Quantum phase transitions out of the heavy fermi liquid

T. Senthil (MIT)

S. Sachdev (Yale)

M. Vojta (Karlsruhe)

Collaborators on related issues: Levin, Motrunich, Vishwanath, Balents, Fisher.

Luttinger's theorem for Fermi liquids

In a Fermi liquid, volume V_F of Fermi surface is set by electron density n independent of interaction strength.

 $V_F = (2\pi)^d n/2$ (mod Brillouin zone volume).

Perturbative proof: Luttinger

Non-perturbative topological arguments:

Yamanaka, Oshikawa, Affleck (d = 1), Oshikawa (d > 1).

Oshikawa: Regard as "topological quantization".

Heavy fermion liquids

 Heavy fermion materials: Typically rare earth intermetallic compounds with strongly correlated half-filled

f-band weakly hybridized with conduction electron band.

Describe by Anderson model

$$H = \sum_{k} \varepsilon_{k} c_{k}^{+} c_{k} + \sum_{k} (\varepsilon_{k}^{f} - \mu_{f}) f_{k}^{+} f_{k}$$
$$+ V \sum_{r} (c_{r}^{+} f_{r}^{+} + f_{r}^{+} c_{r}^{-}) + U \sum_{r} (f_{r}^{+} f_{r}^{-})^{2}$$

or in large - U limit by Kondo lattice model

$$H = \sum_{k} \varepsilon_{k} c_{k}^{\dagger} c_{k} + \frac{J_{K}}{2} \sum_{r} \vec{S}_{r} . c_{r}^{\dagger} \vec{\sigma} c_{r}$$

Luttinger's theorem in Kondo lattices

- Kondo lattice model admits a Fermi liquid phase.
 (Denote ``Kondo liquid'').
- To satisfy Luttinger's theorem must include local moments in the count of conduction electron density
 - "Large" Fermi surface
- Fermi liquid adiabatically connected to small U Anderson model.
- Understand through (i) slave particle mean field calculation (Read et al, Millis et al)
- (ii) Oshikawa topological argument.

Other known metallic states of Kondo lattice

 Magnetically ordered (typically antiferromagnetic) metal due to RKKY

Favored at small J_{κ} (Doniach).

There are actually two <u>distinct</u> kinds of antiferromagnetic metals.

Other broken symmetry states (SC,)

Two kinds of antiferromagnetic metals in Kondo lattices

(A): ``Local moment magnetic metal''

Ordering of local moments (due to intermoment exchange).

c-electrons ≈ decoupled from local moments.

Typically large (staggered) moment.

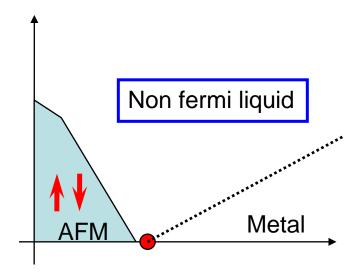
"'f-electrons do not participate in Fermi surface".

(B): "Spin density wave metal"

SDW instability of heavy fermi liquid with large fermi surface.

c- and f-electrons strongly coupled.

Typically weak moment.


``f-electrons participate in Fermi surface''.

- Two kinds of magnetic metals often sharply distinct!!
- Distinction in topology of Fermi surface –

Evolution from one to other occurs through a <u>quantum</u> <u>phase transition</u> where the Fermi surface topology changes

(Lifshitz transition)

Magnetic ordering in heavy electron systems <u>CePd₂Si₂, CeCu_{6-x}Au_x, YbRh₂Si₂,......</u>

Non fermi liquid: diverging γ coefficient, T dependence of resistivity, scaling of spin fluctuation spectrum with

