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This paper presents a framework for predicting protein-protein interactions (PPI)
that integrates structure-based information with other functional annotations, e.g.
GO, co-expression and co-localization, etc. Given two protein sequences, the

structure-based interaction prediction technique threads these two sequences to
all the protein complexes in the PDB and then chooses the best potential match.
Based on this match, structural information is incorporated into logistic regression

to evaluate the probability of these two proteins interacting. This paper also de-
scribes a random forest classifier which can effectively combine the structure-based
prediction results and other functional annotations together to predict protein in-
teractions. Experimental results indicate that the predictive power of the structure-

based method is better than many other information sources. Also, combining the
structure-based method with other information sources allows us to achieve a bet-

ter performance than when structure information is not used. We also tested our
method on a set of approximately 1000 yeast genes and, interestingly, the predicted

interaction network is a scale-free network. Our method predicted some potential
interactions involving yeast homologs of human disease-related proteins.

Supplementary Information: http://theory.csail.mit.edu/struct2net

1. Introduction

Proteins are the workhorses of the cell, performing a wide variety of func-

tions. Most often, they perform these functions by interacting with other

proteins. Indeed, many diseases can be traced to undesirable or malfunc-

tioning protein-protein interactions (e.g.: viral-host interactions14, prion

formation11). Clearly, the study of such interactions is very important.

Protein-protein interactions (PPIs) can be studied from two different per-

spectives. In the traditional view of PPIs, the aim has been to understand

the physical mechanism of interaction between two proteins by using experi-

mental and/or computational methods to study each interaction individually.
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In contrast, the more-recent “high-throughput” view of PPIs treats proteins

simply as logical entities and visualizes their interactions as a network, aim-

ing to understand the system of interactions as a whole. This paper describes

a computational technique that applies insights gleaned from the older per-

spective to independently supplement experimental methods designed for the

newer, systems-level perspective of PPIs.

We consider the problem of predicting if two proteins interact, given their

sequence information and, optionally, other genomic and proteomic informa-

tion. Such computational prediction of PPIs can supplement experimental

methods for elucidating PPIs. When mapping very large interactomes (e.g.,

human), such PPI predictions– even if only partially accurate– would be valu-

able in prioritizing the set of interactions to experimentally test. Moreover,

experimental techniques are quite error-prone; as prediction methods gain

accuracy, they can be used to double-check the results of the experiments.

Contributions: This paper proposes to use structure-based methods, in

conjunction with high-throughput information, to predict interactions. We

describe a fully-automated structure-based method for computing the likeli-

hood of an interaction, solely from sequence data. A key idea here is that if

a potential interaction is sufficiently favorable energetically, it is likely to be

true. As part of our method, we introduce a novel algorithm for computing

the most-likely structure of the complex formed by two given proteins and

describe the use of logistic regression2 for evaluating if the putative complex

corresponds to a true interaction. Furthermore, to the best of our knowl-

edge, this paper is the first to describe a framework for predicting PPIs that

integrates structure-based insights with other functional annotation (e.g.,

co-expression, GO description). Finally, our methods predict new potential

interactions involving yeast homologs of human disease-related proteins.

Algorithm Overview: We employ a structure-based method to answer

the following question: “assuming two given proteins interact, what is the

interaction energy of the formed complexa?” The method exploits homology

between the given protein-pair and complexes with known structure. Then

we use logistic regression to identify those pairs for which the interaction

energy is low enough and, hence, an interaction is likely. To combine PPI

predictions made by our structure-based method with other kinds of func-

tional information we have used a random-forest classifier7 (see Fig 1).

