thus immediate personal concern in

the safety of the proton beam). They had proper respect not only for the immediate

236

dangers of overdosing a patient, but also the dangers of poor logging or non-graceful

failure modes. While they lacked the techniques and expertise to build a safety

argument for the system, they were motivated and skilled enough to support the

construction of such an argument.

7.3.5 BPTC Conceptual Mistakes

While maintaining an overall strong safety culture, there were some particular points

wherein the BPTC personnel and management made conceptual mistakes about how

to reason about a complex system.

Criticality Classification

Components were not always properly classified as critical or non-critical, and thus

their reliability was not always appropriated prioritized. Some components were

classified as non-critical, even though they could (if they were replaced by a malicious

or careless implementation) violate safety concerns.

For example, the network was not deemed safety critical, even though emergency

stop commands were transmitted across it [68] and corrupt network messages could

result in patients receiving someone else’s treatment (Chapter 4). Similarly, in earlier

work [24], we analyzed the automatic beam scheduler, responsible for allocating the

proton beam between the treatment rooms. It was classified as non-critical, since the

instruction to fire the beam was controlled by the therapists in the individual rooms.

However, a bad scheduler could cause the beam to turn on or off at unpredictable

times, causing underdoses and treatment delays (and potentially harming confused

therapists or technicians).

In general, the devices classified as non-critical are the devices that we felt should

be non-critical. However, the realities of the system architectures did not not always

provide sufficient separability and modularity, meaning that the safe operation of the

system ended up relying upon a wider range of components than necessary. This

indicates a general need to provide better separation between critical and non-critical

237

components, so that one can better assign effort to the critical ones and ignore the

less critical ones without undermining confidence in the critical concerns.

Planning for Change

A lesser concern was with the provision of misguided generality in the software. While

planning for change is difficult, as one does not know exactly how requirements will

change, we found a few cases where a little more forethough would have made the

system much more amenable to safe and easy modification.

For example, the code written to allocate the proton beam to one of the three

rooms [24] also provided a notion of priority, so a therapist could indicate that he

or she has a small child who is getting restless and needs the beam right away. The

priority queue included a three-tiered system for determining which room to allocate

next, including nine total possible priority levels. However, there were only three

rooms, and in practice there are only two priorities – “any time is fine” and “sooner

is better”. The code provided generality for adding more priority levels and more

types of priorities at each level, even though the current priority levels already far

exceeded the system’s needs.

However, the scheduler code did not provide generality for how many rooms there

were. It was originally written for exactly two rooms, and had to be retro-actively

(and inelegantly) extended to handle the 3rd room, when it was later added. The

new code included a lot of duplicated functionality, requiring dual maintenance when

modifications are made. As the center grows to meet the high demand for proton

therapy, the hospital is likely to add more rooms, which will require further extensions

of the code in ways it does not easily accommodate.

Human Versus Machine

The BPTC includes redundant checks and safety interlocks, combining automatic

hardware checks, automatic software checks, and manual human checks. However,

as the center evolved, some portions were over-automated due to inadequate

requirements elicitation.

238

The Automatic Beam Schedule [24] implements a priority queue, used to

automatically decide which room should currently have access to the proton beam.

This process was previously handled by live communication (via a telephone) between

the therapist and the Master Control Room (MCR) operator. There are only three

treatment rooms, and a treatment takes about an hour to complete, so the beams

scheduling was not much of a burden on the MCR operator. The system was

automated in response to complaints that the therapists had that they were not sure if

their request was being processed or if their room had been forgotten. As such, what

they needed was better visibility of the current queue, not automatic prioritization

of that queue. A simple system could have provided feedback on the current queue

without adding the risks and complexities of an automatic priority queue.

In contrast, we would like to see more automatic checks in the patient-

identification process, to support the existing human checks. For example, scanning

a barcode on a patient ID rather than reading text by eye would reduce the risk of

selecting a patient with a similar name (and thus delivering the wrong dose).

7.4 Future Work

7.4.1 Tool Support for Progression

The requirement progression process is fundamentally a human process, requiring a

human to guide the introduction of meaningful assumptions. However, tool support

can certainly improve human processes. We currently support the human with

automatic checks of proposed requirement rephrasings. We would like to extend this

support to include automatic suggestions of how to proceed in the progression process,

using a combination of heuristics (such as pushing the requirement arcs towards the

machine domain) and mathematical inferences (such as using prime interpolents to

propose breadcrumbs [17]).

Aside from generating suggestions, simply providing a GUI for building and

maintaining problem diagrams and progressions would make the process more

239

accessible. Such a GUI could integrate with a back-end Alloy analysis, linking the

constraints in a diagram with the accompanying Alloy model that analyzes those

constraints.

7.4.2 Code Analysis

The current code analysis required a fairly large amount of human effort, although

only a fraction of that spent on building and testing the system. The introduction

of automatic translation tools, such as CForge and JForge [23], helps to reduce this

time cost. However, the scalability limitations of the Forge analysis still requires

that a human invest time in building an abstraction barrier of specification stubs to

isolate the relevant portion of code. However, we remain tied to Forge for our analysis

because of its unique ability to check arbitrary relational claims (written in Alloy)

against code. This feature permits us to smoothly integrate the code analysis with

the assumptions generated by our Alloy-based requirement progression.

We feel that the gains from smoothly integrating the code analysis (Forge)

with the requirements analysis (requirement progression) justifies the additional

human investment. For costly or safety-critical applications, this tradeoff is sensible.

However, reducing the time investment would broaden the appeal of our techniques,

and make it applicable to a wider range of systems.

As mentioned earlier, one solution is to require better structured code, so that

it is easier to identify the relevant subset. Another approach would be to improve

Forge-like tools to scale better. A third option is to provide better tool support for

automatically identifying the relevant subset. For example, one might run a slicing

algorithm over the code to identify a subset small enough to hand off to Forge.

7.4.3 Integration with STAMP

Our current approach uses hazard analysis to justify the set of requirements analyzed,

but that technique is not as systematic as other component arguments, and thus

weakens the overall confidence of the dependability argument. For example, we

240

believe that Leveson’s STAMP [52] notation would link requirement progression to

requirements elicitation, justifying why the requirements analyzed by progression are

indeed the right requirements to be establishing.

7.4.4 Lightweight Techniques

We would like to experiment with applying these techniques to less critical

applications, where the analysis must be cheaper but need not provide as much

confidence. Working on that sort of case study would likely involve

- adding more automation and tool support so that existing techniques are lower
cost,

- using CDADs to select a lighter-weight set of component techniques, and

- being more conscious about the tradeoff, not only between breadth and depth,
but also between cost incurred and confidence provided.

One idea we have begun to develop to help manage that tradeoff is the waterglass

model – an extension of the CDAD notation that guides the distribution of effort or

budget across those techniques based on the confidence they provide and costs they

incur. We provide a glimpse of the waterglass model in the next section.

7.5 Waterglass Model of Budget Allocation

Suppose you have selected a set of techniques that fit together to build an end-to-end

dependability argument, as shown in the CDAD in Figure 7-1. Now you have to

allocate effort amongst those techniques, given a limited budget.

7.5.1 Representing Component Techniques

Think of each component argument as a glass of water, as shown in Figure 7-2.

The height of the glass represents the maximum confidence you could gain from the

technique, the height of water within a glass shows how much confidence you are

241

stated as property on,,,

re
ca

st
 a

s
pr

op
er

tie
s

on
,,,

conte/t

system

component

module

block

co
nte

/t

sy
ste

m

co
mpo

ne
nt

mod
ule

blo
ck

hazard
analysis

automatic
code analysis

requirement
progression

Figure 7-1: Techniques linked together to form an end-to-end dependability argument.

gaining given your current investment in the technique, and the diameter of the glass

represents return on on investment – it takes more water to raise the level of a wider

glass. Your budget is a pitcher of water, which is to be poured into the glasses.

To get an idea of the overall confidence provided by a dependability argument, line

up the glasses side-by-side, as shown in Figure 7-3-a. As a rough approximation, the

confidence provided by the entire argument is the minimum water level of any glass.1

Confidence is maximized by equalizing the water level in all the glasses. Imagine

putting a pipe between the glasses so that they even themselves out, producing the

highest possible minimum (Figure 7-4-b).

1The actual confidence is surely a more complex function, but it is one that punishes you severely
for having one glass much lower than the rest and rewards you very little for having one glass much
higher than the rest. The minimum function is a good approximation for the purposes of this
narration.

242

stated&as&property&on,,,

re
-a
st
&a
s&
pr
op
er
tie
s&
on
,,,

-onte/t

system

-omponent

module

blo-4

-o
nte
/t

sy
ste
m

-o
mp
on
en
t

mo
du
le

blo
-4

automati-
-ode&analysis

requirement
progression

hazard
analysis

Figure 7-2: Each technique is represented by a glass of water. The height of the glass
shows potential confidence gained, the water level shows the current confidence being
provided, and the diameter represents return on investment.

7.5.2 Classifying Mistakes

This representation allows us to classify some of the ways that a dependability

argument can go wrong.

Figure 7-4 shows cases where one of the glasses has been omitted. In part (a),

requirements gathering has been omitted (right glass). A requirement has been

carefully decomposed into breadcrumbs (center glass), and the breadcrumbs have

been validated (left glass), but the wrong requirement might have been enforced, so

overall confidence is low. In part (b), requirements were carefully gathered (right),

and the system was carefully architected (center), but the components were not

validated (left), leaving overall confidence low. In part (c), the requirements were

243

automati'
'ode*analysis

re0uirement
1rogression

ha4ard
analysis

minimum

automati'
'ode*analysis

re0uirement
1rogression

ha4ard
analysis

minimum

5a6

576

Figure 7-3: Overall confidence in the dependability argument is the minimum
confidence of the component techniques.

well understood (right), and the components were checked carefully (left), but no

argument was made that the component assumptions actually enforced the system

requirement (center), lowering overall confidence.

Figure 7-5 shows cases where techniques were chosen that were not appropriate

given the budget. Part (a) shows a case where a heavyweight theorem proving

technique was used to analyze code (left), as represented by a very wide (but tall)

glass. However, with a low budget, the benefits of theorem proving cannot be realized,

and the wide glass just sucks the water out of the other (much thinner) glasses. Overall

confidence is lower than necessary. Part (b) shows the opposite problem. A set of

244

lightweight techniques have been used – they are narrow (fill up quickly) but short

(can only ever provide so much confidence). With a high budget, all three glasses

have been filled up with water to spare (and there is no where to spend the extra

budget). Overall confidence is lower than necessary.

7.5.3 Shaped Glasses

Actual techniques do not always correspond to cylindrical glasses. For example,

consider the glasses in Figure 7-6. The left-most glass represents a technique with

diminishing returns, such as testing. It takes more water (more test cases) to gain

confidence the higher the level already is (the more tests you have already run).

Each drop of water (test case) adds less confidence than the last. The second glass

represents a technique with a high overhead, such as a custom-build analysis. It

takes a lot of work to setup, but then has a high return on investment. The last two

glasses show the tradeoff (discussed earlier) between lightweight and heavyweight

techniques. Heavyweight techniques have the potential to provide high confidence,

but take a large investment to achieve that confidence. Lightweight techniques have

a much lower maximum confidence, but attain that maximum much more quickly.

The shapes of the glasses for particular techniques would be based on empirical data

and historical experience.

Building a dependability argument is thus not only a matter of picking techniques

with appropriate breadth and depth (as shown on the CDAD), but also about

matching the techniques to the budget at hand. The waterglass model has the

potential to guide the selection of techniques and also guide the allocation of budget

to those techniques.

245

automatic
code analysis

requirement
progression

no
elicitation

minimum

(a)

(b)

no
code analysis

requirement
progression

hazard
analysis

minimum

(c)

automatic
code analysis

no
link

hazard
analysis

minimum

Figure 7-4: Representing errors of omission. Building an incomplete argument greatly
harms confidence.

246

theorem
proving

requirement
progression

hazard
analysis

minimum

(a)

(b)

informal
review

patterned
argument

hazard
analysis

minimum

Figure 7-5: Representing errors of technique selection. In the first case, the budget is
low so the heavyweight technique sucks all the water out of the other glasses, lowering
overall confidence. In the second case, the techniques are lightweight but the budget
is high, resulting in wasted budget and lower confidence.

247

diminishing
returns

high
overhead heavyweight lightweight

Figure 7-6: Waterglasses have different shapes depending on how their return on
investment changes as investment increases.

248

Chapter 8

Appendix: Automatic Door Model

An Alloy model that checks the requirement progression and resulting argument

diagram described in Section 3.6. It permits auotmatic analyses to confirm that

the generated domain assumptions are indeed strong enough to enforce the system

requirements.

1 /∗ A model o f an automatic door c on t r o l l e r , as par t o f i t s d e p en da b i l i t y argument .
2 ∗ problem proposed by Nick Ourusoff
3 ∗ model c rea t ed by Robert Seater June 2008
4 ∗ l a s t updated August 2008
5 ∗/
6
7 open u t i l / o rde r ing [Time]
8 sig Time {
9 DistanceSensor : one Int ,

10 DistanceDoor : one Int ,
11 DoorGap : one Int ,
12 MotorSpeed : one Int ,
13 WalkingSpeed : one Int ,
14 MotionDetected : one MotionDetectedOption ,
15 MotorPolar ity : one MotorPolarityOption ,
16 MotorPower : one MotorPowerOption ,
17 DoorGapMeasure : one DoorGapMeasureOption ,
18 Appl iedForce : one AppliedForceOption ,
19 }
20
21 abs t r a c t sig MotionDetectedOption {}
22 one sig Motion , NoMotion extends MotionDetectedOption {}
23
24 abs t r a c t sig MotorPolar ityOption {}
25 one sig Opening , Clos ing extends MotorPolar ityOption {}
26
27 abs t r a c t sig MotorPowerOption {}
28 one sig MotorOn , MotorOff extends MotorPowerOption {}

249

29
30 abs t r a c t sig DoorGapMeasureOption {}
31 one sig AlmostOpen , AlmostClosed , UnknownGap extends DoorGapMeasureOption {}
32
33 abs t r a c t sig AppliedForceOption {}
34 one sig OpeningForce , Clos ingForce , NoForce extends AppliedForceOption {}
35
36 fact s an i ty {
37 a l l t : Time | t . DoorGap =< 10
38 }
39
40 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
41 pred Serv iceGoa l [t : Time] {
42 (DistanceDoor [t] = < 1) ⇒ (DoorGap [t] >= 9)
43 (DistanceDoor [t] >= 11) ⇒ (DoorGap [t] = < 1)
44 }
45
46 pred MotorDamage [t : Time] {
47 (
48 MotorPower [t] = MotorOn
49 and MotorPolar ity [t] = Opening
50 and DoorGap [t] >= 10
51) or (
52 MotorPower [t] = MotorOn
53 and MotorPolar ity [t] = Clos ing
54 and DoorGap [t] =< 0
55)
56 }
57
58 pred DoorDamage [t : Time] {
59 (
60 Appl iedForce [t] = OpeningForce
61 and DoorGap [t] >= 10
62) or (
63 Appl iedForce [t] = Clos ingForce
64 and DoorGap [t] =< 0
65)
66 }
67
68 pred goa l s [t : Time] {
69 Serv iceGoa l [t]
70 ! MotorDamage [t]
71 ! DoorDamage [t]
72 }
73
74 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
75 pred PeopleBC [] {
76 // the sensor i s l o ca t e d on top o f the door
77 a l l t : Time | DistanceDoor [t] = Dis tanceSensor [t]
78
79 //max walk ing speed i s a cons tant between 0 and 2 f e e t per second
80 a l l t , t ’ : Time | WalkingSpeed [t] = WalkingSpeed [t ’]
81 WalkingSpeed [f i r s t] >= 0
82 WalkingSpeed [f i r s t] =< 2