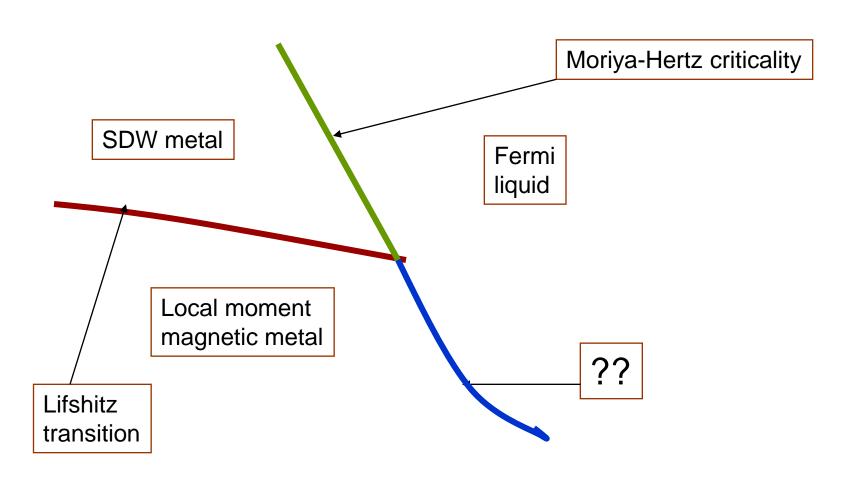
"Classical" assumption

- NFL: Universal physics associated with quantum critical point between heavy fermi liquid and magnetic metal
- Landau: Universal critical singularities ~ fluctuations of natural magnetic order parameter for transition

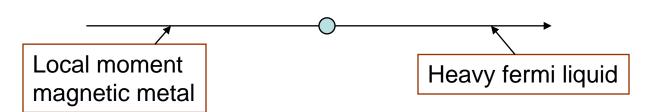
Try to play Landau versus Landau.

Which magnetic metal?

1. Heavy fermi liquid – SDW metal:


Fluctuations of magnetic order parameter with damping due to fermionic quasiparticles (Moriya-Hertz-Millis)

Fail to reproduce observed NFL physics.


2. Explore alternate possibility:

Transition between heavy fermi liquid and local moment magnetic metal.

Schematic phase structure

Questions

- 1. Is there a generic second order quantum phase transition between the two phases? (Loss of magnetic order happens at same point as onset of ``Kondo" order)
- 2. Theoretical description?
- 3. Will it reproduce observed non-fermi liquid behaviour?

Answers not known!!

This talk: describe some ideas I am pursuing with various collaborators.

Other ideas/points of view: Q. Si et al, , Coleman, Pepin,

General observations

 f-moments drop out of Fermi surface (⇔ change of electronic structure)

Associated time scale t_e.

Onset of magnetic order

Associated time scale t_m.

Both time scales diverge if there is a critical point.

General observations

f-moments drop out of Fermi surface (change of electronic structure)

Associated time scale t_e.

Onset of magnetic order

Associated time scale t_m.

Both time scales diverge if there is a critical point.

Suggestion: t_m diverges faster than t_e.

(electronic structure change first, magnetic order comes later)

Separation between two competing orders as a function of scale (rather than tuning parameter) might make second order transition possible.

