Scaling hypotheses for non-fermi liquid quantum criticality

T. Senthil (MIT)

TS, forthcoming;
Precursor: TS, Annals of Physics, ‘06
Killing a Fermi surface

At certain quantum phase transitions in metals, an entire Fermi surface may disappear.

Examples: ① Heavy fermi liquid—antiferromagnetic metal

② Mott transition from metal to insulator

IF 2nd order, critical point will show non-Fermi liquid physics.
Non-fermi liquid metals

Growing number of examples of metals not described by Fermi liquid theory.

Notorious example: “Strange” metal of optimally doped cuprates.

Theory: Almost completely non-existent (but many interesting scattered ideas).
Quantum criticality – a route to non-Fermi liquid metals
Best studied examples: heavy electron metals

\[\text{CePd}_2\text{Si}_2, \text{CeCu}_{6-x}\text{Au}_x, \text{YbRh}_2\text{Si}_2, \ldots \]

Magnetic metal \hspace{2cm} \text{(Quantum) critical point with striking non-fermi liquid physics} \hspace{2cm} \text{Fermi liquid}

Pressure/B-field/etc
Best studied examples: heavy electron metals

CePd$_2$Si$_2$, CeCu$_{6-x}$Au$_x$, YbRh$_2$Si$_2$,

Magnetic metal Fermi liquid

Pressure/B-field/etc

(Quantum) critical point with striking non-fermi liquid physics

Partially filled f-orbitals form localized magnetic moments.
Best studied examples: heavy electron metals

CePd_2Si_2, $\text{CeCu}_{6-x}\text{Au}_x$, YbRh_2Si_2, ……

(Magnetic metal) Pressure/B-field/etc

(Quantum) critical point with striking non-fermi liquid physics

Partially filled f-orbitals form localized magnetic moments. Model as lattice of localized magnetic moments coupled to conduction electrons by spin exchange (the Kondo lattice)
Representative data in YbRh$_2$Si$_2$

Trovarelli et al, PRL 2000

T-dependence of resistivity at critical point: $\rho(T) \sim T$ for three decades in temperature!
Scaling of dynamic spin correlations: Inelastic neutron scattering near ordering wavevector

A. Schröder et al., Nature ’00; PRL ’98
Fermi surface and quantum phase transitions

Participation (or lack thereof) of local moments in Fermi sea strongly affects Fermi surface shape and size

\Rightarrow Fermi surface may reconstruct dramatically across the quantum phase transition.
Evidence from experiments I: Hall effect in YbRh$_2$Si$_2$

$S.\text{ Paschen et al., Nature}\ 432,\ 881\ (2004)$
Evidence from experiments II: dHvA in CeRhIn5

Simpler example – Mott transition of one band systems

\(\frac{1}{2} \)-filled Hubbard model on frustrated lattice in \(d = 2 \) or 3.

\[
H = -t \sum_{\langle ij \rangle} (c^\dagger_i \sigma_\alpha c_j + h.c.) + U \sum \frac{n_i (n_i - 1)}{2}
\]

\(U = 0 \)

Fermi Liquid \(\rightarrow \) ? ? ? \(\rightarrow \) Mott insulator

? ? 2nd order Mott critical point ??
Possible experimental realization of a second order Mott transition

$k \cdot (ET)_2 Cu_2 (CN)_3$

under pressure.

One band Hubbard model on isotropic Δ lattice

No magnetic order in insulator!
Killing a Fermi surface

At certain quantum phase transitions in metals, an entire Fermi surface may disappear.

Examples:
① Heavy fermi liquid—antiferromagnetic metal
② Mott transition from metal to insulator

IF 2nd order, critical point will show non-Fermi liquid physics.
How might a Fermi surface disappear?

Can a Fermi surface disappear continuously through a 2nd order transition?

Yes - if quasi-particle weight Z vanishes continuously and everywhere on Fermi surface!

Concrete example: “Kondo breakdown” model (TS, Vojta, Sachdev ’84)
Electronic structure at criticality: ``Critical Fermi surface"

Crucial question: Fate of Fermi surface right at quantum critical point when $Z=0$?

Proposal: Electron spectrum continues to be gapless at Fermi surface but there is no S-function quasiparticle peak. "Critical Fermi surface".
Critical fermi surface: another rationale

Mott transition

Fermi liquid

Mott insulator

What is k-space locus of minimum gap in electron spectral function?

Fermi liquid: minimum gap locus = Fermi surface.

Mott insulator: Sharp minimum gap locus defines some surface.
Evolution of minimum gap surface

Approach from Mott

2nd order transition to metal \Rightarrow expect entire minimum gap surface will close its gap to match onto Fermi surface of metal.

\Rightarrow Fermi surface sharp at critical point.

But as $Z=0$ no sharp quasiparticle.