250

83
84 // peop l e move up to t h e i r max walk ing speed
85 a l l t : Time , t ’ : t . next {
86 (Dis tanceSensor [t ’] >= DistanceSensor [t] − WalkingSpeed [t]
87 and
88 DistanceSensor [t ’] = < DistanceSensor [t] + WalkingSpeed [t])
89 }
90
91 }
92
93 pred MotionSensorBC [] {
94 // the sensor has a de t e c t i on range o f 6 f e e t
95 a l l t : Time | MotionDetected [t] = Motion ⇔ DistanceSensor [t] =< 6
96 }
97
98 pred ControllerBC [] {
99 a l l t : Time {

100 (MotionDetected [t] = Motion and DoorGapMeasure [t] ! = AlmostOpen)
101 ⇒
102 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Opening)
103 }
104 a l l t : Time {
105 (MotionDetected [t] = NoMotion and DoorGapMeasure [t] ! = AlmostClosed)
106 ⇒
107 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Clos ing)
108 }
109 a l l t : Time |
110 (MotionDetected [t] = Motion and DoorGapMeasure [t] = AlmostOpen)
111 ⇒ MotorPower [t] = MotorOff
112 a l l t : Time |
113 (MotionDetected [t] = NoMotion and DoorGapMeasure [t] = AlmostClosed)
114 ⇒ MotorPower [t] = MotorOff
115 }
116
117 pred MotorBC [] {
118 //motor speed i s 50% per second , and remains cons tant over t ime
119 a l l t , t ’ : Time | MotorSpeed [t] = MotorSpeed [t ’]
120 MotorSpeed [f i r s t] = 5
121
122 // The motor ’ s power and p o l a r i t y determine the f o r c e app l i e d to the door
123 a l l t : Time |
124 MotorPower [t] = MotorOff ⇔ AppliedForce [t] = NoForce
125 a l l t : Time |
126 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Opening)
127 ⇔ AppliedForce [t] = OpeningForce
128 a l l t : Time |
129 (MotorPower [t] = MotorOn and MotorPolar ity [t] = Clos ing)
130 ⇔ AppliedForce [t] = Clos ingForce
131 }
132
133 pred DoorBC [] {
134 //The app l i e d f o r c e on the door bounds how the gap can change , as l im i t e d by mo
135 a l l t : Time , t ’ : t . next {
136 Appl iedForce [t] = OpeningForce ⇒

251

137 (DoorGap [t ’] = in t [DoorGap [t]] + in t [MotorSpeed [t]])
138 }
139
140 a l l t : Time , t ’ : t . next {
141 (Appl iedForce [t] = Clos ingForce) ⇒
142 (DoorGap [t ’] = in t [DoorGap [t]] − i n t [MotorSpeed [t]])
143 }
144
145 a l l t : Time , t ’ : t . next {
146 (Appl iedForce [t] = NoForce) ⇒ (DoorGap [t ’] = DoorGap [t])
147 }
148 }
149
150 pred Posit ionSensorBC [] {
151 a l l t : Time |
152 DoorGapMeasure [t] = AlmostOpen ⇔ DoorGap [t] >=9
153 a l l t : Time |
154 DoorGapMeasure [t] = AlmostClosed ⇔ DoorGap [t] =< 1
155 }
156
157 pred breadcrumbs [] {
158 PeopleBC
159 MotionSensorBC
160 ControllerBC
161 MotorBC
162 DoorBC
163 Posit ionSensorBC
164 }
165
166 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
167 pred i n i t i a lC o nd i t i o n s [] {
168 goa l s [f i r s t]
169 goa l s [f i r s t . next]
170 DoorGap [f i r s t] >= 0
171 DoorGap [f i r s t] =< 10
172 }
173
174 assert enforcement {
175 breadcrumbs and i n i t i a lC o nd i t i o n s
176 ⇒ a l l t : Time | goa l s [t]
177 }
178
179 check enforcement for 3 but 6 int , 5 Time
180 // 5 in t g i v e s the b i tw id t h , thus we are a l l owed i n t e g e r s in the range [−15 ,16]
181 // we use b i t w i d t h 6 to reduce the problems from over f l ow
182
183 pred n i c e [] {
184 breadcrumbs
185 i n i t i a lCo nd i t i o n s
186 a l l t : Time | goa l s [t]
187 }
188 run n i c e for 3 but 6 int , 5 Time

252

Chapter 9

Appendix: BPTC Case Study

History

This research project has grown largely out of an ongoing collaboration with the

Burr Proton Therapy Center (BPTC), a radiation therapy facility associated with

the Massachusetts General Hospital in Boston. It has served as both inspiration for

new approaches for ensuring software dependability. and as a reality check for what

approaches are realistic on a real, working, safety-critical system.

History of the BPTC

The Burr Proton Therapy Center (BPTC) is a radiation therapy facility associated

with the Massachusetts General Hospital in Boston. It is one of only two facilities in

the United States to offer treatment with protons (rather than electrons or x-rays).

Proton beams require much more elaborate and expensive equipment to produce, but

can be more tightly conformed, and cause less damage to surrounding tissue. They

are thus more suitable for treatments in sensitive areas such as the eye, and for the

treatment of tumors in the brains of children, for which collateral damage has more

serious long-term consequences. The center occupies a new building adjacent to the

hospital, and began treating patients in the fall of 2001.

The Software Design Group in the MIT Lab for Computer Science began a

253

collaboration in April 2002 with BPTC and the developers of the therapy system

to investigate better methods for the development of safety critical software. The

BPTC system would be used as a challenging example of a modern and complex

medical device for the purposes of research; in turn, the results of the research would

be used where appropriate to improve the safety and reliability of the system.

The BPTC installation has at its core a cyclotron that generates a beam of protons.

The beam is multiplexed amongst several treatment rooms, each with its own gantry

and nozzle for positioning the beam. Technicians in a master control room supervise

the cyclotron and allocate the beam to treatment rooms. Each treatment room is

paired with a treatment control room, in which clinicians enter and execute treatment

prescriptions.

The patient is placed on a couch which is electromechanically positioned by staff

within the treatment room. The beam emitter is also positioned, and its aim verified

by staff using X-rays and lights attached to the emitter. The staff then leave the

room, and the treatment is initiated from the treatment control room. Treatment

consists of irradiating a specific location on the patient using a beam of protons with

a defined lateral and longitudinal distribution.

The machine is considered safety critical primarily due to the potential for

overdose — treating the patient with radiation of excessive strength or duration. The

International Atomic Energy Agency lists 80 separate accidents involving radiation

therapy in the United States over the past fifty years. The most famous of these

accidents are those involving the Therac-25 machine. Faulty software was a primary

cause of the Therac-25 failures. More recently, software appears to have been the

main factor in similar accidents in Panama in 2001.

The BPTC system was developed in the context of a sophisticated safety program.

Unlike the Therac-25, the BPTC system makes extensive use of hardware interlocks,

and has a redundant PLC-based system running in parallel with the software control

system. Video cameras inside the control room allow the technicians to view

internal mechanisms, including a lead beam stop that can be inserted to isolate the

treatment room from the cyclotron. The software itself is instrumented with abundant

254

runtime checks, including a heartbeat monitor to ensure continued operation of

critical processes. A detailed system-level risk analysis was performed. The software

implementation was heavily tested, and manually reviewed against rigorous coding

standards.

Our Experience

The work described in Chapter 3 grew out of the difficulty we encountered with

keeping track of a large number of domain properties, relating them appropriately to

the requirements and specifications.

Initially, we used problem diagrams simply to describe the BPTC system – keeping

track of how domains interacted and recording properties about the domains. As we

spent more time interacting with the BPTC engineers, we found that the problem

diagrams were not only useful recording information they had told us, but also for

indicating what questions to ask. The information they initially gave us was not

enough to build a safety case, yet it was not clear what additional information would

be. There simply was not time to get full descriptions of all the parts of the system,

so we needed to narrow our questions and focus our inquiry.

We found that we could use the structure of a problem diagram to (at least start

to) build a safety argument for a requirement and, by doing so, explicitly expose the

assumptions we were making about the behavior of different parts of the system. Once

those assumptions were exposed and articulated, we could ask the BPTC engineers if

they were reasonable. This approach was a big improvement over our earlier attempts

to build safety arguments out of the information the engineers volunteered on their

own or blindly probing their knowledge of the immensely complex system.

The requirement progression technique described in Chapter 3 and applied in

Chapter 4 is a more general and systematic way for doing the kind of reasoning that

has helped us communicate with the BPTC. This method can either be used as a

means of focusing requirements elicitation, or it can be used to build an auditable

argument – one in which an outside reviewer can understand why the argument is

correct. We originally developed it to help us do the former task, although our current

255

work focuses more on the latter task.

256

Chapter 10

Appendix: Requirement

Progression Model

This Alloy model is analyzable with the current, freely available, version 4 of the

Alloy Analyzer [30].

257

1 module r equ i r ementProgre s s i on
2 open u t i l / o rde r ing [Diagram] as ord
3 −− f o r e f f e c t i v e v i s u a l i z a t i o n , p r o j e c t over Diagram
4
5 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
6 /∗ de f i n in g a problem diagram ∗/
7 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
8
9 sig Phenomenon , Domain , Constra int {}

10
11 −− the anatomy o f a problem diagram
12 sig Diagram {
13 phenomena : set Phenomenon ,
14 domains , machines : set Domain ,
15 c on s t r a i n t s , requirements , s p e c i f i c a t i o n s : set Constra int ,
16 connects : Domain → Domain ,
17 i nvo l v e s : Domain → Phenomenon ,
18 touches : Constra int → Domain ,
19 mentions : Constra int → Phenomenon
20 }
21
22 pred wellFormedDiagram [x : Diagram] {
23 −− r e l a t i o n s do not c ros s between diagrams
24 se l fConta ined [x]
25 −− t he re i s e x a c t l y one machine
26 one x . machines
27 −− domains connect i f f they in vo l v e a shared phenomenon
28 c onne c t I f f Sha r e [x]
29 −− diagrams are non− t r i v i a l
30 nonTr iv i a l [x]
31 −− a l l c on s t r a in t s are w e l l formed
32 a l l c : x . c o n s t r a i n t s | wel lFormedConstra int [c , x]
33 }
34
35 run wellFormedDiagram for 4
36 run wellFormedDiagram for 3 5 −−2 minutes to s o l v e

258

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ he l p e r f un c t i on s f o r w e l l formedness ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 −− domains connect i f f they in vo l v e a shared phenomenon
6 −− domains do not connect to t hemse l ve s
7 pred c onne c t I f f Sha r e [x : Diagram] {
8 a l l d , d ’ : Domain |
9 d ’ in x . connects [d] ⇔

10 (d != d ’ and some x . i nvo l v e s [d] & x . i nvo l v e s [d ’])
11 }
12
13 pred s e l fConta ined [x : Diagram] {
14 −− domains don ’ t connect to domains in o ther diagrams
15 (x . domains) . (x . connects) in (x . domains)
16 −− domains do not in vo l v e phenomena from other diagrams
17 (x . domains) . (x . i nvo l v e s) in (x . phenomena)
18 −− requ irements and s p e c i f i c a t i o n s are not from other diagrams
19 x . requ i rements + x . s p e c i f i c a t i o n s in x . c o n s t r a i n t s
20 −− the machine i s not in another diagram
21 x . machines in x . domains
22 }
23
24 pred nonTr iv i a l [x : Diagram] {
25 −− each con s t r a in t mentions some phenomena
26 a l l c : x . c o n s t r a i n t s | some x . mentions [c]
27 −− each domain i n v o l v e s some phenomena
28 a l l d : x . domains | some x . i nvo l v e s [d]
29 −− the diagram i s connected
30 a l l d , d ’ : x . domains | d ’ in d . ∗ (x . connects)
31 −− t he re i s at l e a s t one non−machine domain
32 some x . domains − x . machines
33 }
34
35 pred wel lFormedConstra int [c : Constra int , x : Diagram] {
36 −− con s t r a in t s can on ly touch the domains t ha t i n vo l v e phenomena they mention
37 −− con s t r a in t s must touch the domains t ha t i n vo l v e the phenomena they mention
38 a l l p : x . mentions [c] | some d : x . touches [c] | p in x . i nvo l v e s [d]
39 a l l d : x . touches [c] | some x . i nvo l v e s [d] & x . mentions [c]
40 −− s p e c i f i c a t i o n s on ly touch machines
41 c in x . s p e c i f i c a t i o n s ⇔ x . touches [c] in x . machines
42 −− c i s contained e n t i r e l y w i t h in x
43 fu l l yConta inedCons t r a in t [c , x]
44 }
45
46 pred f u l l yConta inedCons t r a in t [c : Constra int , x : Diagram] {
47 −− c must be one o f x ’ s c on s t r a in t s
48 c in x . c o n s t r a i n t s
49 −− con s t r a in t s do not touch domains in o ther diagrams
50 x . touches [c] in x . domains
51 −− con s t r a in t s do not mention con s t r a in t s in o ther diagrams
52 x . mentions [c] in x . phenomena
53 }

259

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ requirement progres s ion t rans format ions ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 pred addBreadcrumb [be fo re , a f t e r : Diagram] {
6 −−nothing changes ex cep t f o r the add i t i on o f a s i n g l e breadcrumb
7 s t ruc tur eEqu iva l ent [be fo r e , a f t e r]
8 some bc : Constra int {
9 addConstra int [bc , be fo re , a f t e r]

10 −− bc i s a w e l l formed v a l i d breadcrumb
11 one a f t e r . touches [bc]
12 wel lFormedConstra int [bc , a f t e r]
13 −− bc i s not a requirement or a spec
14 bc ! in a f t e r . requ i rements + a f t e r . s p e c i f i c a t i o n s
15 }
16 }
17
18 pred rephraseRequirement [be fo re , a f t e r : Diagram] {
19 −−nothing changes ex cep t f o r r ’ r e p l a c in g r
20 s t ruc tu r eEqu iva l en t [be fo re , a f t e r]
21 some r : be fo r e . requirements , r ’ : a f t e r . r equ i r ements {
22 wel lFormedConstra int [r ’ , a f t e r]
23 r e p l a c e [r , r ’ , be fo re , a f t e r]
24 onlyChanges [r , r ’ , be fo re , a f t e r]
25
26 −− r and r ’ have d i f f e r e n t phenomena but same domains
27 be fo r e . mentions [r] ! = a f t e r . mentions [r ’]
28 be fo r e . touches [r] = a f t e r . touches [r ’]
29
30 −− t he change i s j u s t i f i e d by the o ther con s t r a in t s
31 imp l i c a t i o n [a f t e r . c o n s t r a i n t s , r , a f t e r]
32 }
33 }
34
35 pred pushRequirement [be fo re , a f t e r : Diagram] {
36 s t ruc tu r eEqu iva l en t [be fo re , a f t e r]
37 onlyTouchesChanges [be fo re , a f t e r]
38 −− one requirement changes what i t touches
39 some r : be fo r e . r equ i rements & a f t e r . requ i rements {
40 be fo r e . touches [r] != a f t e r . touches [r]
41 be fo r e . touches − (r → univ) = a f t e r . touches − (r → univ)
42 wel lFormedConstra int [r , a f t e r]
43 }
44 }

260

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ s imu la t ion and in va r i an t p r e s e r va t i on ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 pred commonTransformation [x , x ’ : Diagram] {
6 some y , z : Diagram {
7 addBreadcrumb [x , y]
8 rephraseRequirement [y , z]
9 pushRequirement [z , x ’]

