Quantum spin liquids and the Mott transition

T. Senthil (MIT)
Band versus Mott insulators

Band insulators: even number of electrons per unit cell; completely filled bands

Mott insulators: odd number of electrons per unit cell; charges localize due to Coulomb interaction.
Physics of electronic Mott insulators

Prototype: $\frac{1}{2}$-filled Hubbard model at large $-U$

$$H = - \sum_{ij} t_{ij} \left(c_{i \sigma}^\dagger c_{j \sigma} + h.c. \right) + U \sum_i n_i (n_i - 1)$$

Large $-U$: Charges localize below some temperature $\sim o(U)$

Active low energy degree of freedom is electron spin

Describe by $H_{\text{eff}} \approx J \sum_{\left\langle ij \right\rangle} \vec{S}_i \cdot \vec{S}_j + \ldots$

$(J \sim \frac{t^2 U}{\Delta} > 0)$ - the problem of "quantum magnetism"
Spin liquids and other exotica in quantum magnets

- Traditional quantum magnetism: Ordered ground states (Neel, spin Peierls,)
 Concept of broken symmetry

Modern theory (last 2 decades): Possibility of `spin liquid' states in any dimension d.

Eg: Mott insulators with 1 electron/unit cell with no broken symmetry

Maturing theoretical understanding - extensive developments in last few years
What is a quantum spin liquid?

Rough description: Quantum paramagnet that does not break any symmetries of microscopic Hamiltonian.

More precise: Mott insulator with ground state NOT smoothly connected to band insulator.

Well known in $d=1$ spin chains.
Some natural questions

Can quantum spin liquids exist in $d > 1$? (Anderson ’73)

Do quantum spin liquids exist in $d > 1$?
Some natural questions

Can quantum spin liquids exist in $d > 1$? \(\text{(Anderson ’73)}\)
Theoretical question

Do quantum spin liquids exist in $d > 1$?
Experimental question
Some natural questions

Can quantum spin liquids exist in $d > 1$?
Theoretical question: YES!! (Anderson '73)

Do quantum spin liquids exist in $d > 1$?
Experimental question: Remarkable new materials possibly in spin liquid phases

Organics $K(ET)_2Cu(N_3)_2$, Kagome $ZnCu(OH)_2Cl_2$,
$EtMe_3Sb[Pd(dmit)_2]$; Hyper Kagome $Na_2Ir_3O_8$
2d solid $He-3$
Why are quantum spin liquids interesting?

1. Exotic excitations

Excitations with fractional spin (spinons), non-local emergent interactions described through gauge fields

As rich in possibility if not richer than the fractional quantum Hall systems but requires less extreme conditions (e.g., no strong B-fields)
Why are quantum spin liquids interesting?

2. Ordering not captured by concept of broken symmetry

- new concepts of `topological order’ and generalizations

Order is a global property of ground state wavefunction

Possibility of encoding information non-locally.

?? Useful for computing?? (k_{itae})
Why are quantum spin liquids interesting?

3. Platform for onset of many unusual phenomena

Eg: (i) Superconductivity in doped Mott insulators
?? Relevant to cuprates ??

(ii) Non-fermi liquid phenomena in correlated d or f-electron metals.

(Anderson '87; Kivelson, Rokhsar, Sethna '88)
Why are quantum spin liquids interesting?

4. Excellent experimental setting for exploration of violation of long cherished notions of condensed matter physics

- quasiparticles with fractional quantum numbers and unusual statistics
- the very existence of a quasiparticle description
- inadequacy of Landau order parameter to describe phases and phase transitions of correlated matter
Stability of quantum spin liquids

1. Solution of concrete quantum spin models within 1/N expansions (Read, Sachdev '91)

2. Effective field theory descriptions (Wen '91; Balents, Fisher, Nayak, '99; TS, Fisher’00, ….)

3. Solution of effective models of quantum dimers (Moessner, Sondhi’01; Misguich, Serban, Pasquier’02; ….)

4. Solution of various quantum spin/boson models (Kitaev’97,’06; Balents, Fisher, Girvin ’02, Motrunich, TS’02, ….)

5. Numerical calculations on simpler models (Misguich, Lhuillier’98; Sheng, Balents, ’05; Isakov, Paramekanti, Kim, Sen, Damle’07)
Where might we find quantum spin liquids?