\Rightarrow Non-Fermi liquid with sharp "critical" Fermi surface!
Some obvious consequences/questions

1. Critical Fermi surface \Rightarrow unusual criticality with phenomena different from familiar critical points

2. Structure of universal singularities/scaling phenomena?
Review: scaling at bosonic quantum critical points

Example: Superfluid - Mott transition of bosons at integer filling in $d=2$ lattice

\[H = -t \sum_{\langle ij \rangle} (b_i^+ b_j + h.c.) + U \sum_i \frac{n_i(n_i-1)}{2} \]

Single boson spectrum: Gapped in insulator
Gappedless at $k=0$ in superfluid

At critical point gap closes at $k=0$.
Review: scaling at bosonic quantum critical points

\[g_c \quad \text{Mott} \quad \left(g = \frac{U}{t} \right) \]
Review: scaling at bosonic quantum critical points

Boson spectral function $A_b(k, \omega) = \sum_n |\langle n \mid b_k^\dagger \mid 0 \rangle|^2 \delta(\omega - (E_n - E_0))$
Review: scaling at bosonic quantum critical points

Generally \(A_b(\mathbf{K}, \omega) \sim \frac{1}{|\omega|^{2-\eta}} F \left(\frac{c \omega}{|\mathbf{K}|^z} \right) \)

\(\eta, z \): universal exponents

\(F \): universal scaling function.

At \(T \neq 0 \) \(A_b(\mathbf{K}, \omega, T) \sim \frac{1}{|\omega|^{2-\eta}} F \left(\frac{c \omega}{|\mathbf{K}|^z}, \frac{3}{3} \right) \)

For SF-insulator transition \(z = 1 \)
Review: scaling at bosonic quantum critical points

Thermodynamics:

Free energy density $\mathcal{F}(T, \mu) \sim T^{\frac{d+z}{2}} f(\frac{\mu}{T})$

\Rightarrow Specific heat $C(T, \mu=0) \sim T^{\frac{d}{2}}$

Compressibility $\kappa(T, \mu=0) \sim T^{\frac{d}{2}-1}$

Transport: Conductivity $\sigma(\omega, T) \sim T^{\frac{d-2}{2}} \Sigma(\frac{\omega}{T})$

D.C. conductivity $\sigma(0, T) \sim T^{\frac{d-2}{2}}$
Generalization to critical fermions

Fermi liquid: Gapless Fermi surface \(\vec{k} = \vec{k}_F(\Theta) \)

(\text{in } d = 2 \text{ ; } \Theta : \text{momentum direction})

Spectral function \(A(\vec{k}, \omega) \sim Z(\Theta) \delta(\omega - v_F k_{\parallel}) \)

\[k_{\parallel} = |\vec{k}| - |\vec{k}_F(\Theta)| \]

At critical point \(Z(\Theta) \rightarrow 0 \) for all \(\Theta \).
Critical Fermi surface: scaling for single particle physics

Right at critical point expect universal singularity in $A_c(K, \omega)$ for small ω,

$$k_{\perp} = |K| - |K_\parallel(\theta)|$$

For each point θ on Fermi surface postulate

$$A_c(K, \omega, T) \sim \frac{1}{15^{2/3}} \times F\left(\frac{\omega}{|k_{\parallel}|^2}, \frac{\omega}{T}\right)$$
New possibility: angle dependent exponents

A priori must allow angle dependent exponents:

\[z = z(\theta), \quad \alpha = \alpha(\theta) \]

consistent with lattice symmetries.

Eg: Triangular lattice

\[z(\theta + \frac{\pi}{3}) = z(\theta) \]

\[\alpha(\theta + \frac{\pi}{3}) = \alpha(\theta) \]

Can expand \(z(\theta) = \sum_n z_n \cos(6n\theta) \), \ldots
Critical Fermi surface: scaling for single particle physics

Ground state momentum distribution

\[n(\vec{k}) = \langle \hat{c}^{\dagger}_{\vec{k}} \hat{c}_{\vec{k}} \rangle = \frac{N}{t \to 0} \int d\omega \ A(\vec{k}, \omega) f(\omega) \]

\[\sim \int d\omega \ \frac{1}{i\omega^{2/4}} \ f\left(\frac{\omega}{k_{\|}}^2, 0\right) \]

\[\sim |k_{\|}|^{2-\alpha} \]

\[n(\vec{k}) \text{ must be bounded} \Rightarrow \ z(\theta) \geq \alpha(\theta) \]
Critical Fermi surface: scaling for single particle physics

Tunneling density of states
\[\rho(\omega) \sim \int d\omega d\mathbf{k}_\parallel A(\mathbf{k},\omega) \]
\[\sim \int d\omega |\omega|^{\frac{1-\alpha}{2}} \]

If \(\varepsilon, \alpha \) are angle independent
\[\rho(\omega) \sim |\omega|^{\frac{1-\alpha}{2}} \]

(Independent of space dim \(d \); each Fermi surface ‘patch’ contributes as in \(d=1 \))
Leaving the critical point

Expect scale invariant spectrum is cut off at $k_{\perp} \sim \frac{1}{\xi}$, $\omega \sim \frac{1}{\xi^{z}}$ so that

$$A_c(R, \omega) \sim \frac{1}{15^{z/2}} F_1 \left(\frac{\omega}{k_{\perp}^{z}}, \frac{k_{\perp}}{\xi} \right)$$

Expect $\xi \sim |g-g_c|^{-\nu}$ but again a priori must let $\nu = \nu(\theta)$
Example: Mott transition

Approach from Mott side:

Single particle gap $\Delta(\theta) \sim |g - g_c|

Gaps vanish differently at different portions of Fermi surface.