10 }
11 }
12
13 pred someTransformation [x , y : Diagram] {
14 addBreadcrumb [x , y] or
15 rephraseRequirement [x , y] or
16 pushRequirement [x , y] or
17 commonTransformation [x , y]
18 }
19
20 pred s imu la t i on [] {
21 −− the f i r s t diagram i s w e l l formed
22 wellFormedDiagram [f i r s t []]
23 −− i t has no spec ,
24 no f i r s t [] . s p e c i f i c a t i o n s
25 −− and i t has a requirement
26 some f i r s t [] . r equ i rements
27
28 −− a spec i s e v e n t u a l l y der i ved v ia t rans format ions
29 some f i n a l : Diagram − f i r s t [] {
30 a l l x : prevs [f i n a l] | someTransformation [x , next [x]]
31 f i n a l . r equ i rements in f i n a l . s p e c i f i c a t i o n s
32 }
33 }
34 run s imu la t i on for 4
35
36 assert wel lFormednessPrese rvat ion {
37 a l l x , y : Diagram |
38 wellFormedDiagram [x] and someTransformation [x , y]
39 ⇒ wellFormedDiagram [y]
40 }
41 check wel lFormednessPrese rvat ion for 4
42 −− t he check ex ecu t e s f a s t e r i f commonTransformation
43 −− i s e l im ina t ed from someTransformation

261

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ he l p e r f un c t i on s f o r the t ran s format ion s ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 −− add a non−requirement , non−s p e c i f i c a t i o n con s t r a in t
6 pred addConstra int [c : Constra int , x , y : Diagram] {
7 onlyChange [c , x , y]
8 c = y . c o n s t r a i n t s − x . c o n s t r a i n t s
9 x . r equ i rements = x . requ i rements

10 y . s p e c i f i c a t i o n s = y . s p e c i f i c a t i o n s }
11
12 −− on ly cons t ra in t s , requirements , s p e c i f i c a t i o n s , touches , mentions vary
13 pred s t ruc tu r eEqu iva l en t [x , y : Diagram] {
14 x . domains = y . domains
15 x . machines = y . machines
16 x . phenomena = y . phenomena
17 x . connects = y . connects
18 x . i nvo l v e s = y . i nvo l v e s }
19
20 −− approximates meaning o f the imp l i c a t i on (a 0 ˆ a 1 ˆ . . . ˆ a n ⇒ b)
21 pred imp l i c a t i o n [a : set Constra int , b : Constra int , x : Diagram] {
22 x . mentions [b] in x . mentions [a] }
23
24 −− r d i sappear s and r ’ appears to r ep l a c e i t
25 pred r ep l a c e [r , r ’ : Constra int , x , y : Diagram] {
26 r in x . requ i rements
27 r ! in y . requ i rements
28 r ’ ! in x . requ i rements
29 r ’ in y . requ i rements }
30
31 −− on ly con s t r a in t s in c change
32 pred onlyChange [c : set Constra int , x , y : Diagram] {
33 x . s p e c i f i c a t i o n s − c = y . s p e c i f i c a t i o n s − c
34 x . touches − (c → univ) = y . touches − (c → univ)
35 x . requ i rements − c = y . requ i rements − c
36 x . c o n s t r a i n t s − c = y . c o n s t r a i n t s − c
37 x . s p e c i f i c a t i o n s − c = y . s p e c i f i c a t i o n s − c
38 x . mentions − (c → univ) = y . mentions − (c → univ) }
39
40 −− on ly con s t r a in t c changes
41 pred onlyChange [c : set Constra int , x , y : Diagram] {
42 onlyChanges [c , c , x , y] }
43
44 −− on ly changes are c in x and c ’ in y ’
45 pred onlyChanges [c , c ’ : set Constra int , x , y : Diagram] {
46 x . s p e c i f i c a t i o n s − c = y . s p e c i f i c a t i o n s − c ’
47 x . touches − (c → univ) = y . touches − (c ’ → univ)
48 x . requ i rements − c = y . requ i rements − c ’
49 x . c o n s t r a i n t s − c = y . c o n s t r a i n t s − c ’
50 x . s p e c i f i c a t i o n s − c = y . s p e c i f i c a t i o n s − c ’
51 x . mentions − (c → univ) = y . mentions − (c ’ → univ) }
52
53
54 −− nothing bu t the touches r e l a t i o n d i f f e r s between x and y

262

55 pred onlyTouchesChanges [x , y : Diagram] {
56 x . requ i rements = y . requ i rements
57 x . c o n s t r a i n t s = y . c o n s t r a i n t s
58 x . mentions = y . mentions }

263

264

Chapter 11

Appendix: Voting Fidelity Model

The full fidelity model for the cryptographic voting case study.

1 /∗
2 ∗ A model d e s c r i b i n g a secure vo t ing procedure .
3 ∗
4 ∗ The vo t ing scheme was deve loped , in part , by Peter Ryan .
5 ∗ This model was deve loped by Rob Seater and Eunsuk Kang ,
6 ∗ with he lp from Emina Torlak .
7 ∗
8 ∗ model c rea t ed 3−24−08
9 ∗/

10 module vot ing
11
12 // Someone who i s capab l e o f vo t ing (bu t not necessary au thor i z ed to do so)
13 sig Voter {
14 // Each vo t e r wants zero or one cand ida t e s to win .
15 i n t en t i o n : lone Candidate ,
16
17 // Each vo t e r r e c e i v e s a s e t o f 0 or more b a l l o t s .
18 vo t e rBa l l o t : set Bal lo t ,
19 }
20
21 // Some vo t e r s are r e g i s t e r e d vo t e r s ; they a l l owed to vo t e
22 // and are assumed to show up to vo t e .
23 sig Regi s teredVoter extends Voter {}

265

1 // The name o f a candidate who i s running in the e l e c t i o n .
2 sig Candidate {
3 // The t o t a l number o f vo t e s computed by the vo t ing method f o r t h i s candidate .
4 // A candidate can on ly ge t one number o f votes ,
5 // but we don ’ t ye t say how they are computed .
6 s co r e : one Int
7 }
8
9 // A checkab l e l o ca t i on on a b a l l o t / r e c e i p t ;

10 // e . g . ‘ ‘ the t h i r d box down from the top ’ ’
11 sig Pos i t i on {}
12
13 // A b a l l o t i s the p iece o f paper g iven to a vo t e r .
14 // I t c on s i s t s o f a l i s t o f cand ida t e s nex t to a l i s t o f checkboxes (p o s i t i o n s) .
15 // Each candidate name i s at some (v e r t i c a l) po s i t i on on the b a l l o t .
16 // D i f f e r en t b a l l o t s may have d i f f e r e n t arrangements / order ings o f t hose names .
17 // The l i s t o f checkboxes can be torn o f f from the l i s t o f candidates ,
18 // forming the ‘ ‘ r e c e i p t ’ ’ .
19 // At the bottom of the r e c e i p t i s an onion −− an encrypted r ep r e s en t a t i on
20 // o f the order o f the candidate names on the b a l l o t .
21 sig Ba l l o t {
22 // the order in which the candidate names appear on the b a l l o t
23 // each po s i t i on on a b a l l o t l i s t s one candidate
24 // each candidate i s l i s t e d at one po s i t i on on a b a l l o t
25 arrangement : Po s i t i on one → one Candidate ,
26
27 // each b a l l o t has e x a c t l y one Receipt s t u ck to i t
28 ba l l o tRe c e i p t : one Receipt ,
29
30 // Helper r e l a t i o n : makes the model more readab l e bu t i s r e a l l y
31 // j u s t sugar (cons t ra ined by the appended f a c t) .
32 // The candidate in d i c a t e d by t h i s b a l l o t , based on the b a l l o t ’ s
33 // arrangement and the po s i t i on marked on the r e c e i p t .
34 ba l lo tCandidate : lone Candidate ,
35 }{
36 // de f i n in g con s t r a in t f o r the ba l l o tCand i da t e he l p e r r e l a t i o n
37 ba l lo tCandidate = ba l l o tRe c e i p t . marked . arrangement
38 }

266

1 // an Onion i s an encrypted r ep r e s en t a t i on o f an arrangement o f candidate names
2 // according to a g iven onion , each cand i d i a t e name i s g iven one pos i t i on ,
3 // and each po s i t i on ho lds one candidate name
4 sig Onion {
5 // the order in which the candidate names appear , according to the onion
6 // each po s i t i on on a b a l l o t l i s t s one candidate
7 // each candidate i s l i s t e d at one po s i t i on on a b a l l o t
8 arrangement : Po s i t i on one → one Candidate ,
9 }

10
11 // A r e c e i p t i s a t t ached to a b a l l o t , bu t can be torn o f f and separa t ed .
12 // I t has a s e t o f p o s i t i o n s (arranged v e r t i c a l l y so they can l i n e up
13 // with a l i s t o f cand ida t e s) , any o f which can be checked o f f .
14 // We assume t ha t at most one box i s checked −− o therw i s e the b a l l o t i s
15 // voided and the vo t e r i s g iven a new one .
16 sig Receipt {
17 // each r e c e i p t has e x a c t l y 1 onion a s s oc i a t e d with i t
18 rece iptOnion : one Onion ,
19
20 // Zero or one p o s i t i o n s on the r e c e i p t have been marked
21 // (e . g . checked o f f by a vo t e r)
22 marked : lone Pos i t ion ,
23
24 // Helper r e l a t i o n : makes the model more readab l e bu t i s r e a l l y
25 // j u s t sugar (cons t ra ined by the appended f a c t) .
26 // The candidate in d i ca t ed by t h i s r e c e i p t , based on i t ’ s onion ’ s
27 // arrangement and the marking on the r e c e i p t .
28 rece ip tCand idate : lone Candidate ,
29 }{
30 // the de f i n in g con s t r a in t f o r the rece ip tCand ida t e he l p e r r e l a t i o n
31 rece ip tCand idate = marked . (r ece iptOnion . arrangement)
32 }

267

1 // A record i s a decrypted ver s ion o f a r e c e i p t ;
2 // i t ’ s arrangement and marking i s v i s i b l e f o r a l l t o see ,
3 // a l t hough i t ’ s connect to a vo t e r has h o p e f u l l y be obscured .
4 sig Record {
5 // the order in which the candidate names appear on the record
6 // each po s i t i on on a b a l l o t l i s t s one candidate
7 // each candidate i s l i s t e d at one po s i t i on on a b a l l o t
8 arrangement : Po s i t i on one → one Candidate ,
9

10 // zero or one p o s i t i o n s on the r e c e i p t have been marked , i n d i c a t i n g
11 // a vo t e f o r the candidate at t ha t po s i t i on
12 marked : lone Pos i t ion ,
13
14 // Helper r e l a t i o n : makes the model more readab l e bu t i s r e a l l y j u s t
15 // sugar (cons t ra ined by the appended f a c t) .
16 // The candidate in d i c a t e d by t h i s record , based on i t ’ s arrangement
17 // and marking .
18 recordCandidate : lone Candidate ,
19 }{
20 // the de f i n in g con s t r a in t f o r the recordCandidate he l p e r r e l a t i o n
21 recordCandidate = marked . arrangement
22 }
23
24 // The vo t ing board takes in the r e c e i p t s from b a l l o t s , then ou tpu t s
25 // a s e t o f records .
26 // The input r e c e i p t s are re−ordered , and t h e i r onions re−encrypted .
27 // The outpu t records have t h e i r onions decoded and made pub l i c ,
28 // so t ha t they can be counted .
29 // There i s on ly one vo t ing board .
30 one sig Board {
31 // the the reorder ing done by the vo t ing board
32 // each input r e c e i p t corresponds to 0 or 1 outpu t r e c e i p t s
33 // (l o s s e s are by d e f a u l t a l l owed)
34 // each outpu t r e c e i p t corresponds to 0 or 1 input r e c e i p t s
35 // (spontaneous genera t ion i s by d e f a u l t a l l owed)
36 scramble : Receipt lone → lone Record
37 }
38
39 // A he l p e r func t ion t ha t r ep r e s en t s the scrambl ing done by the vo t in g board .
40 // Because t here i s on ly one vo t ing board , we can repre sen t the
41 // ternary r e l a t i o n <board , input , output>
42 // as a b inary r e l a t i o n < input , output > without any ambigu i ty .
43 fun mix [] : Receipt → Record { Board . scramble }

268

1 /∗ LIVENESS SIMULATION ∗/
2 // genera t e s an i n t e r e s t i n g e l e c t i o n
3 pred l i v e n e s s [] {
4 // at l e a s t one vo t e r wants to vo t e f o r at l e a s t one candidate
5 some c : Candidate | #(Reg i s teredVoter & in t en t i o n . c) > 0
6
7 // a l l o f our assumptions ho ld
8 VoterBreadcrumb
9 BallotBreadcrumb

10 BoardBreadcrumb
11
12 // There i s at l e a s t one b a l l o t t ha t doesn ’ t ge t counted
13 // (bu t i t cou ld be one t ha t wasn ’ t used)
14 #Receipt != # Ba l l o t
15
16 // there i s at l e a s t one unused record f l o a t i n g around
17 some Record − Receipt . mix
18
19 // there are at l e a s t 2 onions t ha t r epresen t the same order ing o f cand ida t e s
20 some d i s j o , o ’ : Onion | o . arrangement = o ’ . arrangement
21 }
22 run l i v e n e s s expect 1
23
24
25 /∗ REQUIREMENT PROGRESSION SETUP ∗/
26 // The system requirement i s the i n i t i a l v e r s ion o f our goa l c on s t r a in t
27 // The score f o r a candidate i s e x a c t l y the number o f peop l e who
28 // in tended to vo t e f o r t ha t candidate .
29 pred Goal0 [] {
30 a l l c : Candidate |
31 c . s co r e = #(Reg i s teredVoter & in t en t i o n . c)
32 }

269

1 /∗ VOTER TO BALLOT ∗/
2 // The f i r s t r ewr i t i n g o f the goa l .
3 // The score f o r a candidate i s the same as the number o f b a l l o t s t ha t
4 // ge t marked f o r t ha t candidate
5 pred Goal1 [] {
6 a l l c : Candidate |
7 c . s co r e = #(ba l lo tCandidate . c & Ba l l o t)
8 }
9

10 // assumptions made about the vo t e r domain
11 pred VoterBreadcrumb [] {
12 // b a l l o t s t ha t aren ’ t g iven to vo t e r s don ’ t ge t marked
13 a l l b : Ba l l o t − Voter . v o t e rBa l l o t | no b . ba l l o tRe c e i p t . marked
14
15 // every r e g i s t e r e d vo t e r g e t s e x a c t l y one b a l l o t
16 a l l v : Reg i s teredVoter | one v . v o t e rBa l l o t
17
18 // no un r e g i s t e r ed vo t e r g e t s a b a l l o t
19 a l l v : Voter − Regi s teredVoter | no v . v o t e rBa l l o t
20
21 // each b a l l o t i s g iven to at most one vo t e r
22 a l l b : Ba l l o t | lone vo t e rBa l l o t . b
23
24 // Voters mark the b a l l o t s they are g iven according to t h e i r
25 // in t en t i on and the order ing on the b a l l o t .
26 // Note t ha t they don ’ t pay any a t t en t i on to the onion or the
27 // order ing i t r e p r e s en t s .
28 a l l v : Reg i s teredVoter | l e t b = v . v o t e rBa l l o t |
29 b . ba l l o tRe c e i p t . marked . (b . arrangement) = v . i n t en t i on
30 }
31
32 // the vo t e r breadcrumb j u s t i f i e s r e p l a c in g Goal0 wi th Goal1
33 assert pa r t i a lC la im1 {
34 VoterBreadcrumb and Goal1 ⇒ Goal0
35 }
36 check pa r t i a lC la im1 expect 0