- Geometrically frustrated quantum magnets

- ``Intermediate” correlation regime
 Eg: Mott insulators that are not too deeply into the insulating regime
Where might we find quantum spin liquids?

- Geometrically frustrated quantum magnets

 Kagome magnets?

- ``Intermediate'' correlation regime

 Eg: Mott insulators that are not too deeply into the insulating regime

Perhaps more promising in experiments?

- Organics $K(ET)Cu_2(CN_3)_2$; solid $He-3$? Hyperkagome $Na_{1.75}IrO_3$?
- $EtMe_3Sb[Pd(dmit)_2]_2$
Wavefunctions

An example

Ground state: \(|\psi_{gd}\rangle = \mathcal{P}_G |\text{s-wave gapped BCS}\rangle \)

\(\mathcal{P}_G\): Gutzwiller projection to 1 electron/site; yields RVB spin wave function

Spinon excitations: \(|\text{spinon}\rangle = \mathcal{P}_G |\text{BCS quasiparticle}\rangle \)

Projection “neutralizes” the charge to leave behind a spinon.
Other excitations

Excitations of a superconductor - (i) quasiparticles

(ii) $\hbar c/2e$ vortices

$P_a \left| \text{BCS} \right\rangle \rightarrow \left| \text{spin liquid} \right\rangle$

$P_a \left| \text{quasiparticle} \right\rangle \rightarrow \left| \text{spinon} \right\rangle$

$P_a \left| \hbar c/2e \text{ vortex} \right\rangle = \left| v \right\rangle = ??$

$\left| v \right\rangle$: a “topological” excitation of the spin liquid

(C “vision”: TS, Fisher 00)
Full description of excitation spectrum

$\frac{h \alpha_e}{2} \text{ vortex}$

$\Rightarrow \quad \Phi \quad \text{Spinon}$

$\text{Phase of } \pi$

"neutralized" quasiparticle

$\Rightarrow \quad \Phi \quad \text{Spinon}$

$\text{Phase of } \pi$

Full excitation spectrum: Spin-$\frac{1}{2}$ spinons, spin-0 visons with infinitely non-local "stastical" interaction
Utility of gauge theory

Convenient mathematical formulation of non-local interaction:

Spinons - Ising "electric charge"
Visons - Ising "magnetic flux"

Non-locality: Aharonov-Bohm interaction

Gauge theory forced upon us as natural language for describing spin liquids
Varieties of spin liquids

Different kinds of spin liquids with different "emergent" gauge structure

Eg: U(1) spin liquids in d=3 quantum magnets

- spinons with emergent Coulomb interaction mediated by emergent photon.

(Wen, Motrunich, TS, Hermele, Fisher, Balents, …….)

Numerical confirmation: Bannerjee et al. ’07
A useful distinction:
Gapped versus gapless spin spectrum

(i) Spin liquids with spin gap
Best understood theoretically

(ii) Spin spectrum may be gapless
Spinons with Fermi statistics
that have Fermi points or
Fermi surfaces (⇒ Nontrivial low-T thermal transport)
Best experimental candidate

(Expt: Kanoda, 2002–present) \(\kappa-(ET)_2Cu_2(CN)_3Cl \)

Weak Mott insulator close to Mott transition

\(\sim \) Isotropic \(\Delta \) lattice

No ordering to 32 mK \(\ll J \approx 250 \text{ K} \)

but \(\chi \rightarrow \text{const.} \)

\[\frac{1}{T} \rightarrow \frac{1}{\sqrt{T}} \] (above 10 K)
A gapless spin liquid

\[\chi(T \to 0) \to \text{const.} \]

\[C(T \to 0) \to \text{const.} \]

Wilson ratio \[\frac{\chi T}{C} = \text{const.} \sim o(1) \]
Phase diagram

Proximity to Mott transition
Summary of quantum spin liquid review

• Maturing theoretical understanding of quantum spin liquid phases in $d > 1$

• Theoretically demonstrable violations of long cherished notions of condensed matter physics

• Interesting candidate materials exist – exciting times ahead!