Related Work: Existing work on predicting PPIs has mostly followed a

“guilt-by-association” approach, the idea being that if two proteins share

aIn this paper, when referring to protein complexes, we consider only those with exactly

two components.



functional characteristics (co-expression, similar GO annotations etc.) they

are likely to interact15. These methods employ a variety of functional infor-

mation, using them to classify an interaction as ‘true’ or ‘false’. Many differ-

ent machine learning techniques have been used for classification: Bayesian

networks5, random forests12, probabilistic decision trees18, and kernel canon-

ical analysis17. Qi et al.12, in particular, incorporated a large variety of func-

tional information. More recently, Lin et al.8 have ranked various informa-

tion sources to identify the strongest predictors of an interaction. However,

some of these approaches5,8 also use high-throughput experimental PPI data

itself as a predictorb. In contrast, our goal is to predict PPIs completely in-

dependently of experimental PPI data. In other work, Deng et al.3 have

used sequence-based domain signatures, derived from low-throughput data,

to identify interacting domains between proteins. None of these methods

incorporate structure-based approaches.

Our work is different from existing work in the introduction of structure-

based methods as additional predictors of PPIs. The use of such methods

provides several advantages. First, these methods can provide insight into

how, if at all, an interaction happens, unlike guilt-by-association methods

which do not. Second, for many protein pairs very little functional annota-

tion is available and structure-based methods might often be the only avail-

able predictors. Third, as we show, these methods can be used in addition

to existing methods, allowing us to improve upon current performance. We

note that Lu, Lu & Skolnick13 have explored the use of purely structure-

based methods to predict PPIs. In comparison, our structure-based method

has several advantages (described later) and we describe how it can be inte-

grated with other information sources.

A possible concern might be that current structure prediction methods

are not sufficiently accurate and may not work well for every protein-pair.

In response, we note that our framework is modular so that better methods

can be substituted in, as they become available. Second, our method is

homology-based and will improve in performance and coverage as the recent

NIH-funded push to elucidate more structures gains momentum.

Another concern might be that just because two protein structures inter-

act in-silico, they might not interact in-vivo. This risk can be mitigated

by combining inferences based on structural-techniques with other kinds

of data. Also, note that this concern is equally applicable to existing ap-

proaches. Similarly, like many previous approaches, we restrict ourselves
bThe usual reasoning in such cases is that high-throughput PPI determination methods

are noisy enough that they only indicate an interaction, not confirm it.



to pairwise protein interactions, even though more than two proteins may

simultaneously interact in vivo.

2. Problem Formulation

We now provide a precise formulation of the two problems we address here:

Problem [StructOnly] Given two proteins p and q, and their associated

sequences Sp and Sq, compute the probability that p and q interact.

Problem [Struct&OtherInfo] Given two proteins, p and q, their associ-

ated sequences Sp and Sq, and optional annotation information {X1
p , X2

p , . . .}

and {X1
q , X2

q , . . .}, compute the probability that p and q interact.

In StructOnly, note that we only require the protein sequences, and

not structures. If necessary, the protein sequences can themselves be in-

ferred from the corresponding gene sequences. In Struct&OtherInfo,

different kinds of annotation information can be incorporated, as available.

Our method for solving this problem can be used with as many information

sources as desired, but here we have restricted ourselves to a few:
# Name Description

1 Coexpression Similarity between expression levels of the corresponding genes

2 Colocalization Co-localization information for the two proteins

3 GO Similarity between Gene Ontology(GO) terms for the two genes

4 MIPS Similarity between MIPS terms for the corresponding genes

5 Domain Seq. motifs indicating the presence of interacting domains

6 Coessentiality Whether one, both, or none of the corresponding genes are essential

Table 1: The various kinds of functional annotation used in Struct&OtherInfo.
These benchmark annotations have previously been found to be particularly relevant in

PPI predictions (see Supp. Info. for details).

3. Algorithms

3.1. Problem #1: StructOnly

Here, we follow a two-staged process (see Fig 1(a)). The advantage of this

two-staged process is that as structure-based methods improve in accuracy,

better ones can be plugged into the first stage.

3.1.1. Stage 1: Computing Interaction Energies

Here we introduce DBLRAP (“DouBLe RAPTOR”), a novel algorithm that

exploits the idea that if the homologs of a pair of proteins interact in a specific

way, the latter will also interact in a similar way. The algorithm consists of

two major components: (1) construction of the complex template database,

and (2) threading the two sequences to each potential complex template.