270

1 /∗ BALLOT TO BOARD ∗/
2 // The second r ewr i t i n g o f the goa l .
3 // The score f o r a candidate i s the same as the number o f r e c e i p t s that ,
4 // according to the marking made on the r e c e i p t and according to the
5 // order ing encoded in the onions o f t hose r e c e i p t s , f avor t ha t candidate .
6 pred Goal2 [] {
7 a l l c : Candidate |
8 c . s co r e =
9 #(Ba l l o t . b a l l o tRe c e i p t & rece ip tCand idate . c)

10 }
11
12 // assumptions made about the b a l l o t domain
13 pred BallotBreadcrumb [] {
14 // d i f f e r e n t b a l l o t s have d i f f e r e n t r e c e i p t s a t t ached to them
15 a l l d i s j b , b ’ : Ba l l o t | b . ba l l o tRe c e i p t != b ’ . b a l l o tRe c e i p t
16
17 // A ba l l o t ’ s onion ac cu ra t e l y encodes the arrangement o f cand ida t e s
18 // shown on the b a l l o t .
19 // That i s the , the order o f cand ida t e s on the b a l l o t i s the same as
20 // the order o f cand ida t e s encoded in the onion .
21 a l l b : Ba l l o t | b . arrangement = b . ba l l o tRe c e i p t . r ece iptOnion . arrangement
22 }
23
24 // the b a l l o t breadcrumb j u s t i f i e s r e p l a c in g Goal1 wi th Goal2
25 assert pa r t i a lC la im2 {
26 BallotBreadcrumb and Goal2 ⇒ Goal1
27 }
28 check pa r t i a lC la im2 expect 0

271

1 /∗ BOARD TO RECORD ∗/
2 // The t h i r d r ewr i t i n g o f the goa l .
3 // The score f o r a candidate i s the same as the number o f vo t e s t ha t the
4 // cand ida t e s g e t s according to the outpu t (records) o f the e l e c t i o n board .
5 pred Goal3 [] {
6 a l l c : Candidate |
7 c . s co r e = #(Receipt . mix & recordCandidate . c)
8 }
9

10 // assumptions about the vo t ing board
11 pred BoardBreadcrumb [] {
12 // Every b a l l o t r e c e i p t g e t s s en t in t o the board e x a c t l y once .
13 // Receipt s are transformed but not des t royed :
14 // each r e c e i p t going in t o the board corresponds to 1 record coming out
15 a l l input : Ba l l o t . b a l l o tRe c e i p t | one input . mix
16
17 // Receipt s are transformed but not c rea t ed :
18 // each record coming out o f the board corresponds to 1 r e c e i p t going in
19 a l l output : Receipt . mix | one mix . output
20
21 // a l l r e c e i p t s from a l l b a l l o t s go in t o the vo t ing board f o r scrambl ing
22 a l l b : Ba l l o t | b . ba l l o tRe c e i p t in mix . Record
23
24 // on ly r e c e i p t s from b a l l o t s go in t o the vo t ing board f o r scrambl ing
25 a l l r : mix . Record | r in Ba l l o t . b a l l o tRe c e i p t
26
27 // The scrambl ing proces s may change the onions , bu t i t does not change
28 // the candidate order ings they repre sen t or the markings made .
29 // That i s , f o r every input r e c e i p t , t he re i s a corresponding outpu t record
30 // with the same arrangement o f cand ida t e s and same marked po s i t i on
31 a l l input : mix . Record | l e t output = input . mix {
32 input . r ece iptOnion . arrangement = output . arrangement
33 input . marked = output . marked
34 }
35 }
36
37 // the board breadcrumb j u s t i f i e s r e p l a c in g Goal2 wi th Goal3
38 assert pa r t i a lC la im3 {
39 BoardBreadcrumb and Goal3 ⇒ Goal2
40 }
41 check pa r t i a lC la im3 expect 0
42
43 // Since goa l3 connect s to on ly one domain , i t has become a breadcrumb
44 // (f o r Pub l i c Record) and progre s s ion i s complete .

272

1 /∗ EQUIVALENCE CLAIMS ∗/
2
3 // a l l the breadcrumb domain assumptions put t o g e t h e r
4 pred al lBreadcrumbs [] {
5 VoterBreadcrumb
6 BallotBreadcrumb
7 BoardBreadcrumb
8 }
9

10 // Checks t ha t i t i s ok to use a more compact & e f f i c i e n t s t y l e f o r
11 // count ing vo t e s .
12 assert equ iva l ence {
13 // count ing the number o f v o t e r s who in tend to vo t e f o r a g iven candidate
14 al lBreadcrumbs ⇒ a l l c : Candidate |
15 #(Reg i s teredVoter & in t en t i o n . c)
16 = #{v : Reg i s teredVoter | v . i n t en t i o n = c}
17
18 // Counting the number o f b a l l o t t ha t are marked in favor o f a g iven
19 // candidate .
20 al lBreadcrumbs ⇒ a l l c : Candidate |
21 #{b : Ba l l o t | b . ba l l o tRe c e i p t . marked . (b . arrangement) = c}
22 = #(Reg i s te redVoter & in t en t i o n . c)
23
24 // Counting the number o f r e c e i p t s t ha t are marked in favor o f a g iven
25 // candidate , according to the arrangements g iven by t h e i r onions .
26 al lBreadcrumbs ⇒ a l l c : Candidate |
27 #{b : Ba l l o t | b . ba l l o tRe c e i p t . marked .
28 (b . ba l l o tRe c e i p t . r ece iptOnion . arrangement) = c}
29 = #(Ba l l o t . b a l l o tRe c e i p t & rece ip tCand idate . c)
30
31 // Counting the number o f records ou tpu t t ed by the board t ha t are marked
32 // in favor o f a g iven candidate ,
33 // according to the arrangements g iven by t h e i r onions .
34 al lBreadcrumbs ⇒ a l l c : Candidate |
35 #{r : Board . scramble [univ] | (r . marked) . (r . arrangement) = c}
36 = #(Receipt . mix & recordCandidate . c)
37 }
38 check equ iva l ence expect 0

273

274

Chapter 12

Appendix: Voting Secrecy Model

The full secrecy model for the cryptographic voting case study.

1 /∗ A model o f what in format ion about a vo t ing system can be observed ,
2 ∗ and how an adversary can use in f e r en c e s to a t t a c k t ha t system .
3 ∗ Created 9−12−08 (by Rob Seater) , updated 11−11−08 (by Rob Seater) .
4 ∗ This model uses an ex t en t i on o f the event−based idiom from Daniel Jackson ’ s
5 ∗ book Sof tware Abs t rac t ion s (p . 1 9 7) .
6 ∗
7 ∗ I f you need to add a new in fe rence , j u s t add a new s i gna t u r e paragraph in a
8 ∗ p a r a l l e l s t y l e to the e x i s t i n g in f e r en c e s . No other par t s o f the model
9 ∗ need changing .

10 ∗
11 ∗ The current i n f e r en c e r u l e s are der i ved (by hand) from the assumptions ,
12 ∗ a l l ow in g the adversary to a t t a c k the system us ing in format ion t ha t was
13 ∗ u s e f u l f o r prov ing the system cor r e c t . As a naming convent ion , a l l
14 ∗ i n f e r en c e s der i ved from the same assumpt ions are g iven the same number
15 ∗ (e . g . a i n f 5 and b i n f 5 would both be based on the same assumption) .
16 ∗ By convent ion , a ” d” i s used to name fo r Record va r i a b l e s , and
17 ∗ ” r ” i s r e s e rved f o r Receipt v a r i a b l e s .
18 ∗/

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ TEMPORAL FRAMEWORK ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 open u t i l / o rde r ing [Time]
5 sig Time {
6 comingAttract ions : set In f e r ence ,
7 pa s tAtt r a c t i ons : set I n f e r en c e
8 }
9 fact his tory matches prophesy {

10 a l l t : Time | t . comingAttract ions = t . next . pa s tAtt r a c t i ons
11 no f i r s t . pa s tAtt r a c t i ons
12 a l l t : Time − l a s t | t . comingAttract ions . pre = t
13 a l l t : Time − f i r s t | t . pa s tAtt r a c t i ons . post = t
14 }

275

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ SIGNATURES ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 // Each r e l a t i o n in the f i d e l i t y model i s mirrored by a ” known ” ver s ion
5 // with an ex t ra time column at the end .
6 sig Voter {
7 i n t en t i o n : set Candidate ,
8 known intent ion : Candidate → Time ,
9 vo t e rBa l l o t : set Bal lo t ,

10 known voterBa l lot : Ba l l o t → Time ,
11 known RegisteredVoter : set Time ,
12 }
13 sig Regi s teredVoter in Voter {}
14 sig Candidate {
15 s co r e : set Int ,
16 known score : Int → Time ,
17 }
18 sig Ba l l o t {
19 ba l l o tRe c e i p t : set Receipt ,
20 known bal lotRece ipt : Receipt → Time ,
21 ba l lo tCandidate : set Candidate ,
22 known bal lotCandidate : Candidate → Time ,
23 bal lotArrangement : Po s i t i on → Candidate ,
24 known ballotArrangement : Po s i t i on → Candidate → Time ,
25 }
26 sig Pos i t i on {}
27 sig Receipt {
28 rece iptMarked : set Pos i t ion ,
29 known receiptMarked : Po s i t i on → Time ,
30 rece iptOnion : set Onion ,
31 known rece iptOnion : Onion → Time ,
32 r ece ip tCand idate : set Candidate ,
33 known receiptCandidate : Candidate → Time ,
34 }
35 sig Onion {
36 onionArrangement : Po s i t i on → Candidate ,
37 known onionArrangement : Po s i t i on → Candidate → Time ,
38 }
39 sig Record {
40 recordArrangement : Po s i t i on → Candidate ,
41 known recordArrangement : Po s i t i on → Candidate → Time ,
42 recordMarked : set Pos i t ion ,
43 known recordMarked : Po s i t i on → Time ,
44 recordCandidate : set Candidate ,
45 known recordCandidate : Candidate → Time ,
46 }
47 sig Board {
48 scramble : Receipt → Record ,
49 known scramble : Receipt → Record → Time ,
50 }
51 fun mix [] : Receipt → Record { Board . scramble }
52 fun known mix [] : Receipt → Record → Time { Board . known scramble }

276

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ INFERENCE RULES ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4 abs t r a c t sig I n f e r en c e {
5 pre , post : one Time
6 }
7 sig pause extends I n f e r en c e { } { } // the t r i v i a l i n f e r en c e t ha t l e a rn s nothing
8
9

10 abs t r a c t sig i n t e n t i o n I n f e r e n c e extends I n f e r en c e {
11 u s ed vo t e r f r om in t en t i o n : one Voter ,
12 u s ed cand ida t e f r om in t en t i o n : one Candidate ,
13 }
14
15 // VoterBreadcrumb
16 // a l l v : Reg is t eredVoter | l e t b = v . v o t e rBa l l o t |
17 // b . b a l l o tR e c e i p t . receiptMarked . (b . ba l lo tArrangement) = v . i n t en t i on
18 sig i n t e n t i o n i n f e r e n c e 1 extends i n t e n t i o n I n f e r e n c e {}{
19 //what you l earn
20 (u s ed vo t e r f r om in t en t i o n → u s ed cand ida t e f r om in t en t i o n)
21 in known intent ion . post
22 (u s ed vo t e r f r om in t en t i o n → u s ed cand ida t e f r om in t en t i o n)
23 not in known intent ion . pre
24
25 //when you can l earn i t
26 u s ed vo t e r f r om in t en t i o n in known RegisteredVoter . pre
27 l e t b = us ed vo t e r f r om in t en t i o n . (known voterBa l lo t . pre) |
28 b . (known bal lotRece ipt . pre) . (known receiptMarked . pre)
29 . (b . (known ballotArrangement . pre)) = us ed cand ida t e f r om in t en t i o n
30 }
31
32
33 abs t r a c t sig v o t e rBa l l o t I n f e r e n c e extends I n f e r en c e {
34 u s ed vo t e r f r om vo t e rBa l l o t : one Voter ,
35 u s ed ba l l o t f r om vo t e rBa l l o t : one Bal lo t ,
36 }
37
38 // VoterBreadcrumb
39 // a l l v : Reg is t eredVoter | l e t b = v . v o t e rBa l l o t |
40 // b . b a l l o tR e c e i p t . receiptMarked . (b . ba l lo tArrangement) = v . i n t en t i on
41 sig v o t e rBa l l o t i n f e r e n c e 1 extends v o t e rBa l l o t I n f e r e n c e {}{
42 //what you l earn
43 (u s ed vo t e r f r om vo t e rBa l l o t → u s ed ba l l o t f r om vo t e rBa l l o t)
44 in known voterBa l lo t . post
45 (u s ed vo t e r f r om vo t e rBa l l o t → u s ed ba l l o t f r om vo t e rBa l l o t)
46 not in known voterBa l lo t . pre
47
48 //when you can l earn i t
49 u s ed vo t e r f r om vo t e rBa l l o t in known RegisteredVoter . pre
50 u s ed ba l l o t f r om vo t e rBa l l o t . (known bal lotRece ipt . pre) . (known receiptMarked . pre)
51 . (u s ed ba l l o t f r om vo t e rBa l l o t . (known ballotArrangement . pre))
52 = us ed vo t e r f r om vo t e rBa l l o t . (known intent ion . pre)
53 some u s ed vo t e r f r om vo t e rBa l l o t . (known intent ion . pre)
54 }

277

1 abs t r a c t sig Reg i s t e r edVo t e r I n f e r en c e extends I n f e r en c e {
2 used vo te r f r om Reg i s t e r edVote r : one Voter ,
3 }
4
5 // VoterBreadcrumb
6 // a l l v : Voter − Regis t eredVoter | no v . v o t e rBa l l o t
7 sig Reg i s t e r edVote r in f e r ence A extends Reg i s t e r edVo t e r I n f e r en c e {}{
8 //what you l earn
9 (us ed vo te r f r om Reg i s t e r edVote r) in known RegisteredVoter . post

10 (us ed vo te r f r om Reg i s t e r edVote r) not in known RegisteredVoter . pre
11
12 //when you can l earn i t
13 some used vo te r f r om Reg i s t e r edVote r . (known voterBa l lo t . pre)
14 }
15
16
17 abs t r a c t sig s c o r e I n f e r e n c e extends I n f e r en c e {
18 used cand ida te f r om sco r e : one Candidate ,
19 u s ed s c o r e f r om s c o r e : one Int ,
20 }
21
22 // System F i d e l i t y Requirement
23 // a l l c : Candidate |
24 // c . score = #(Regis t eredVoter & in t en t i on . c)
25 sig s c o r e i n f e r en c e A extends s c o r e I n f e r e n c e {}{
26 //what you l earn
27 (us ed cand ida te f r om sco r e → u s ed s c o r e f r om s c o r e) in known score . post
28 (us ed cand ida te f r om sco r e → u s ed s c o r e f r om s c o r e) not in known score . pre
29
30 //when you can l earn i t
31 // The f i r s t l i n e i s t e c h n i c a l l y cheat ing , s ince i t mentions a non−”known ”
32 // va r i a b l e , wh i l e an adversary shou ld never d i r e c t l y acces s such in format ion .
33 // We use i t to r e p l i c a t e the e f f e c t o f adding n e ga t i v e knowledge to the system ,
34 // without the need to add a l o t o f a d d i t i o n a l comp lex i t y to the model . Were
35 // more in f e r en c e s to use n e ga t i v e knowledge , i t cou ld be added to the model by
36 // adding a ” known not ” ver s ion o f each knowable r e l a t i on , r e p r e s en t i n g t u p l e s
37 // t ha t the adversary knows are not par t o f t ha t r e l a t i o n . We have omit t ed
38 // t hose r e l a t i o n s s ince they are not r e l e v an t to any in f e r en c e bu t t h i s one .
39 //
40 // This r e l a t i o n says t ha t we know everyone ’ s r e g i s t r a t i o n s t a t u s .
41 // In t h i s problem domain , we can ge t away with t h i s , s ince vo t e r r e g i s t r a t i o n
42 // i s p u b l i c knowledge . To r e f l e c t t h i s assumption , note the f i n a l c on s t r a in t
43 // in the seededKnowledge p r ed i c a t e .
44 //
45 // The second and t h i r d l i n e s are l e g i t according to our s t y l e , and mirror the
46 // con s t r a in t g iven in the system f i d e l i t y requirement .
47 Reg i s teredVoter = known RegisteredVoter . pre
48 a l l v : known RegisteredVoter . pre | some v . (known intent ion . pre)
49 u s ed s c o r e f r om s c o r e = #((known RegisteredVoter . pre)
50 & (known intent ion . pre) . u s ed cand ida te f r om sco r e)
51 }