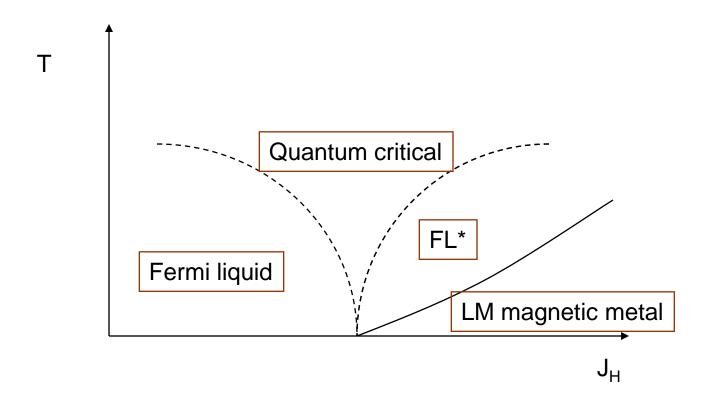
Some implications

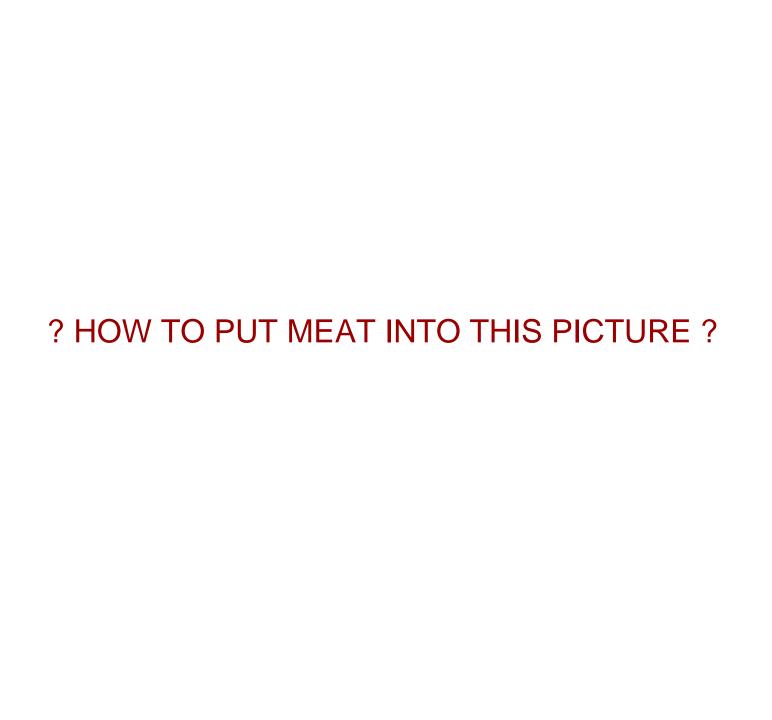
 <u>"Underlying"</u> transition: loss of participation of the f-electrons in forming the heavy fermi liquid.

(View as a Mott ``metal-insulator'' transition of f-band).

- Magnetic order: ``secondary'' effect a low energy complication once Kondo effect is suppressed.
- Non-fermi liquid due to fluctuations associated with change of electronic structure rather than those of magnetic order parameter.
- ⇒ PHYSICS BEYOND LANDAU-GINZBURG-WILSON PARADIGM FOR PHASE TRANSITIONS.

(Natural magnetic order parameter is a distraction).


Intermediate time scale physics


 f-moments drop put of Fermi surface but continue to form singlet bonds with each other

Resulting state: spin liquid of f-moments coexisting with small Fermi surface of conduction electrons (a ``fractionalized Fermi liquid")

Magnetism: low energy instability of such a small Fermi surface state.

Suggested phase diagram and crossovers

Study tractable simpler questions

1. Effects of loss of "Kondo" order?

Study second order quantum transitions associated with loss of Kondo screening. [TS,Vojta, Sachdev;

Related precursor: Burdin, Grempel, Georges]

Worry about magnetism later

2. Do similar theoretical phenomena (eg: breakdown of Landau paradigm) happen in other contexts?

Yes! (study quantum phase transitions in insulating magnets)

(TS, Vishwanath, Balents, Sachdev, M. Fisher)

Kondo Heisenberg models

$$H = \sum_{k} \varepsilon_{k} c_{k}^{+} c_{k}^{+} + \frac{J_{K}}{2} \sum_{r} \vec{S}_{r} . c_{r}^{+} \vec{\sigma} c_{r}^{+} + \sum_{rr'} J_{H}(r, r') \vec{S}_{r} . \vec{S}_{r'}^{-}$$

- $J_K = 0$: Conduction electrons are decoupled from local moments and have small Fermi surface
- Non-magnetic ground states of spin system
- (i) Spin –Peierls: break translational symmetry
- (ii) Fractionalized: can preserve translational symmetry

Focus on (ii) to discuss small Fermi surface state.

Fractionalization in d > 1

 Anderson: RVB spin liquid state for quantum spin models.

Couple spin liquids to conduction electrons

- Small non-zero J_K: Perturb in J_K
- Emergent gauge structure of local moment system survives; conduction electrons stay sharp on a small Fermi surface*.
- advertised small fermi surface state.
- A fermi liquid in peaceful coexistence with fractionalization
 ``Fractionalized fermi liquid'' (denote FL*)
- Large J_K: Recover large Fermi surface Kondo liquid.

(* Possible pairing instability at low T).

Physics of fractionalized fermi liquid (FL*) state

Each local moment forms singlet with another local moment.

Weak Kondo coupling can't break singlets:

Local moments and conduction electrons essentially stay decoupled.