The complex template database is derived from the latest SCOP9

database (i.e., SCOP v1.67) as follows: we first check if two protein do-

mains can form a complex as per the following rule. For any pair of SCOP
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Figure 1: Schematic of our method for (a) StructOnly (b) Struct&OtherInfo

domains with the same PDB ID, we calculate their interfacial contacts, using

the same method described in Lu, Lu & Skolnick13. If there are more than 10

interfacial contacts between two domains, then we assume that they form a

complex. Next, we remove redundant complexes to improve computational

efficiency. We use the following clustering method. Suppose we have two

protein complexes C1 and C2, which are composed of domains A1 and B1

and domains A2 and B2, respectively. We classify C1 and C2 into the same

cluster if one of the following two conditions are satisfied: i) A1 and A2 are in

the same SCOP family and so are B1 and B2; ii) A1 and B2 are in the same

SCOP family and so are A2 and B1. We randomly choose one representative

from each complex cluster. All the representatives together form a complex

template database. In total, the complex template database contains 2443

complexes, which are composed of 4142 unique SCOP domains.

After constructing the complex template database, we then thread each

sequence pair to all the complex templates to find the best potential match.

We align each sequence pair to the best-matching complex. Using this align-

ment and the interaction pattern between the complex’s constituent sub-

units, we can also calculate the interfacial energy between our input proteins.

The interfacial potential parameters are taken from Lu, Lu, & Skolnick’s13

paper. For computational efficiency, in the actual implementation we did

some preprocessing first, the details of which are in the Supp. Info.

In summary, for any given sequence pair (p and q), the threading-based

interaction prediction method will generate two alignment scores (Ep, Eq),

their associated z-scores (zp, zq) , and an interfacial energy (Epq). These are

fed into the logistic regression model to predict interaction.

DBLRAP circumvents the docking problem: searching for the optimal

orientation of two proteins in a complex. But it has a limitation that the

number of complexes with known structures is not yet sufficiently large,



though it is increasing. An alternative approach would be to use homology

only to predict structures for individual proteins and then use methods for

protein docking to compute and score the optimal relative orientation of

the two structures. In theory, this approach should have greater coverage:

homology-based structure prediction is possible, and reasonably accurate,

for many proteins now. However, our limited exploration indicated that this

method does not work very well, possibly because docking programs are not

yet sufficiently good.

3.1.2. Stage 2: From Energy Values to Interaction Probabilities

We use binary logistic regression2 to classify whether a set of scores corre-

sponds to an interaction or not. In binary logistic regression, the goal is to

predict a binary output variable Y , given a set of r predictor variables X =

{X1, X2, . . . , Xr}. For an instance i, suppose yi and xi = {xi1, xi2, . . . , xir}

are the random variables corresponding to Y and X, respectively. Let

θi = P (yi = 1|xi). In this model, the dependence of θi on xi is expressed by

the logit function:

logit(θi) = log(
θi

1 − θi

) = α + βtxi = α + β1xi1 + β2xi2 + . . . + βrxir (1)

This can be rewritten as:

P (yi = 1|xi)

P (yi = 0|xi)
= eα+βt

xi or P (yi = 1|xi) =
eα+βt

xi

1 + eα+βtxi

(2)

Logistic regression was performed by the standard Iterative Re-weighted

Least Squares algorithm (the R package: http://www.r-project.org).

We now describe how we have set up the logistic regression problem

for our case. The output variable Y is the probability of interaction of

two proteins p and q. The predictor variables come from the first stage.

For proteins p and q, DBLRAP provides their interfacial energy Epq, their

respective alignment scores Ep and Eq, as well as associated z-scores zp and

zq. In addition to these, we also put in σpq = Np + Nq and πpq =
√

NpNq,

where Np and Nq are the sequence lengths of p and q. Finally we introduce,

as separate predictor variables, various functions and combinations of the

existing terms: e.g.
Ep

Np
,

Eq

Nq
,

Epq

σpq
,

Epq

πpq
,
√

Epq, etc.