278

1 abs t r a c t sig ba l l o tR e c e i p t I n f e r e n c e extends I n f e r en c e {
2 u s ed ba l l o t f r om ba l l o tRe c e i p t : one Bal lo t ,
3 u s ed r e c e i p t f r om ba l l o tRe c e i p t : one Receipt ,
4 }
5
6 // VoterBreadcrumb
7 // a l l v : Reg is t eredVoter | l e t b = v . v o t e rBa l l o t |
8 // b . b a l l o tR e c e i p t . receiptMarked . (b . ba l lo tArrangement) = v . i n t en t i on
9 sig ba l l o tR e c e i p t i n f e r e n c e 1 extends ba l l o tR e c e i p t I n f e r e n c e {}{

10 //what you l earn
11 (u s ed ba l l o t f r om ba l l o tRe c e i p t → u s ed r e c e i p t f r om ba l l o tRe c e i p t)
12 in known bal lotRece ipt . post
13 (u s ed ba l l o t f r om ba l l o tRe c e i p t → u s ed r e c e i p t f r om ba l l o tRe c e i p t)
14 not in known bal lotRece ipt . pre
15
16 //when you can l earn i t
17 some v : known RegisteredVoter . pre {
18 v . (known voterBa l lo t . pre) = us ed ba l l o t f r om ba l l o tRe c e i p t
19 u s ed r e c e i p t f r om ba l l o tRe c e i p t . (known receiptMarked . pre)
20 . (v . (known voterBa l lo t . pre) . (known ballotArrangement . pre))
21 = v . (known intent ion . pre)
22 some v . (known intent ion . pre)
23 }
24 }
25
26 // AppendedFacts
27 // a l l b : Ba l l o t |
28 // (b . b a l l o tCand ida t e) = (b . b a l l o tR e c e i p t) . receiptMarked . (b . ba l lo tArrangement)
29 sig ba l l o tR e c e i p t i n f e r e n c e 5 extends ba l l o tR e c e i p t I n f e r e n c e {}{
30 //what you l earn
31 (u s ed ba l l o t f r om ba l l o tRe c e i p t → u s ed r e c e i p t f r om ba l l o tRe c e i p t)
32 in known bal lotRece ipt . post
33 (u s ed ba l l o t f r om ba l l o tRe c e i p t → u s ed r e c e i p t f r om ba l l o tRe c e i p t)
34 not in known bal lotRece ipt . pre
35
36 //when you can l earn i t
37 u s ed ba l l o t f r om ba l l o tRe c e i p t . (known bal lotCandidate . pre)
38 = us ed r e c e i p t f r om ba l l o tRe c e i p t . (known receiptMarked . pre)
39 . (u s ed ba l l o t f r om ba l l o tRe c e i p t . (known ballotArrangement . pre))
40 }

279

1 abs t r a c t sig ba l l o tCand ida t e I n f e r en c e extends I n f e r en c e {
2 u s ed ba l l o t f r om ba l l o tCand ida t e : one Bal lo t ,
3 us ed cand ida te f r om ba l l o tCand ida te : one Candidate ,
4 }
5
6 // AppendedFacts
7 // a l l b : Ba l l o t |
8 // (b . b a l l o tCand ida t e) = (b . b a l l o tR e c e i p t) . receiptMarked . (b . ba l lo tArrangement)
9 sig ba l l o tCand ida t e i n f e r en c e 5 extends ba l l o tCand ida t e I n f e r en c e {}{

10 //what you l earn
11 (u s ed ba l l o t f r om ba l l o tCand ida t e → used cand ida te f r om ba l l o tCand ida te)
12 in known bal lotCandidate . post
13 (u s ed ba l l o t f r om ba l l o tCand ida t e → used cand ida te f r om ba l l o tCand ida te)
14 not in known bal lotCandidate . pre
15
16 //when you can l earn i t
17 used cand ida te f r om ba l l o tCand ida te
18 = us ed ba l l o t f r om ba l l o tCand ida t e . (known bal lotRece ipt . pre)
19 . (known receiptMarked . pre) . (u s ed ba l l o t f r om ba l l o tCand ida t e
20 . (known ballotArrangement . pre))
21 }

280

1 abs t r a c t sig ba l l o tAr rangement In f e r ence extends I n f e r en c e {
2 used ba l l o t f r om ba l l o tAr rangement : one Bal lo t ,
3 us ed po s i t i on f r om ba l l o tAr rangement : one Pos i t ion ,
4 used candidate f rom ba l lo tArrangement : one Candidate ,
5 }
6
7 // VoterBreadcrumb
8 // a l l v : Reg is t eredVoter | l e t b = v . v o t e rBa l l o t |
9 // b . b a l l o tR e c e i p t . receiptMarked . (b . ba l lo tArrangement) = v . i n t en t i on

10 sig ba l l o tAr rangement in f e r ence 1 extends ba l l o tAr rangement In f e r ence {}{
11 //what you l earn
12 (us ed ba l l o t f r om ba l l o tAr rangement → used po s i t i on f r om ba l l o tAr rangement
13 → used candidate f rom ba l lo tArrangement) in known ballotArrangement . post
14 (us ed ba l l o t f r om ba l l o tAr rangement → used po s i t i on f r om ba l l o tAr rangement
15 → used candidate f rom ba l lo tArrangement) not in known ballotArrangement . pre
16
17 //when you can l earn i t
18 some v : known RegisteredVoter . pre {
19 v . (known voterBa l lo t . pre)
20 = used ba l l o t f r om ba l l o tAr rangement
21 us ed ba l l o t f r om ba l l o tAr rangement . (known bal lotRece ipt . pre)
22 . (known receiptMarked . pre) = used po s i t i on f r om ba l l o tAr rangement
23 used candidate f rom ba l lo tArrangement
24 = v . (known intent ion . pre)
25 }
26 }
27
28 // BallotBreadcrumb
29 // a l l b : Ba l l o t | b . ba l lo tArrangement = b . b a l l o tR e c e i p t . rece iptOnion . onionArrangemen
30 sig ba l l o tAr rangement in f e r ence 2 extends ba l l o tAr rangement In f e r ence {}{
31 //what you l earn
32 (us ed ba l l o t f r om ba l l o tAr rangement → used po s i t i on f r om ba l l o tAr rangement
33 → used candidate f rom ba l lo tArrangement) in known ballotArrangement . post
34 (us ed ba l l o t f r om ba l l o tAr rangement → used po s i t i on f r om ba l l o tAr rangement
35 → used candidate f rom ba l lo tArrangement) not in known ballotArrangement . pre
36
37 //when you can l earn i t
38 used po s i t i on f r om ba l l o tAr rangement → used candidate f rom ba l lo tArrangement
39 = used ba l l o t f r om ba l l o tAr rangement . (known bal lotRece ipt . pre)
40 . (known rece iptOnion . pre) . (known onionArrangement . pre)
41 }

281

1 // AppendedFacts
2 // a l l b : Ba l l o t |
3 // (b . b a l l o tCand ida t e) = (b . b a l l o tR e c e i p t) . receiptMarked . (b . ba l lo tArrangement)
4 sig ba l l o tAr rangement in f e r ence 5 extends ba l l o tAr rangement In f e r ence {}{
5 //what you l earn
6 (us ed ba l l o t f r om ba l l o tAr rangement → used po s i t i on f r om ba l l o tAr rangement
7 → used candidate f rom ba l lo tArrangement) in known ballotArrangement . post
8 (us ed ba l l o t f r om ba l l o tAr rangement → used po s i t i on f r om ba l l o tAr rangement
9 → used candidate f rom ba l lo tArrangement) not in known ballotArrangement . pre

10
11 //when you can l earn i t
12 used ba l l o t f r om ba l l o tAr rangement . (known bal lotCandidate . pre)
13 = used candidate f rom ba l lo tArrangement
14 us ed ba l l o t f r om ba l l o tAr rangement . (known bal lotRece ipt . pre)
15 . (known receiptMarked . pre) = used po s i t i on f r om ba l l o tAr rangement
16 }
17
18
19
20
21 abs t r a c t sig r e c e ip tMarked In f e r ence extends I n f e r en c e {
22 used rece ip t f r om rece ip tMarked : one Receipt ,
23 us ed po s i t i on f r om rece ip tMarked : one Pos i t ion ,
24 }
25
26 // VoterBreadcrumb
27 // a l l v : Reg is t eredVoter | l e t b = v . v o t e rBa l l o t |
28 // b . b a l l o tR e c e i p t . receiptMarked . (b . ba l lo tArrangement) = v . i n t en t i on
29 sig r e c e i p tMark ed i n f e r en c e 1 extends r e c e ip tMarked In f e r ence {}{
30 //what you l earn
31 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
32 in known receiptMarked . post
33 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
34 not in known receiptMarked . pre
35
36 //when you can l earn i t
37 some v : known RegisteredVoter . pre {
38 v . (known voterBa l lo t . pre) . (known bal lotRece ipt . pre)
39 = used rece ip t f r om rece ip tMarked
40 used po s i t i on f r om rece ip tMarked . (v . (known voterBa l lot . pre)
41 . (known ballotArrangement . pre)) = v . (known intent ion . pre)
42 some v . (known intent ion . pre)
43 }
44 }

282

1 // BoardBreadcrumb
2 // a l l inpu t : mix . Record | l e t ou tpu t = input . mix {
3 // input . receiptMarked = output . recordMarked
4 // }
5 sig r e c e i p tMark ed i n f e r en c e 4 extends r e c e ip tMarked In f e r ence {}{
6 //what you l earn
7 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
8 in known receiptMarked . post
9 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)

10 not in known receiptMarked . pre
11
12 //when you can l earn i t
13 used po s i t i on f r om rece ip tMarked
14 = used rece ip t f r om rece ip tMarked . (known mix . pre) . (known recordMarked . pre)
15 }
16
17 // AppendedFacts
18 // a l l b : Ba l l o t |
19 // (b . b a l l o tCand ida t e) = (b . b a l l o tR e c e i p t) . receiptMarked . (b . ba l lo tArrangement)
20 sig r e c e i p tMark ed i n f e r en c e 5 extends r e c e ip tMarked In f e r ence {}{
21 //what you l earn
22 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
23 in known receiptMarked . post
24 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
25 not in known receiptMarked . pre
26
27 //when you can l earn i t
28 some b : Ba l l o t {
29 b . (known bal lotCandidate . pre)
30 = used po s i t i on f r om rece ip tMarked . (b . (known ballotArrangement . pre))
31 b . (known bal lotRece ipt . pre) = used rece ip t f r om rece ip tMarked
32 }
33 }
34
35 // AppendedFacts
36 // a l l r : Rece ipt |
37 // (r . r ece ip tCand ida t e) = (r . receiptMarked) . ((r . rece iptOnion) . onionArrangement)
38 sig r e c e i p tMark ed i n f e r en c e 6 extends r e c e ip tMarked In f e r ence {}{
39 //what you l earn
40 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
41 in known receiptMarked . post
42 (us ed rec e ip t f r om rece ip tMarked → used po s i t i on f r om rece ip tMarked)
43 not in known receiptMarked . pre
44
45 //when you can l earn i t
46 used rece ip t f r om rece ip tMarked . (known receiptCandidate . pre)
47 = used po s i t i on f r om rece ip tMarked . (u s ed re c e ip t f r om rece ip tMarked
48 . (known rece iptOnion . pre) . (known onionArrangement . pre))
49 some used rece ip t f r om rece ip tMarked . (known receiptCandidate . pre)
50 }

283

1 abs t r a c t sig r e c e i p tOn i on In f e r en c e extends I n f e r en c e {
2 u s ed r e c e i p t f r om r e c e i p tOn i on : one Receipt ,
3 us ed on ion f r om rece ip tOn ion : one Onion ,
4 }
5
6 // AppendedFacts
7 // a l l r : Rece ipt |
8 // (r . r ece ip tCand ida t e) = (r . receiptMarked) . ((r . rece iptOnion) . onionArrangement)
9 sig r e c e i p tOn i on i n f e r en c e 6 extends r e c e i p tOn i on In f e r en c e {}{

10 //what you l earn
11 (u s ed r e c e i p t f r om r e c e i p tOn i on → used on ion f r om rece ip tOn ion)
12 in known rece iptOnion . post
13 (u s ed r e c e i p t f r om r e c e i p tOn i on → used on ion f r om rece ip tOn ion)
14 not in known rece iptOnion . pre
15
16 //when you can l earn i t
17 u s ed r e c e i p t f r om r e c e i p tOn i on . (known receiptCandidate . pre)
18 = us ed r e c e i p t f r om r e c e i p tOn i on . (known receiptMarked . pre)
19 . (u s ed on ion f r om rece ip tOn ion . (known onionArrangement . pre))
20 some u s ed r e c e i p t f r om r e c e i p tOn i on . (known receiptCandidate . pre)
21 }

1 abs t r a c t sig r e c e i p tCand ida t e I n f e r en c e extends I n f e r en c e {
2 u s ed r e c e i p t f r om r e c e i p tCand ida t e : one Receipt ,
3 us ed cand ida te f r om rece ip tCand ida te : one Candidate ,
4 }
5
6 // AppendedFacts
7 // a l l r : Rece ipt |
8 // (r . r ece ip tCand ida t e) = (r . receiptMarked) . ((r . rece iptOnion) . onionArrangement)
9 sig r e c e i p tCand ida t e i n f e r en c e 6 extends r e c e i p tCand ida t e I n f e r en c e {}{

10 //what you l earn
11 (u s ed r e c e i p t f r om r e c e i p tCand ida t e → used cand ida te f r om rece ip tCand ida t e)
12 in known receiptCandidate . post
13 (u s ed r e c e i p t f r om r e c e i p tCand ida t e → used cand ida te f r om rece ip tCand ida t e)
14 not in known receiptCandidate . pre
15
16 //when you can l earn i t
17 used cand ida te f r om rece ip tCand ida t e
18 = us ed r e c e i p t f r om r e c e i p tCand ida t e . (known receiptMarked . pre)
19 . (u s ed r e c e i p t f r om r e c e i p tCand ida t e . (known rece iptOnion . pre)
20 . (known onionArrangement . pre))
21 }
22
23
24 abs t r a c t sig onionArrangement In ference extends I n f e r en c e {
25 used onion from onionArrangement : one Onion ,
26 used pos i t ion from onionArrangement : one Pos i t ion ,
27 used candidate from onionArrangement : one Candidate ,
28 }

284

1 // BallotBreadcrumb
2 // a l l b : Ba l l o t | b . ba l lo tArrangement
3 // = b . b a l l o tR e c e i p t . rece iptOnion . onionArrangement
4 sig onionArrangement in ference 2 extends onionArrangement In ference {}{
5 //what you l earn
6 (used onion from onionArrangement → used pos i t ion from onionArrangement
7 → used candidate from onionArrangement) in known onionArrangement . post
8 (used onion from onionArrangement → used pos i t ion from onionArrangement
9 → used candidate from onionArrangement) not in known onionArrangement . pre