• Important general lessons for correlated metallic systems
The Mott metal-insulator transition

Difficult old problem in condensed matter physics
Simple example: Mott transition of one band systems

$\frac{1}{2}$-filled Hubbard model on non-bipartite lattice in d=2 or 3

AF Mott insulator \rightarrow ??? \rightarrow Fermi liquid \rightarrow t/U

(Magnetism, but no Fermi surface)
(Sharp Fermi surface) but no magnetism

Fermi surface of metal needs to disappear at Mott transition.
Some difficulties

1. No order parameter for the metal-insulator transition

2. Need to deal with a sharp Fermi surface on metallic side

3. Complicated interplay between metal-insulator phase transition and magnetic phase transition
Quantum spin liquids to a (partial) rescue

Mott transition between metal and a quantum spin liquid

Spin liquid \xrightarrow{t/U} \text{Mott insulator}

Mott transition without complications of magnetism

Can study issues of loss of Fermi surface, metallic conduction, etc.; possibly even 2nd order
Possible experimental realization of a second order Mott transition

$k-(ET)_2Cu_2(CN)_3$

under pressure

One band Hubbard model on isotropic Δ lattice

No magnetic order in insulator!

Spin on Fermi surface? (Motrunich '05, Lee & Lee '05)
How might a Fermi surface disappear?

Can a Fermi surface disappear continuously through a 2nd order transition?

One route — quasi-particle weight Z vanishes continuously and everywhere on Fermi surface!

(à la Brinckman-Rice ‘71)

Concrete example in other contexts: “Kondo breakdown” model (Ts, Vojta, Sachdev ‘84)
Electronic structure at criticality: "Critical Fermi surface"

Crucial question: Nature of electronic excitations right at quantum critical point when $\mathcal{E} = 0$?

Claim: At critical point, Fermi surface remains sharply defined even though there is no Landau quasiparticle (TS, '08)

"Critical Fermi surface"
Why a critical Fermi surface?

Mott transition example:

Fermi liquid

Mott insulator

What is gap $\Delta(\vec{k})$ in electron spectral function $A(\vec{k},\omega)$?

Fermi liquid: $\Delta(\vec{k} \in FS) = 0$

Mott insulator: Sharp gap $\Delta(\vec{k}) \neq 0$ for all \vec{k}
Evolution of single particle gap

Approach from Mott
2nd order transition to metal \Rightarrow expect Mott gap
$\Delta(K)$ will close continuously
To match to Fermi surface in metal, $\Delta(K) \rightarrow 0$
for all $K \in FS$.

\Rightarrow Fermi surface sharp at critical point.

But as $Z = 0$ no sharp quasiparticle
\Rightarrow Non-fermi liquid with sharp "critical" Fermi surface!
Why a critical Fermi surface?
Evolution of momentum distribution

Metal with Fermi surface

Phase where Fermi surface has disappeared

Critical point $n(K)$ continuous at K_f but is singular

\[n(k) \]

\[K_f \]
Killing a Fermi surface

Disappearance of Fermi surface through a continuous transition

At critical point

(a) $Z = 0$

(b) Fermi surface sharp

(Similar argument for heavy fermion critical points, Bi2Te, Mott critical point, etc.)
Some obvious consequences/questions

Critical Fermi surface \Rightarrow unusual criticality with phenomena different from familiar critical points

1. Structure of universal singularities/scaling phenomena?

2. Calculational framework?
Some obvious consequences/questions

Critical Fermi surface \Rightarrow unusual criticality with phenomena different from familiar critical points

1. Structure of universal singularities/scaling
 General scaling theory - TS '08

2. Calculational framework?
 Focus of this talk: concrete theory of a continuous Mott transition - TS '08
Theoretical framework

Slave rotor description: \(c_i \sim e^{i\phi_i} \)

\[f_i^d \quad \text{charge-e spinless boson} \]

\[\text{neutral spin-\(\frac{1}{2} \) fermion ("spinon")} \]

\[U(1) \text{ gauge redundancy: local phase rotations of } e^{i\phi_i} \text{ & } f_i \]

Mean field theory: Florens, Georges '04

Fluctuations: TS '08

\[\langle e^{i\phi_i} \rangle = 0 \quad \text{Mott} \]

\[e^{i\phi_i} \text{ critical} \]

\[\langle e^{i\phi_i} \rangle \neq 0 \quad \text{Fermi liquid} \]
Structure of critical theory in $d = 2$

$$S_{\text{eff}} = S[e^{i\Phi}, a] + S[f, a]$$

- 3D XY coupled
- Spinon Fermi
- $U(1)$ gauge field a^μ
- Surface coupled to a^μ

RPA analysis: Effective action for transverse gauge field

$$S_{\text{eff}} = \int \left(\frac{|\omega|}{q} + \sqrt{q^2 + \omega^2} \right) |a|^{-2}$$

$$\approx \int \left(\frac{|\omega|}{q} + 1q | \right) |a|^{-2}$$

Coupling to bosons: a^μ decouples due to Landau damping term

Fermions:

Same as "Coulomb" interaction case of HLR theory of $\frac{1}{2}$-filled Landau level

\Rightarrow Bosons in 3D XY class
\[S = S[b] + S[f,a] \]

- bosons in 3D XY universality class
- Strongly coupled spinon-gauge system (same as HLR with Coulomb)
Critical Fermi surface at Mott criticality

Electron spectral function

$$A_c(K, \omega) \sim \frac{1}{\ln \frac{1}{|\omega|}} F \left(\frac{\omega \ln \frac{1}{|\omega|}}{k_{\perp}} \right)$$

Sharp critical Fermi surface but no Landau quasi-particle.

"Scaling form" with $\alpha = -\gamma$, $z = 1^+$

(γ = anomalous exponent in 3D XY model)
Approach from Fermi liquid

Vanishing quasiparticle residue $Z \sim |sg|^2 \frac{1}{\ln \frac{1}{|sg|}}$

Diverging effective mass $\frac{m^*}{m} \sim \ln \frac{1}{|sg|}$

(but $Z \neq \frac{m^*}{m}$)

Diverging Landau parameters $F_0^a \sim \frac{m^*}{m} \rightarrow \infty$ ($\chi \rightarrow \text{const}$)

$F_0^s \sim |sg|^{-\nu} \rightarrow \infty$

Compressibility $\kappa \rightarrow 0$ (and zero sound speed $\rightarrow \infty$)
Critical thermodynamics/transport

\[C_v \sim T \ln \frac{1}{\chi_0}, \quad \chi_0 \to \text{const.} \]

Resistivity \(J = J_b + J_f \) (Jaffe-Larkin rule)

\[J_b = \frac{R \rho_b}{e^2} = \text{universal}, \quad J_f \sim J_b + o(T^2 \ln \frac{1}{T}) \]
Universal resistivity jump

\[\rho = \rho_b + \rho_f \]

Metal: \(\rho_b = 0 \) \Rightarrow \(\rho = \rho_f \)

Insulator: \(\rho_b = \infty \) \Rightarrow \(\rho = \infty \)

Mott critical point

\[\rho_b = \frac{R_h}{e^2} \]

\Rightarrow Residual resistivity jumps at Mott transition.

On approaching from metal, jump = \(\frac{R_h}{e^2} = \text{universal} \).
Crossover out of criticality: Anderson is different (from Higgs)

Move from critical point to Fermi liquid:

Boson condensation scale \(\sim \frac{\rho}{\lambda} = \) boson stiffness

Modified gauge action

\[
S_{\text{eff}} \sim \int \left(\frac{|\omega|}{\rho} + q f \left(\frac{\rho_{\text{vis}}}{\rho} \right) \right) |a|^2
\]

Gauge fluctuations quenched at scale \(\sim \frac{\rho^2}{\lambda} \ll \frac{\rho}{\lambda} \)

\(\Rightarrow \) Charge & spin sectors emerge out of criticality at different scales
Finite T crossovers: Marginal Fermi liquids

In this regime, electron Green's function:

$$G \left(\vec{r}, \vec{k}, \omega \right) \sim \frac{\left| \langle \vec{k} \rangle \right|^2}{i\omega \left(\gamma_{TL} + \frac{1}{|\omega|} \right) - E_k}$$

Marginal FL form proposed for $h\nu T_c$ by Varma et al., 1989.
Same Mott transition in three dimensions

(Podolsky, Paramekanti, Kim, Senthil '08)

Second order Mott transition possible also in 3d.

Weaker singularities compared to 2d.

Eq: At QCP, $C_v \sim T \ln \ln T$

Most interesting prediction:
Resistivity maximum in metallic phase close to Mott transitions.

Experiments: Na$_4$Ir$_3$O$_8$ near pressure-tuned Mott transition?
Summary-II

- Concrete theory of a continuous Mott transition in two dimensions
 - demonstrate critical Fermi surface
 - predict universal resistivity jump, emergence of marginal Fermi liquids
 - filling controlled transition tuned by chemical potential can also be studied.

Future: Lots of challenges!