We intentionally built an initial model with an excessively large set of

predictor variables: one of our goals was to identify the most informative

subset of predictors, using Akaike Information Criterion (AIC) to deter-

mine the subset with the optimal trade-off between prediction accuracy and

subset-size. The AIC score for a logistic regression model is defined by:

AIC = −2log-likelihood + 2k/N



where k = number of predictor variables, N = number of instances in the

dataset, and the log-likelihood of data under the model is computed using Eq.

2. The subset of predictor variables with the lowest AIC score was chosen.

The use of logistic regression for prediction confers certain advantages.

It allows us to combine multiple scores (interaction energies, z-scores etc.),

possibly from different methods. Functions of these scores can also be con-

sidered. We can then use logistic regression to identify the most relevant

subset of predictors. Compared to Lu, Lu, & Skolnick13, who only compared

the interfacial energy against some threshold, the use of logistic regression

allows us to make more sophisticated decisions.

3.2. Problem# 2: Struct&OtherInfo

For classification purposes one can associate, with each pair of proteins p

and q, a data-vector Dpq = (d1, . . . , d6) that contains information from the

six non-structure-based information sources described in Table 1. To add

structure-based information to this, we simply add one more feature d7 to

Dpq. Here, d7 is the probability of interaction between proteins p and q as

computed using logistic regression. Given some training data consisting of

known true and likely false interactions, we then train a random forest to

classify a possible interaction based on its data-vector (see Fig 1b).

Random Forests: Random forests7 (RF) generalize the intuition behind

decision trees. Given a dataset D of N data-vectors D1, . . . , DN , κ decision

trees are constructed. For each tree, only a subset of the feature-space is

used to train the tree using the data D. For example, for tree T12, only the

features d1, d3, and d7 might be used to create it. Given a test data-vector

Dt, the predicted class is determined by running down Dt on each tree and

then taking the majority vote over the predicted classes. Random forests can

handle missing data. The procedure for handling missing data is somewhat

involved; please see the original reference7 for details.

Our use of random forests is rather straightforward. Our feature space

consists of the 7 features described earlier.We then trained a random forest

with 500 trees over this space.

Though random forests have only recently been introduced, they have

quickly become very popular. They have many desirable characteristics:

they rarely overfit the data; they allow classification when features are not

independent; they allow for missing values. Lastly, their output is easy to

analyze in terms of identifying the strongest predictors and the relationships

between the different features. We also note that their usefulness in predic-

tion and analysis of PPIs has previously been demonstrated12.



Dataset Interactions Motivation behind Post

Pos. Notes Neg. creating the dataset Filtering
Interctns.

100 From high-quality 400 Low-throughput 69

Lt low-throughput interactions provide

experiments “gold-standard” pos.s

508 Between 1000 proteins 2000 Existing guilt-by-assoc. 332

HtFewAnnot with little functional methods do not work
annotation well with these

489 Between proteins with 300 Test how to combine 160

HtManyAnnot a lot of functional structure-based methods

annotation with other info.

Table 2: The construction of three datasets for yeast PPI data. The positive interactions
(#’s shown in table) were retrieved from GRID while (putative) negative interactions were
generated by randomly pairing two yeast proteins. The difference between the datasets
is primarily in how different positive sets were picked. The datasets were filtered to keep
only those interactions for which homologous models could be found.

4. Results

Datasets: In this work, we have focused on predicting PPIs in yeast (S.

cerevisiae). The list of experimentally discovered PPIs for yeast was re-

trieved from GRID1. From this database, three datasets were created:

Lt, HtFewAnnot, and HtManyAnnot (see Table 2). The datasets dif-

fered in how their positive examples (true interactions) were selected (see

Notes in Table 2). Note that because of the significant error-rate15 in high-

throughput experiments, some of the positive examples in HtFewAnnot

and HtManyAnnot are likely to be incorrect.