10
11 //when you can l earn i t
12 some b : Ba l l o t {
13 b . (known ballotArrangement . pre)
14 = (used pos i t ion from onionArrangement → used candidate from onionArrangement)
15 b . (known bal lotRece ipt . pre) . (known rece iptOnion . pre)
16 = used onion from onionArrangement
17 }
18 }
19
20 // BoardBreadcrumb
21 // a l l inpu t : mix . Record | l e t ou tpu t = input . mix {
22 // input . rece iptOnion . onionArrangement = outpu t . recordArrangement }
23 sig onionArrangement in ference 3 extends onionArrangement In ference {}{
24 //what you l earn
25 (used onion from onionArrangement → used pos i t ion from onionArrangement
26 → used candidate from onionArrangement) in known onionArrangement . post
27 (used onion from onionArrangement → used pos i t ion from onionArrangement
28 → used candidate from onionArrangement) not in known onionArrangement . pre
29
30 //when you can l earn i t
31 some i : (known mix . pre) . Record {
32 i . (known rece iptOnion . pre) = used onion from onionArrangement
33 (used pos i t ion from onionArrangement → used candidate from onionArrangement)
34 = i . (known mix . pre) . (known recordArrangement . pre)
35 }
36 }
37
38 // AppendedFacts
39 // a l l r : Rece ipt |
40 // (r . r ece ip tCand ida t e) = (r . receiptMarked) . ((r . rece iptOnion) . onionArrangement)
41 sig onionArrangement in ference 6 extends onionArrangement In ference {}{
42 //what you l earn
43 (used onion from onionArrangement → used pos i t ion from onionArrangement
44 → used candidate from onionArrangement) in known onionArrangement . post
45 (used onion from onionArrangement → used pos i t ion from onionArrangement
46 → used candidate from onionArrangement) not in known onionArrangement . pre
47
48 //when you can l earn i t
49 some r : Receipt {
50 r . (known rece iptOnion . pre) = used onion from onionArrangement
51 r . (known receiptCandidate . pre) = used candidate from onionArrangement
52 r . (known receiptMarked . pre) = used pos i t ion from onionArrangement
53 }
54 }

285

1 abs t r a c t sig recordArrangement In ference extends I n f e r en c e {
2 used record from recordArrangement : one Record ,
3 used pos i t ion from recordArrangement : one Pos i t ion ,
4 used candidate f rom recordArrangement : one Candidate ,
5 }
6
7 // BoardBreadcrumb
8 // a l l inpu t : mix . Record | l e t ou tpu t = input . mix {
9 // input . rece iptOnion . onionArrangement = outpu t . recordArrangement }

10 sig r e co rdArrangement in f e r ence 3 extends recordArrangement In ference {}{
11 //what you l earn
12 (used record from recordArrangement → used pos i t ion from recordArrangement
13 → used candidate f rom recordArrangement) in known recordArrangement . post
14 (used record from recordArrangement → used pos i t ion from recordArrangement
15 → used candidate f rom recordArrangement) not in known recordArrangement . pre
16
17 //when you can l earn i t
18 some i : (known mix . pre) . Record {
19 i . (known rece iptOnion . pre) . (known onionArrangement . pre)
20 = (used pos i t ion from recordArrangement → used candidate f rom recordArrangement)
21 i . (known mix . pre) = used record from recordArrangement
22 }
23 }
24
25 // AppendedFacts
26 // a l l r : Record |
27 // (r . recordCandidate) = (r . recordMarked) . (r . recordArrangement)
28 sig r e co rdArrangement in f e r ence 7 extends recordArrangement In ference {}{
29 //what you l earn
30 (used record from recordArrangement → used pos i t ion from recordArrangement
31 → used candidate f rom recordArrangement) in known recordArrangement . post
32 (used record from recordArrangement → used pos i t ion from recordArrangement
33 → used candidate f rom recordArrangement) not in known recordArrangement . pre
34
35 //when you can l earn i t
36 used record from recordArrangement . (known recordCandidate . pre)
37 = used candidate f rom recordArrangement
38 used record from recordArrangement . (known recordMarked . pre)
39 = used pos i t ion from recordArrangement
40 }

286

1 abs t r a c t sig recordMarked Inference extends I n f e r en c e {
2 used record from recordMarked : one Record ,
3 used pos i t ion from recordMarked : one Pos i t ion ,
4 }
5
6 // BoardBreadcrumb
7 // a l l inpu t : mix . Record | l e t ou tpu t = input . mix {
8 // input . receiptMarked = output . recordMarked
9 // }

10 sig r e co rdMarked in f e r ence 4 extends recordMarked Inference {}{
11 //what you l earn
12 (used record from recordMarked → used pos i t ion from recordMarked)
13 in known recordMarked . post
14 (used record from recordMarked → used pos i t ion from recordMarked)
15 not in known recordMarked . pre
16
17 //when you can l earn i t
18 some i : (known mix . pre) . Record {
19 i . (known receiptMarked . pre) = used pos i t ion from recordMarked
20 i . (known mix . pre) = used record from recordMarked
21 }
22 }
23
24 // AppendedFacts
25 // a l l r : Record |
26 // (r . recordCandidate) = (r . recordMarked) . (r . recordArrangement)
27 sig r e co rdMarked in f e r ence 7 extends recordMarked Inference {}{
28 //what you l earn
29 (used record from recordMarked → used pos i t ion from recordMarked)
30 in known recordMarked . post
31 (used record from recordMarked → used pos i t ion from recordMarked)
32 not in known recordMarked . pre
33
34 //when you can l earn i t
35 used record from recordMarked . (known recordCandidate . pre)
36 = used pos i t ion from recordMarked . (used record from recordMarked
37 . (known recordArrangement . pre))
38 some used record from recordMarked . (known recordCandidate . pre)
39 }

287

1 abs t r a c t sig r e co rdCand ida te In f e r ence extends I n f e r en c e {
2 used r e co rd f r om reco rdCandidate : one Record ,
3 used candidate f rom recordCandidate : one Candidate ,
4 }
5
6 // AppendedFacts
7 // a l l r : Record |
8 // (r . recordCandidate) = (r . recordMarked) . (r . recordArrangement)
9 sig r e c o r dCand ida te i n f e r en c e 7 extends r e co rdCand ida te In f e r ence {}{

10 //what you l earn
11 (us ed r e co rd f r om reco rdCand idate → used candidate f rom recordCandidate)
12 in known recordCandidate . post
13 (us ed r e co rd f r om reco rdCand idate → used candidate f rom recordCandidate)
14 not in known recordCandidate . pre
15
16 //when you can l earn i t
17 used candidate f rom recordCandidate
18 = used r e co rd f r om reco rdCandidate . (known recordMarked . pre)
19 . (u s ed r e co rd f r om reco rdCand idate . (known recordArrangement . pre))
20 }

1 // There are no in f e r en c e r u l e s f o r t he se guys , so we have to e x p l i c i t l y ban
2 // them from e x i s t i n g . Otherwise Al loy w i l l c r ea t e t r i v i a l i n s t a n t i a t i o n s ,
3 // in accordance with i t s language semantics , which w i l l permit bad in f e r en c e s .
4 // Extended a b s t r a c t s i g s cannot e x i s t on t h e i r own r igh t , bu t unextended ones can .
5 fact {no s c r amb l e I n f e r en c e + mix In f e r ence }
6 abs t r a c t sig s c r amb l e I n f e r en c e extends I n f e r en c e {
7 used board : one Board ,
8 u s ed r e c e i p t : one Receipt ,
9 us ed r e co rd : one Record ,

10 }
11 abs t r a c t sig mix In f e r ence extends I n f e r en c e {
12 u s ed r e c e i p t : one Receipt ,
13 us ed r e co rd : one Record ,
14 }

288

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ INFERENCE GUIDELINES ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 // knowledge i s not f o r go t t en
6 pred memory [] {
7 a l l t : Time , t ’ : t . next {
8 known intent ion . t in known intent ion . t ’
9 known voterBa l lot . t in known voterBa l lo t . t ’

10 known RegisteredVoter . t in known RegisteredVoter . t ’
11 known score . t in known score . t ’
12 known bal lotRece ipt . t in known bal lotRece ipt . t ’
13 known bal lotCandidate . t in known bal lotCandidate . t ’
14 known ballotArrangement . t in known ballotArrangement . t ’
15 known receiptMarked . t in known receiptMarked . t ’
16 known rece iptOnion . t in known rece iptOnion . t ’
17 known receiptCandidate . t in known receiptCandidate . t ’
18 known onionArrangement . t in known onionArrangement . t ’
19 known recordArrangement . t in known recordArrangement . t ’
20 known recordMarked . t in known recordMarked . t ’
21 known recordCandidate . t in known recordCandidate . t ’
22 known scramble . t in known scramble . t ’
23 known mix . t in known mix . t ’
24 }
25 }
26
27 //you l earn (or f o r g e t) something new every day ; knowledge can ’ t remain s t a t i c
28 pred prog r e s s [] {
29 a l l t : Time , t ’ : t . next {
30 known intent ion . t != known intent ion . t ’
31 or known voterBa l lo t . t != known voterBa l lot . t ’
32 or known RegisteredVoter . t != known RegisteredVoter . t ’
33 or known score . t != known score . t ’
34 or known bal lotRece ipt . t != known bal lotRece ipt . t ’
35 or known bal lotCandidate . t != known bal lotCandidate . t ’
36 or known ballotArrangement . t != known ballotArrangement . t ’
37 or known receiptMarked . t != known receiptMarked . t ’
38 or known rece iptOnion . t != known rece iptOnion . t ’
39 or known receiptCandidate . t != known receiptCandidate . t ’
40 or known onionArrangement . t != known onionArrangement . t ’
41 or known recordArrangement . t != known recordArrangement . t ’
42 or known recordMarked . t != known recordMarked . t ’
43 or known recordCandidate . t != known recordCandidate . t ’
44 or known scramble . t != known scramble . t ’
45 or known mix . t != known mix . t ’
46 }
47 }

289

1
2 // i n i t i a l knowledge i s correc t , bu t p o s s i b l y incomple te
3 pred seededKnowledge [] {
4 known intent ion . f i r s t in i n t en t i o n
5 known voterBa l lot . f i r s t in vo t e rBa l l o t
6 known RegisteredVoter . f i r s t in Regi s teredVoter
7 known score . f i r s t in s co r e
8 known bal lotRece ipt . f i r s t in ba l l o tRe c e i p t
9 known bal lotCandidate . f i r s t in ba l lo tCandidate

10 known ballotArrangement . f i r s t in bal lotArrangement
11 known receiptMarked . f i r s t in rece iptMarked
12 known rece iptOnion . f i r s t in rece iptOnion
13 known receiptCandidate . f i r s t in r e c e ip tCand idate
14 known onionArrangement . f i r s t in onionArrangement
15 known recordArrangement . f i r s t in recordArrangement
16 known recordMarked . f i r s t in recordMarked
17 known recordCandidate . f i r s t in recordCandidate
18 known scramble . f i r s t in scramble
19 known mix . f i r s t in mix
20
21 Reg i s teredVoter = known RegisteredVoter . f i r s t // pu b l i c record
22 }
23
24 // t ake i t s low ; on ly do in f e r en c e one at a time
25 pred s e q u e n t i a l I n f e r e n c e s [] {
26 a l l t : Time | lone t . comingAttract ions
27 a l l t : Time | lone t . pa s tAtt r a c t i ons
28 }
29
30 // You can on ly pause a f t e r a l l t he work i s done , and you can on ly pause i f you do nothi
31 // That is , once you s t a r t pausing you must do nothing bu t pause .
32 pred onlyPauseAtEnd [] {
33 a l l t : Time |
34 some pause & t . comingAttract ions ⇒ no t . comingAttract ions − pause
35 a l l t : Time − l a s t |
36 some pause & t . pa s tAtt r a c t i ons ⇒ some pause & t . comingAttract ions
37 }

290

1 // add i t i on s to current s t a t e must be exp la ined
2 pred exp la inAdd i t i ons [] {
3 a l l t : Time − f i r s t , v : Voter , c : Candidate |
4 (v → c) in known intent ion . t − known intent ion . (t . prev)
5 ⇒ some i n f : i n t e n t i o n I n f e r e n c e & t . pa s tAtt r a c t i ons |
6 i n f . u s ed vo t e r f r om in t en t i o n = v and i n f . u s ed cand ida t e f r om in t en t i o n =c
7
8 a l l t : Time − f i r s t , v : Voter , b : Ba l l o t |
9 (v → b) in known voterBa l lot . t − known voterBa l lo t . (t . prev)

10 ⇒ some i n f : v o t e rBa l l o t I n f e r e n c e & t . pa s tAtt r a c t i ons |
11 i n f . u s ed vo t e r f r om vo t e rBa l l o t = v and i n f . u s ed ba l l o t f r om vo t e rBa l l o t =b
12
13 a l l t : Time − f i r s t , v : Voter |
14 (v) in known RegisteredVoter . t − known RegisteredVoter . (t . prev)
15 ⇒ some i n f : Reg i s t e r edVo t e r I n f e r en c e & t . pa s tAtt r a c t i ons |
16 i n f . u s ed vo te r f r om Reg i s t e r edVote r = v
17
18 a l l t : Time − f i r s t , c : Candidate , s : Int |
19 (c → s) in known score . t − known score . (t . prev)
20 ⇒ some i n f : s c o r e I n f e r e n c e & t . pa s tAtt r a c t i ons |
21 i n f . u s ed cand ida te f r om sco r e = c and i n f . u s ed s c o r e f r om s c o r e = s
22
23 a l l t : Time − f i r s t , b : Ba l lo t , r : Receipt |
24 (b → r) in known bal lotRece ipt . t − known bal lotRece ipt . (t . prev)
25 ⇒ some i n f : b a l l o tR e c e i p t I n f e r e n c e & t . pa s tAtt r a c t i ons |
26 i n f . u s ed ba l l o t f r om ba l l o tRe c e i p t = b
27 and i n f . u s ed r e c e i p t f r om ba l l o tRe c e i p t = r
28
29 a l l t : Time − f i r s t , b : Ba l lo t , c : Candidate |
30 (b → c) in known bal lotCandidate . t − known bal lotCandidate . (t . prev)
31 ⇒ some i n f : b a l l o tCand ida t e I n f e r en c e & t . pa s tAtt r a c t i ons |
32 i n f . u s ed ba l l o t f r om ba l l o tCand ida t e = b
33 and i n f . u s ed cand ida te f r om ba l l o tCand ida te = c
34
35 a l l t : Time − f i r s t , b : Ba l lo t , p : Pos i t ion , c : Candidate |
36 (b → p → c) in known ballotArrangement . t − known ballotArrangement . (t . prev)
37 ⇒ some i n f : ba l l o tAr rangement In f e r ence & t . pa s tAtt r a c t i ons |
38 i n f . u s ed ba l l o t f r om ba l l o tAr rangement = b and
39 i n f . u s ed po s i t i on f r om ba l l o tAr rangement = p and
40 i n f . used candidate f rom ba l lo tArrangement = c
41
42 a l l t : Time − f i r s t , r : Receipt , p : Po s i t i on |
43 (r → p) in known receiptMarked . t − known receiptMarked . (t . prev)
44 ⇒ some i n f : r e c e ip tMarked In f e r ence & t . pa s tAtt r a c t i ons |
45 i n f . u s ed r e c e ip t f r om rece ip tMarked = r
46 and i n f . u s ed po s i t i on f r om rece ip tMarked = p
47
48 a l l t : Time − f i r s t , r : Receipt , o : Onion |
49 (r → o) in known rece iptOnion . t − known rece iptOnion . (t . prev)
50 ⇒ some i n f : r e c e i p tOn i on In f e r en c e & t . pa s tAtt r a c t i ons |
51 i n f . u s ed r e c e i p t f r om r e c e i p tOn i on = r
52 and i n f . u s ed on ion f r om rece ip tOn ion = o
53
54