Approach from Fermi liquid:

Quasiparticle residue $Z(\theta) \sim |g - g_c| \sqrt{v(\theta)(Z(\theta) - 1)}$

Fermi velocity $v_f(\theta) \sim |g - g_c| \sqrt{v(\theta)(Z(\theta) - 1)}$
Implications of angle dependent exponents

Different portions of Fermi surface will emerge out of criticality at different energy scales. Finite T_x overs much richer than usual.
Finite T crossovers

- Strange metal with critical FS
- Partially critical FS
- Metal with T-dependent Fermi arcs

Similar to cuprates (!)
Thermodynamics and transport: Two scaling models

Model 1: Each patch of Fermi surface contributes as a $d = 1$ theory (Different patches decouple at criticality)

Model 2: Various patches of Fermi surface strongly coupled at criticality

Useful criterion:
Approach from Fermi liquid – non-diverging Landau parameters necessary for Model 1.

Model 1 more likely to have angle dependent exponents on Fermi surface.
Model 1 thermodynamics

Assume in scaling limit each patch of Fermi surface contributes as a d=1 theory.

Total free energy $F(T, H) \sim \int d\sigma \frac{F_{\sigma}(T, H)}{2\pi}$

$F_{\sigma}(T, H) \sim T^{1 + \frac{1}{2} \sigma(0)} g \left(\frac{H}{T} \right)$

H: Zeeman field
Thermodynamics

Zero field specific heat $C(T) \sim S \delta \sigma T^{1/2}$

Spin susceptibility $\chi(T) \sim S \delta \sigma T^{1/2-1}$

Wilson ratio $W = \frac{C}{T \chi} = \text{universal constant}$

If $z(0) = z$ independent of θ

$C(T) \sim T^{1/2}$, $\chi(T) \sim T^{1/2-1}$

If $z > 1$, χ will diverge even though transition is not to a ferromagnet.
Transport?

No reason to expect $\sigma \sim T^{\frac{d-2}{2}}$ ("bosonic scaling")

Total current operator $\tilde{J} \sim \int d\Omega \tilde{J}_0$

$\tilde{J}_0 \sim$ current from "patch" at θ

If each patch contribution scales as in $d = 1$

$\sigma \sim T^{-\frac{1}{2}} \Sigma (\tilde{\omega})$

Non-trivial power laws possible in transport if there is a critical Fermi surface.
Model calculations with a critical Fermi surface

Simplest: "Slave rotor" description of Mott transition in 1-band Hubbard model.

Write \(c_{id} \sim e^{i\Phi_i} f_{id} \sim b_i f_{id} \)

\(b_i \sim e^{i\Phi_i} \): charge e spinless boson

\(f_{id} \): charge 0 spin-\(\frac{1}{2} \) fermion ("spinon")

\(U(1) \) gauge redundancy - local phase rotations of \(e^{i\Phi_i} \) & \(f_{id} \)
Model calculation with a critical Fermi surface

Fermi liquid: \(\langle b_i \rangle \neq 0 \)

Mott insulator: \(b_a \) gapped

(but \(f_{\alpha \lambda} \) form \(' \)spinon Fermi surface\(')\).

Critical point: \(e^{i\phi_i} \) critical.

Effective theory:

\[
\mathcal{L} = \frac{1}{2} (\partial_\mu - i a_\mu) b_i^\dagger b_i + g |b|^2 + \nu |b|^4 + \bar{f} (\partial_\tau - i a_\tau - (\nabla - i \vec{a})^2) f + (\xi_{\mu \nu} \partial_\mu a_\nu)^2
\]
Model calculation with a critical Fermi surface

Crude approximation: Ignore gauge fields.

Electron Green function $\langle c \bar{c} \rangle \sim G_b G_f$

$$G_b \sim \frac{1}{(x^2 + r^2)^{\frac{2-y}{2}}} ; \quad G_f \sim \text{free fermion Green fn}$$

$$A(\mathbf{E}, \omega) \sim | \omega - v_f k_\| |^{\gamma} \Rightarrow \text{critical Fermi Surface}$$

with $\gamma = 1, \quad \alpha = -\gamma$ everywhere.
Summary

• At some metallic quantum critical points there will be an entire surface of critical fermionic modes
 - a `critical Fermi surface’.

• Presence of critical fermi surface will change the scaling phenomena associated with universal critical singularities.

• Specific scaling ansatz for single particle and thermodynamic quantities.

• Possibility of angle dependent exponents with interesting consequences (eg: metals with T-dependent Fermi arcs at intermediate temperature)
Future

• Scaling for transport?

• Verify in concrete theoretical models/experiments

• Theoretical framework to describe critical Fermi surfaces?