Collecting negative examples (false interactions) is difficult: experimen-

tally confirmed false interactions are rare. As such, we had to design our

own— a problem faced by other researchers as well15,12. We followed Qi et

al.’s strategy of considering a random pair of proteins as non-interacting.

Since, on average12, only 1 in 600 possible interactions is true, the chances

of a random pair being truly non-interacting are > 99%.

However, not all interactions in the datasets corresponded to protein-

pairs for which homologous complexes could be found. Therefore, we had

to filter out a subset of the dataset. As discussed before, as more structures

become available, the coverage of the homology-based methods will increase

and fewer pairs will be filtered out.

Using Only Structure-based Method (StructOnly):

Using the AIC criterion as described before, we discovered that the subset

of predictors of interaction with the optimal balance between model complex-

ity and goodness-of-fit were: {
Epq

πpq
, zp, zq, πpq}, where πpq is the square root

of the product of sequence lengths of p and q. Of these,
Epq

πpq
(p < 0.001) and



zp, zq (p < 0.05) were the more significant predictors.

In hindsight, it does seem reasonable that Epq/πpq is a stronger predictor

of interaction than Epq itself: for large proteins, even relatively weak interac-

tions will have a large (negative) interfacial energy, simply because of there

being more interacting entities. Thus, it makes sense that the energy score

should be normalized by the sequence length of the two proteins.

We tested our method by 4-fold cross-validation on the Lt dataset. In

addition, the method was trained on the entire Lt dataset and tested on

the combined HtFewAnnot + HtManyAnnot dataset. By comparing

against some threshold value (say pthresh = 0.5), the probabilities of in-

teraction predicted by logistic regression can be interpreted as true/false

interactions. By varying pthresh, we can plot the sensitivity-vs.-specificity

(ROC) curve of the method (see Fig 2a). As can be seen, the structure-based

method provides significant signal for prediction purposes. The performance

of the method is better on the low-throughput (Lt) dataset than on the high-

throughput datasets. A possible cause might be that the high-throughput

datasets have more errors, i.e., negative examples mis-labeled as positive.

Of course, the Lt dataset is smaller, and the better performance on it needs

more validation. It is also possible that the Skolnick potentials work better

for Lt dataset. In future work, we plan to explore these issues further.
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Figure 2: (a) StructOnly: Specificity-vs.-Sensitivity curve when using only the

structure-based approach. TP=True Pos., FP=False Pos., TN=True Neg., FN=False Neg.
The dotted diagonal line indicates the baseline, a method with zero predictive power. The

performance of our method is better for Lt than for HtFewAnnot +HtManyAnnot. A

possible reason might be that the latter datasets themselves might have mislabeled in-

stances. (b)Struct&OtherInfo: Classification error, and its dependence on the various

features. “All - X” indicates that all features, except X, have been used for classification.

As can be seen, the classification error increases if the structure-based method is not used.

Combining Various Information Sources (Struct&OtherInfo):



We tested our entire framework on the HtManyAnnot dataset, a

dataset specifically chosen for proteins with lots of functional annotation

available. We used 5-fold cross-validation to evaluate our method, using the

cross-validation error (CVE) as the quality metric.c

With average sensitivity = 94.1% and specificity = 92.1%, the overall

performance of our method is better than that of existing work, e.g., Zhang

et al.’s18 (sensitivity = 81% at specificity = 80%, approximately)d. Even

when experimental PPI data itself has been used as one of the predictors

by others (e.g., Lin et al.8: sensitivity = 98%, specificity = 92%, approxi-

mately), our method— which is completely independent of experimental PPI

information— performs comparably.

One interesting question is: “do structure-based methods contribute to

the predictive power, compared to other features?” To quantify a feature’s

importance, we removed it from the mix and recomputed the CVE. The

difference between this CVE and the baseline CVE (with all the features

present) indicates the increase in accuracy offered by including that feature.