291

55 a l l t : Time − f i r s t , r : Receipt , c : Candidate |
56 (r → c) in known receiptCandidate . t − known receiptCandidate . (t . prev)
57 ⇒ some i n f : r e c e i p tCand ida t e I n f e r enc e & t . pa s tAtt r a c t i ons |
58 i n f . u s ed r e c e i p t f r om r e c e i p tCand ida t e = r
59 and i n f . u s ed cand ida te f r om rece ip tCand ida t e = c
60
61 a l l t : Time − f i r s t , o : Onion , p : Pos i t ion , c : Candidate |
62 (o → p → c) in known onionArrangement . t − known onionArrangement . (t . prev)
63 ⇒ some i n f : on ionArrangement In fer ence & t . pa s tAtt r a c t i ons |
64 i n f . used onion from onionArrangement = o and
65 i n f . used pos i t ion from onionArrangement = p and
66 i n f . used candidate from onionArrangement = c
67
68 a l l t : Time − f i r s t , r : Record , p : Pos i t ion , c : Candidate |
69 (r → p → c) in known recordArrangement . t − known recordArrangement . (t . prev)
70 ⇒ some i n f : r ecordArrangement In ference & t . pa s tAtt r a c t i ons |
71 i n f . used record from recordArrangement = r and
72 i n f . used pos i t ion from recordArrangement = p and
73 i n f . used candidate f rom recordArrangement = c
74
75 a l l t : Time − f i r s t , r : Record , p : Po s i t i on |
76 (r → p) in known recordMarked . t − known recordMarked . (t . prev)
77 ⇒ some i n f : r ecordMarked Inference & t . pa s tAtt r a c t i ons |
78 i n f . used record from recordMarked = r
79 and i n f . used pos i t ion from recordMarked = p
80
81 a l l t : Time − f i r s t , r : Record , c : Candidate |
82 (r → c) in known recordCandidate . t − known recordCandidate . (t . prev)
83 ⇒ some i n f : r e co rdCand ida te In f e r ence & t . pa s tAtt r a c t i ons |
84 i n f . u s ed r e co rd f r om reco rdCandidate = r
85 and i n f . used candidate f rom recordCandidate = c
86
87 a l l t : Time − f i r s t , b : Board , r t : Receipt , rd : Record |
88 (b → r t → rd) in known scramble . t − known scramble . (t . prev)
89 ⇒ some i n f : s c r amb l e I n f e r en c e & t . pa s tAtt r a c t i ons |
90 i n f . used board = b and i n f . u s ed r e c e i p t = r t and i n f . u s ed r e co rd = rd
91
92 a l l t : Time − f i r s t , r t : Receipt , rd : Record |
93 (r t → rd) in known mix . t − known mix . (t . prev)
94 ⇒ some i n f : m ix In f e r ence & t . pa s tAtt r a c t i ons |
95 i n f . u s ed r e c e i p t = r t and i n f . u s ed r e co rd = rd
96 }

292

1 // A statement t ha t at t ime t the adversary on ly knows t h in g s t ha t are co r r e c t
2 // (bu t may have ho l e s in knowledge) .
3 // This pred i s not assumed/ enforced , bu t ra t her i t i s e x p l i c i t l y checked in
4 // the ” er ror ” anays is paragraph .
5 pred correctKnowledge [t : Time] {
6 no known intent ion . l a s t − i n t en t i o n
7 no known voterBa l lo t . l a s t − vo t e rBa l l o t
8 no known RegisteredVoter . f i r s t − Regi s teredVoter
9 no known score . f i r s t − s co r e

10 no known bal lotRece ipt . f i r s t − ba l l o tRe c e i p t
11 no known bal lotCandidate . f i r s t − ba l lo tCandidate
12 no known ballotArrangement . f i r s t − bal lotArrangement
13 no known receiptMarked . f i r s t − rece iptMarked
14 no known rece iptOnion . f i r s t − rece iptOnion
15 no known receiptCandidate . f i r s t − r e c e ip tCand idate
16 no known onionArrangement . f i r s t − onionArrangement
17 no known recordArrangement . f i r s t − recordArrangement
18 no known recordMarked . f i r s t − recordMarked
19 no known recordCandidate . f i r s t − recordCandidate
20 no known scramble . f i r s t − scramble
21 no known mix . f i r s t − mix
22 }

293

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ ANALYSES ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗/
4
5 pred sim [] {
6 assumptions
7 memory
8 prog r e s s
9 s e q u e n t i a l I n f e r e n c e s

10 seededKnowledge
11 onlyPauseAtEnd
12 exp la inAdd i t i ons
13
14 some I n f e r en c e − pause
15 }
16 run sim for 1 but 1 In f e r ence , 2 Time , 3 i n t expect 1
17
18 pred ea sy a t ta ck [] {
19 assumptions
20 memory
21 prog r e s s
22 s e q u e n t i a l I n f e r e n c e s
23 seededKnowledge
24 onlyPauseAtEnd
25 exp la inAdd i t i ons
26
27 some c : Candidate | c . s co r e != 0
28 no known intent ion . f i r s t
29 #known intent ion . l a s t >= 2
30 #Pos i t i on >= 2
31 }
32 run ea sy a t ta ck for 3 but 4 In f e r ence , 4 Time , 3 i n t expect 1

294

1 pred hard attack [] {
2 // genera l r u l e s
3 assumptions // oddly , t h i s can be removed and the a t t a c k s t i l l f a i l s
4 seededKnowledge
5 exp la inAdd i t i ons
6
7 // r e s t r i c t i o n s on knowledge
8 //you can ’ t i n i t i a l l y know any meta−in formation , on ly l i t e r a l in format ion
9 no known bal lotCandidate . f i r s t

10 no known receiptCandidate . f i r s t
11 no known recordCandidate . f i r s t // not necessary to b l o c k a t t a c k s
12
13 no known intent ion . f i r s t //no t e l e p a t h y
14 no known ballotArrangement . f i r s t // tear−o f f r e c e i p t s h ide t h i s
15 no known onionArrangement . f i r s t // encrypt ion
16 no known mix . f i r s t
17 // I f you remove t h i s l a s t one , then the a t t a c k succeeds !
18 // I f you l e a v e i t in , the unsat core f e a t u r e o f A l loy 4 h i g h l i g h t s most
19 // con s t r a in t s in t h i s pred i ca t e , i n d i c a t i n g t h e i r re l e vance to the r e s u l t .
20 // I t shou ld h i g h l i g h t a l l o f them .
21
22 // ma l i c iou s goa l
23 some v : Voter | some v . (known voterBa l lot . l a s t) . (known bal lotCandidate . l a s t)
24 }
25 run hard attack for 3 but 3 In f e r ence , 4 Time , 3 i n t expect 0
26 run hard attack for 4 but 5 In f e r ence , 6 Time , 4 i n t expect 0
27 // Ensure # in f e r en c e s + 1 >= #Time (or e l s e you ge t an ove r con s t r a in t)
28
29 pred s u c c e s s f u l h a r d a t t a c k [] {
30 // genera l r u l e s
31 assumptions
32 seededKnowledge
33 exp la inAdd i t i ons
34 memory
35 prog r e s s
36 s e q u e n t i a l I n f e r e n c e s
37 onlyPauseAtEnd
38
39 // r e s t r i c t i o n s on knowledge
40 //you can ’ t i n i t i a l l y know any meta−in formation , on ly l i t e r a l in format ion
41 no known bal lotCandidate . f i r s t
42 no known receiptCandidate . f i r s t
43 no known recordCandidate . f i r s t
44
45 no known intent ion . f i r s t //no t e l e p a t h y
46 no known ballotArrangement . f i r s t // tear−o f f r e c e i p t s prevent you know knowing t h i s
47 no known onionArrangement . f i r s t // encrypt ion
48 −−no known mix . f i r s t //REMOVED to enab l e a t t a c k !
49
50 // ma l i c iou s goa l
51 some v : Voter | some v . (known voterBa l lot . l a s t) . (known bal lotCandidate . l a s t)
52 }
53 run s u c c e s s f u l h a r d a t t a c k for 2 but 3 In f e r ence , 4 Time , 3 int , 1 Record expect 1
54 run s u c c e s s f u l h a r d a t t a c k for 2 but 2 In f e r ence , 3 Time , 3 int , 1 Record expect 0

295

1
2 // s i t u a t i o n in which adversary i n f e r s an in co r r e c t f a c t
3 pred e r r o r [] {
4 assumptions
5 seededKnowledge
6 exp la inAdd i t i ons
7
8 //Add in these guys to make counterexamples ea s i e r to understand ,
9 // but l e a v e them out in the f i n a l check .

10 −−memory
11 −−progre s s
12 −−s e q u en t i a l I n f e r e n c e s
13 −−onlyPauseAtEnd
14
15 −− f i r s t . comingAt t ract ions = ba l l o tR e c e i p t i n f e r e n c e 1
16 some known bal lotRece ipt . f i r s t − ba l l o tRe c e i p t
17
18 not correctKnowledge [l a s t]
19 }
20 run e r r o r for 2 but 2 Time expect 0
21 −−run error f o r 3 bu t 3 Time expec t 0

296

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 /∗ ASSUMPTIONS & GOALS ∗/
3 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 pred AppendedFacts [] {
6 a l l b : Ba l l o t |
7 (b . ba l lo tCandidate) = (b . ba l l o tRe c e i p t) . rece iptMarked . (b . ba l lotArrangement)
8 a l l r : Receipt |
9 (r . r e c e ip tCand ida te) = (r . rece iptMarked) . ((r . r ece iptOnion) . onionArrangement)

10 a l l r : Record |
11 (r . recordCandidate) = (r . recordMarked) . (r . recordArrangement)
12 }
13
14 // Mu l i p l i c i t y markings from the f i d e l i t y argument are wr i t t en e x p l i c i t l y here .
15 // They cou ld have been l e f t i n l i n e d (as they are in the f i d e l i t y argument)
16 // without d i s r u p t i n g t h i s model .
17 pred M u l t i p l i c i t i e s [] {
18 a l l v : Voter | lone v . i n t en t i o n
19
20 a l l c : Candidate | one c . s co r e
21
22 a l l b : Ba l lo t , p : Po s i t i on | one p . (b . bal lotArrangement)
23 a l l b : Ba l lo t , c : Candidate | one (b . bal lotArrangement) . c
24 a l l b : Ba l l o t | one b . ba l l o tRe c e i p t
25 a l l b : Ba l l o t | lone b . ba l lo tCandidate
26
27 a l l o : Onion , p : Po s i t i on | one p . (o . onionArrangement)
28 a l l o : Onion , c : Candidate | one (o . onionArrangement) . c
29
30 a l l r : Receipt | one r . r ece iptOnion
31 a l l r : Receipt | lone r . rece iptMarked
32 a l l r : Receipt | lone r . r e c e ip tCand idate
33
34 a l l r : Record , p : Po s i t i on | one p . (r . recordArrangement)
35 a l l r : Record , c : Candidate | one (r . recordArrangement) . c
36 a l l r : Record | lone r . recordMarked
37 a l l r : Record | lone r . recordCandidate
38
39 a l l r : Receipt | lone r . (Board . scramble)
40 a l l r : Record | lone (Board . scramble) . r
41
42 one Board
43 }

297

1 pred VoterBreadcrumb [] {
2 // b a l l o t s t ha t aren ’ t g iven to vo t e r s don ’ t ge t marked
3 a l l b : Ba l l o t − Voter . v o t e rBa l l o t | no b . ba l l o tRe c e i p t . rece iptMarked
4 // every r e g i s t e r e d vo t e r g e t s e x a c t l y one b a l l o t
5 a l l v : Reg i s teredVoter | one v . v o t e rBa l l o t
6 // no un r e g i s t e r ed vo t e r g e t s a b a l l o t
7 a l l v : Voter − Regi s teredVoter | no v . v o t e rBa l l o t
8 // each b a l l o t i s g iven to at most one vo t e r
9 a l l b : Ba l l o t | lone vo t e rBa l l o t . b

10
11 // Voters mark the b a l l o t s they are g iven according to t h e i r i n t en t i on
12 // and the order ing on the b a l l o t . Note t ha t they don ’ t pay any a t t en t i on
13 // to the onion or the order ing i t r e p r e s en t s (i t ’ s encrypted !) .
14 a l l v : Reg i s teredVoter | l e t b = v . v o t e rBa l l o t |
15 b . ba l l o tRe c e i p t . rece iptMarked . (b . bal lotArrangement) = v . i n t en t i o n
16 }
17
18 pred BallotBreadcrumb [] {
19 // d i f f e r e n t b a l l o t s have d i f f e r e n t r e c e i p t s a t t ached to them
20 a l l d i s j b , b ’ : Ba l l o t | b . ba l l o tRe c e i p t != b ’ . b a l l o tRe c e i p t
21
22 // A ba l l o t ’ s onion ac cu ra t e l y encodes the arrangement o f cand ida t e s shown
23 // on the b a l l o t . That i s the , the order o f cand ida t e s on the b a l l o t i s the
24 // same as the order o f cand ida t e s encoded in the onion .
25 a l l b : Ba l l o t | b . bal lotArrangement = b . ba l l o tRe c e i p t . r ece iptOnion . onionArrangement
26 }
27
28 pred BoardBreadcrumb [] {
29 // every b a l l o t r e c e i p t g e t s s en t in t o the board e x a c t l y once
30 // r e c e i p t s are transformed but not des t royed :
31 // each r e c e i p t going in t o the board corresponds to 1 record coming out o f the board
32 a l l input : Ba l l o t . b a l l o tRe c e i p t | one input . mix
33
34 // r e c e i p t s are transformed but not c rea t ed :
35 // each record coming out o f the board corresponds to 1 r e c e i p t going in t o the board
36 a l l output : Receipt . mix | one mix . output
37
38 // a l l r e c e i p t s from a l l b a l l o t s are put in t o the vo t ing board f o r scrambl ing
39 a l l b : Ba l l o t | b . ba l l o tRe c e i p t in mix . Record
40
41 // on ly r e c e i p t s from b a l l o t s are put in t o the vo t ing board f o r scrambl ing
42 a l l r : mix . Record | r in Ba l l o t . b a l l o tRe c e i p t
43
44 // The scrambl ing proces s may change the onions , bu t i t does not change the
45 // candidate order ings they represent , and i t must l e a v e the po s i t i on o f the
46 // marking on the r e c e i p t the same . That is , f o r every input r e c e i p t , t he re
47 // i s one outpu t r e c e i p t t ha t both has an onion with the same arrangement o f
48 // cand ida t e s and has the same pos i t i on marked .
49 a l l input : mix . Record | l e t output = input . mix {
50 input . r ece iptOnion . onionArrangement = output . recordArrangement
51 input . rece iptMarked = output . recordMarked
52 }
53 }

298

1
2 pred RecordBreadcrumb [] {
3 a l l c : Candidate |
4 c . s co r e = #(Receipt . mix & recordCandidate . c)
5 }
6
7 pred assumptions [] {
8 AppendedFacts
9 M u l t i p l i c i t i e s

10 VoterBreadcrumb
11 BallotBreadcrumb
12 BoardBreadcrumb
13 RecordBreadcrumb
14 }
15
16 pred goa l [] {
17 a l l c : Candidate |
18 c . s co r e = #(Reg i s teredVoter & in t en t i o n . c)
19 }
20
21 pred co r r e c t sy s t em [] {
22 assumptions
23 goa l
24 some c : Candidate | c . s co r e > 0
25 }
26 run co r r e c t sy s t em for 1 expect 1
27
28 assert imp l i c a t i o n {
29 assumptions ⇒ goa l
30 }
31 check imp l i c a t i o n for 1 expect 0
32 check imp l i c a t i o n for 3 expect 0
33 check imp l i c a t i o n for 6 expect 0

299

300

Bibliography

[1] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-based
cryptographic voting. In WPES ’06: Proceedings of the 5th ACM workshop on
Privacy in electronic society, pages 29–40, New York, NY, USA, 2006. ACM.

[2] United States Federal Aviation Administration. FAA: Federal aviation
administration. website, 2008. http://www.faa.gov/.

[3] United States Nuclear Regulatory Agency. U.S. NRC: Protecting people and the
environment. website, 2008. http://www.nrc.gov/.

[4] Air Force, Space Division. System safety handbook for the acquisition manager,
January 1987. SDP 127-1.

[5] Javed A. Aslam, Raluca A. Popa, and Ronald L. Rivest. On estimating the size
and confidence of a statistical audit. In EVT’07: Proceedings of the USENIX
Workshop on Accurate Electronic Voting Technology, page 8, Berkeley, CA, USA,
2007. USENIX Association.

[6] Issa Bass. Failure mode and effects analysis - FMEA. website, 2007.
http://www.sixsigmafirst.com/FMEA.htm.

[7] T. E. Bell and T. A. Thayer. Software requirements: are they really a problem?
In Proceedings of the 2nd International Conference on Software Engineering
(ICSE’67), pages 61–68. IEEE Society Press, 1967.

[8] P. Bertrand, Robert Darimont, E. Delor, Philippe Massonet, and Axel
van Lamsweerde. Grail/kaos: an environment for goal driven requirements
engineering. In Proceedings of the 20th International Conference on Software
Engineering (ICSE’98), Kyoto, Japan, April 1998.

[9] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software, pages 85–
108. Number 2566 in LNCS. Springer, 2002.

[10] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In Proceedings of ACM SIGPLAN 2003: Programming Language Design and

301

Impelementation(PLDI’03), number 7-14, pages 196–207, San Diego, CA, USA,
June 2003. ACM Press.

[11] P. D. Bruza and Th.P. van der Weide. The Semantics of Data Flow Diagrams. In
N. Prakash, editor, Proceedings of the International Conference on Management
of Data, Hyderabad, India, 1989.

[12] Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A.
Ryan. Opacity generalised to transition systems. Int. J. Inf. Secur., 7(6):421–
435, 2008.

[13] NASA California Institute of Technology. Jet propulsion laboratory. website,
2008. http://www.jpl.nasa.gov/index.cfm.

[14] Caltech/MIT. VTP: Voting technology project. website, 2000-2008.
http://vote.caltech.edu/drupal/.

[15] Jaelson Castro, Paolo Giorgini, Stefanie Kethers, and John Mylopoulos.
A requirements-driven methodology for agent-oriented software. In Brian
Henderson-Sellers and Paoli Giorgini, editors, Agent-Oriented Methodologies .
Idea Group Pub, NY, USA, 2005.

[16] Richard I. Cook and Michael F. O’Connor. Medication Safety: A Guide to
Health Care Facilities,, chapter Thinking about accidents and systems, pages
73–87. American Society of Health-System Pharmacists, Bethesda, MD, 2005.

[17] Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning the
mu-calculus: Interpolation, lyndon and los-tarski. The Journal of Symbolic Logic,
65(1):310–332, 2000.

[18] Christophe Damas, Bernard Lambeau, P. Dupont, and Axel van Lamsweerde.
Generating annotated behavior models from end-user scenarios. In IEEE
Transactions on Software Engineering, Special Issue on Interaction and State-
based Modeling, volume 31, pages 1056–1073, 2005.

[19] Lynette I. Millett Daniel Jackson, Martyn Thomas. Software for Dependable
Systems: Sufficient Evidence? National Academies, Washington, DC, May 2007.

[20] Michael Jackson Daniel Jackson. Separating Concerns in Requirements Analysis:
An Example. Springer-Verlag, 2006.

[21] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

[22] Robert Darimont and Axel van Lamsweerde. Formal refinement patterns for
goal-driven requirements elaboration. In Proceedings of the 4th International
Symposium on the Foundations of Software Engineering (FSE’96), pages 179–
190, San Francisco, Oct 1996.

302

[23] Greg Dennis. Forge: Bounded program verification. website, 2008.
http://sdg.csail.mit.edu/forge/.

[24] Greg Dennis, Robert Seater, Derek Rayside, and Daniel Jackson. Automating
commutativity analysis at the design level. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA’04), July 2004. Boston,
MA, USA.

[25] Praxis Engineering. Praxis engineering. website, 2008.
http://www.praxiseng.com/.

[26] Food and Drug Administration. FDA statement on radiation overexposures in
panama. www.fda.gov/cdrh/ocd/panamaradexp.html.

[27] Jr. Fred P. Brooks. The mythical man-month. In Proceedings of the international
conference on Reliable software, page 193, New York, NY, USA, 1975. ACM.

[28] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented
requirements analysis and reasoning in the Tropos methodology. In Engineering
Applications of Artificial Intelligence, volume 18/2, march 2005.

[29] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements
modeling languages: RML revisited. In Proceedings of the 16th International
Conference on Software Engineering (ICSE’94), pages 135–147. IEEE Computer
Society Press, 1994.

[30] Software Design Group. The Alloy Analyzer. website, 2007. http://alloy.mit.edu.

[31] Charles B. Haley, Robin C. Laney, and Bashar Nuseibeh. Using Problem Frames
and projections to analyze requirements for distributed systems. In Proceedings
of the 10th International Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ’04), volume 9, pages 203–217. Essener Informatik
Beiträge, 2004. Editors: B. Regnell, E. Kamsties, and V. Gervasi.

[32] Martin Hall-May and Tim Kelly. Defining and decomposing safety policy
for systems of systems. In 24th international conference on computer safety,
reliability, and security (SAFECOMP’05), volume 3688, Fredrikstad, Norway,
September 2005. ISBN 3-540-29200-4.

[33] Mats P. E. Heimdahl. Safety and software intensive systems: Challenges old and
new. In Future of Software Engineering (FOSE’07), pages 137–152, Washington,
DC, USA, 2007. IEEE Computer Society.

[34] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, Cambridge, MA, March 2006.

[35] Daniel Jackson. A case for dependable software, 2008.

303

[36] Daniel Jackson and Michael Jackson. Rigorous Development of Complex Fault
Tolerant Systems, chapter Separating Concerns Requirements Analysis: An
Example. Springer-Verlag. To appear.

[37] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proceedings of the 8th European Software Engineering Conference
/ Proceedings of the 9th ACM SIGSOFT Sypmosium on the Foundations of
Software Engineering (ESEC/FSE’01), pages 62–73, Vienna, Austria, September
2001.

[38] Michael Jackson. Software Requirements and Specifications: a lexicon of practice,
principles and prejudice. Addison-Wesley, 1995.

[39] Michael Jackson. Problem analysis using small Problem Frames. South African
Computer Journal, 22:47–60, March 1999.

[40] Michael Jackson. Problem Frames: analyzing and structuring software
development problems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[41] Michael Jackson and Pamela Zave. Deriving specifications from requirements:
an example. In Proceedings of the 17th International Conference on Software
Engineering (ICSE’95), pages 15–24, New York, NY, USA, 1995. ACM Press.

[42] Chris W. Johnson. Failure in Safety-Critical Systems: A Handbook of Incident
and Accident Reporting. Glasbow University Press, October 2003.

[43] W. Lewis Johnson. Deriving specifications from requirements. In Proceedings
of the 10th International Conference on Software Engineering (ICSE’88), pages
428–438. IEEE Computer Society, 1988.

[44] Michael A. Jackson Jon G. Hall, Lucia Rapanotti. Problem oriented software
engineering. Technical Report 2006/10, Department of Computing, The Open
University, 2006.

[45] Trevor A. Kletz. Human problems with computer control. Plant/Operations
Progress, 1(4):209–211, October 1982.

[46] Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: A tool for verifying
data structure consistency. In In 14th International Conference on Compiler
Construction (tool demo, 2005.

[47] Robin C. Laney, Leonor Barroca, Michael Jackson, and Bashar Nuseibeh.
Composing requirements using Problem Frames. In Proceedings of the 12th
IEEE International Requirements Engineering Conference (RE’04), pages 121–
131. IEEE Computer Science Press, 2004.

304

[48] Emmanuel Letier and Axel van Lamsweerde. Deriving operational software
specifications from system goals. In Proceedings of the 10th International
Symposium on Foundations of Software Engineering (FSE’02), pages 119–128,
2002.

[49] Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[50] Nancy G. Leveson. Intent specifications: An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, 26(1):15–
35, January 2000.

[51] Nancy G. Leveson. A new approach to hazard analysis for complex systems. In
International Conference of the System Safety Society, August 2003.

[52] Nancy G. Leveson. A systems-theoretic approach to safety in software-intensive
systems. 1:66–86, 2004.

[53] Nancy G. Leveson and C. Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 7(26):18–41, 1993.

[54] Zhi Li, Jon G. Hall, and Lucia Rapanotti. A constructive approach to Problem
Frame semantics. Technical Report 2004/26, Department of Computing, The
Open University, 2005.

[55] Zhi Li, Jon G. Hall, and Lucia Rapanotti. From requirements to specifications:
a formal approach. In Proceedings of the 2nd International Workshop on
Applications and Advances in Problem Frames (IWAAPF’06), co-located with
the 28th International Conference on Software Engineering (ICSE’06), page 65,
Shanghai, China, May 2006. ACM Press.

[56] S. Liu and R. Adams. Limitations of formal methods and an approach to
improvement. In APSEC’95: Proceedings of the Second Asia Pacific Software
Engineering Conference, page 498, Washington, DC, USA, 1995. IEEE Computer
Society.

[57] Derek Mannering, Jon G. Hall, and Lucia Rapanotti. Relating safety
requirements and system design through problem oriented software engineering.
Technical Report 2006/11, Department of Computing, The Open University,
2006.

[58] Derek Mannering, Jon G. Hall, and Lucia Rapanotti. A problem-oriented
approach to normal design for safety critical systems. In Proceedings of
Fundamental Approaches to Software Engineering (FASE’07). European Joint
Conferences on Theory and Practice of Software (ETAPS’07), Braga, Portugal,
24 March - 1 April 2007.

[59] R. R. Mohr. Failure modes and effect analysis. presentation slides, January 1994.
8th edition, Sverdrup.

305

[60] Donald A. Norman. Design rules based on analyses of human error. Commun.
ACM, 26(4):254–258, 1983.

[61] United States Department of Health and Human Services. FDA: U.s. food and
drug administration. website, 2008. http://www.fda.gov/.

[62] University of Texas at Austin. Software engineering program. website, 2007.
http://www.utexas.edu/student/ admissions/ugdegrees.html.

[63] University of Waterloo. Software engineering program. website, 2007.
http://www.softeng.uwaterloo.ca/.

[64] Nick Ourusoff. Personal communication, 2006.

[65] Henry Ozog. Hazard identification, analysis, and control. Hazard Prevention,
pages 11–17, May-June 1985.

[66] David L. Parnas and Jan Madey. Functional documentation for computer
systems engineering, vol. 2. Technical Report Technical Report CRL 237,
McMaster University, Hamilton, Ontario, Sept 1991.

[67] Tropos Project. Tropos: requirements-driven development for agent software.
website, 2006. http://www.troposproject.org/.

[68] Andrew Rae, Prasad Ramanan, Daniel Jackson, and Jay Flanz. Critical feature
analysis of a radiotherapy machine. In International Conference of Computer
Safety, Reliability and Security (SAFECOMP 2003), Edinburgh, September
2003. http://sdg.lcs.mit.edu.

[69] Brian Randell and Peter Y. A. Ryan. Voting technologies and trust. IEEE
Security and Privacy, 4(5):50–56, 2006.

[70] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Deriving specifications from
requirements through problem reduction. In IEE Proceedings – Software, volume
153: Issue 5, pages 183–198, October 2006. ISSN: 1462-5970.

[71] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Problem reduction: a systematic
technique for deriving specifications from requirements. Technical Report
2006/02, Department of Computing, The Open University, Feb 2006. ISSN
1744-1986.

[72] Robert C. Ricks, Mary Ellen Berger, Elizabeth C. Holloway, and Ronald E.
Goans. REACTS Radiation Accident Registry: Update of Accidents in the United
States. International Radiation Protection Association, 2000.

[73] Ronald L. Rivest and Warren D. Smith. Three voting protocols: Threeballot,
vav, and twin. In EVT’07: Proceedings of the USENIX Workshop on Accurate
Electronic Voting Technology, pages 16–16, Berkeley, CA, USA, 2007. USENIX
Association.

306

[74] Ronald L. Rivest and John P. Wack. On the notion of software independence in
voting systems, 2006.

[75] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1991.

[76] P. Y. A. Ryan and S. A. Schneider. Pret a voter with re-encryption mixes. In In
European Symposium on Research in Computer Security, number 4189 in Lecture
Notes in Computer Science, pages 313–326. Springer-Verlag, 2006.

[77] Altair O. Santin, Regivaldo G. Costa, and Carlos A. Maziero. A three-ballot-
based secure electronic voting system. IEEE Security and Privacy, 6(3):14–21,
2008.

[78] Robert Seater and Daniel Jackson. Problem Frame transformations: Deriving
specifications from requirements. In Proceedings of the 2nd International
Workshop on Applications and Advances in Problem Frames (IWAAPF’06),
co-located with the 28th International Conference on Software Engineering
(ICSE’06), pages 65–70, Shanghai, China, May 2006. ACM Press.

[79] Robert Seater and Daniel Jackson. Problem Frame transformations in the
context of a proton therapy system. Unpublished manuscript. Unpublished
manuscript, 2006.

[80] Robert Seater and Daniel Jackson. Requirement progression in problem
frames applied to a proton therapy system. In Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’06), Minneapolis, MN,
September 2006.

[81] Robert Seater, Daniel Jackson, and Rohit Gheyi. Requirement progression
in problem frames: Deriving specifications from requirements. Requirements
Engineering Journal (REJ’07), 2007.

[82] Michael Shnayerson. Hack the vote. Vanity Fair, page 158, April 2004.

[83] Elizabeth A. Strunk and John C. Knight. The essential synthesis of problem
frames and assurance cases. In Proceedings of the 2nd International Workshop
on Applications and Advances in Problem Frames (IWAAPF’06), co-located with
the 28th International Conference on Software Engineering (ICSE’06), pages 81–
86, Shanghai, China, May 2006. ACM Press.

[84] Mana Taghdiri. Inferring specifications to detect errors in code. In ASE ’04:
Proceedings of the 19th IEEE international conference on Automated software
engineering, pages 144–153, Washington, DC, USA, 2004. IEEE Computer
Society.

307

[85] Mana Taghdiri, Robert Seater, and Daniel Jackson. Lightweight extraction of
syntactic specifications. In SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 276–286, New York, NY, USA, 2006. ACM.

[86] Jeffrey M. Thompson, Mats P. E. Heimdahl, and Steven P. Miller. Specification
based prototyping for embedded systems. In Proceedings of the 6th European
Software Engineering Conference / Proceedings of the 7th ACM SIGSOFT
Symposium on the Foundations on Software Engineering (ESEC/FSE’99),
number 1687 in LNCS, pages 163–179, September 1999.

[87] Eric S. K. Yu. Towards modelling and reasoning support for early-phase
requirements engineering. In Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering (RE’97), pages 226–235, Washington
DC, USA, Jan 1997.

[88] Marc Zimmerman, Mario Rodriguez, Benjamin Ingram, Masafummi Katahira,
Maxime de Villepin, and Nancy G. Leveson. Making formal methods practical.
In Proceedings of the 19th Digital Avionics Systems Conferences, October 2000.

308