As the table in Fig 2 shows, coexpression is the most important feature,

followed by the information provided by our method. Some of the other

features, e.g. colocation, do not seem to be particularly important.

4.1. Novel Predictions

Predictions on Less-Characterized Proteins: The proteins in the Ht-

FewAnnot have very little functional annotation and very few known PPIs

(see Supp. Info. for more details). For these, there isn’t enough func-

tional annotation for “guilt-by-association” methods to work; in contrast,

our structure-based method will still work.

We tested all possible pairs in this set for interaction, using our structure-

based method, without any additional functional annotation. The probabil-

ities of interaction, as computed by logistic regression, were used to rank

the pairs and the top 2000 pairs were chosen. The network formed by

these predicted set of interactions (see Supp. Info. for the predicted set)

shows some intriguing properties. It has a scale-free character15, just like

the experimentally-determined yeast PPI network, i.e., the node degree dis-

tribution follows the power law. Moreover, the two power-law coefficients
cComputing 5-fold cross-validation error (CVE): data was randomly partitioned into five
equal parts. Four of the parts constituted the training set while the fifth one made up

the test set. The error was computed as the classification error on this test set. By
repeating this error computation for each of the classes, five error values were computed

and averaged to compute the CVE.
dWe compared against Zhang et al.’s performance in the case when they did not use

experimental PPI data as a predictor



are comparable (1.9 for predicted network; 2.3 for the yeast interactome).

In the predicted network, the protein CHS2 is a hub (86 interactions),

and the set of its partners is enriched for genes involved in amino acid and

amine transporter activity. So, we hypothesized that this protein would

have similar functions. This turns out to be true— CHS2 is involved in

transferring N-acetylglucosamine to chitin. It is also relevant in disease-

treatment; some recent work on developing antiprotozoal drugs has focused

on targeting the chitin-synthesis pathway6. Similarly, for DSF2—a hitherto

uncharacterized gene—the set of its predicted interaction partners is enriched

for genes related to DNA transposition and retrotransposons (p < 0.001),

indicating DSF2’s possible function.

Disease-Related Proteins: In the predictions, we also specifically looked

for homologs of human disease-related genes. We describe a few findings

here; the rest are in Supp. Info.

The human homolog of RAD28 has been implicated in Cockayne Syn-

drome (related to malfunctions in DNA-repair machinery). Currently, there

are only two known PPIs involving RAD28. Our method predicts 19 addi-

tional PPIs, and 6 of the predicted partners are involved in DNA repair.

Similarly, the human homolog of PAT1 is Adrenoleukodystrophy– a neu-

rodegenerative disease caused by a malfunctioning fatty-acid transporter pro-

tein. There are only three known PPIs involving PAT1; our method predicts

26 more. Moreover, the set of its interaction partners is enriched for proteins

involved in lipid and fatty acid transport (p < 0.01).

Genome-scale Predictions: We used the structure-based method, with-

out any additional functional annotation, to perform an all-vs-all prediction

of the interactions in the yeast genome (see Supp. Info. for predictions). The

predicted network has a scale-free character similar to the known yeast inter-

actome and has about 9% overlap with it. This is significantly better than

overlap achieved by Lu, Lu & Skolnick’s13 method and is comparable to the

overlap between large-scale experimental PPI datasets.

5. Discussion

We have described how structure-based methods can be integrated with other

genomic and proteomic information for predicting PPIs. Structure-based

methods can be used by themselves when other functional annotation is

not available. When used in conjunction with functional annotation, their

addition improves prediction accuracy over existing methods.

Our future efforts will focus on (1) applying this method to mammalian

genomes, (2) incorporating other kinds of functional annotation (e.g., corre-



lated mutations10), and (3) using docking programs as an additional way of

computing interfacial energies. As mentioned before, our brief exploration

indicated that current docking programs did not perform satisfactorily. How-

ever, more work might suggest ways to improve them for our purposes.
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