Mean field theory

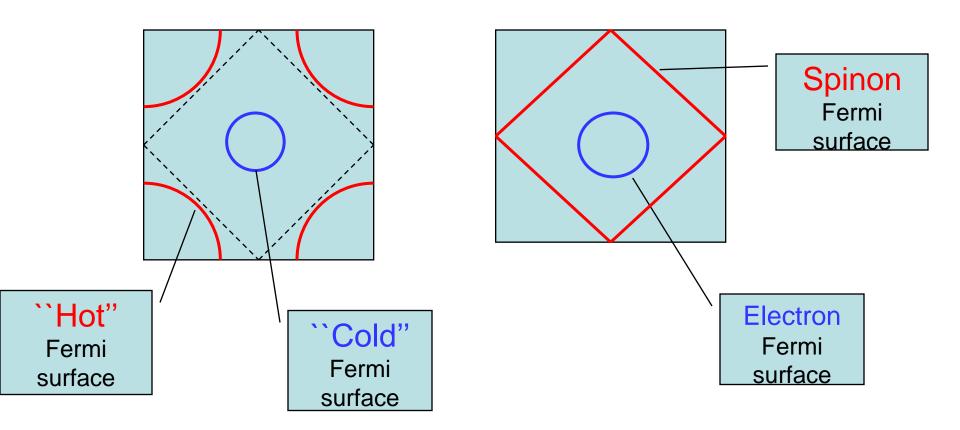
Kondo-Heisenberg model

$$H = -t \sum_{< rr'>} c_r^+ c_{r'}^- - \mu \sum_r c_r^+ c_r^- + J_K \sum_r \vec{S}_r . c_r^+ \frac{\vec{\sigma}}{2} c_r^- + J_H \sum_{< rr'>} \vec{S}_r . \vec{S}_{r'}^-$$

$$\vec{S}_r = f_r^+ \frac{\vec{\sigma}}{2} f_r \text{ with } f_r^+ f_r = 1.$$

Decouple Kondo with $b \sim c^{\dagger} f$; Heisenberg with $\chi \sim f^{\dagger}_{r} f_{r'}$

Treat b and χ in mean field.


Direct fermi volume changing transition

- Condensation of hybridization amplitude b drives direct Fermi volume changing transition.
- Transition can be second order despite jump in fermi surface volume! (Z goes to zero).
- Critical point is clearly a non fermi liquid.

Mean field fermi surface evolution

Fermi liquid

Fractionalized fermi liquid

At transition $Z \sim b^2 \rightarrow 0$ on hot Fermi surface.

Fluctuations

FL*: spinons coupled to gapless U(1) gauge field+

Near critical point: (slave) bosons and spinons coupled to a gapless U(1) gauge field

Transition driven by condensation of slave boson.

```
Non-fermi liquid critical point:
Eg: Specific heat C \approx T \ln T (d = 3), T^{2/3} (d = 2),
singular ^2 2k_f' spin susceptibility along lines in k-space (d = 2),
conductivity \approx \ln(1/T),.....
```

(Similar to gauge theories of optimally doped cuprates but bosons are at fixed chemical potential rather than fixed density).

+other possibilites such as a Z₂ gauge field also exist.

How to get magnetism?

- Gauge field can confine spinons leading to magnetic long range order (particularly in d = 2) – low energy instability of FL* to local moment magnetic metal.
- Interesting possibility: confinement effective only in FL* phase but not at critical point
- ⇒ Direct second order transition between heavy Fermi liquid and local moment magnetic metal but with interesting `deconfined' critical point described in terms of spinons and gauge fields.

How to get magnetism?

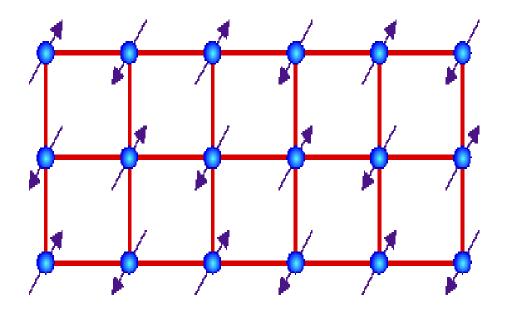
- Gauge field can confine spinons leading to magnetic long range order (particularly in d = 2)
- Interesting possibility: confinement effective only in FL* phase but not at critical point
- ⇒ Direct second order transition between heavy Fermi liquid and local moment magnetic metal but with interesting `deconfined' critical point described in terms of spinons and gauge fields.

Admittedly speculative but.....

Evidence from a simpler context – insulating quantum magnets

- Highlights: Clear demonstration of such theoretical phenomena at (certain) quantum transitions
- Emergence of `fractional' charge and gauge fields near quantum critical points between two <u>CONVENTIONAL</u> phases.
- ``Deconfined quantum criticality'' (made more precise later).
- Many lessons for competing order physics in correlated electron systems.

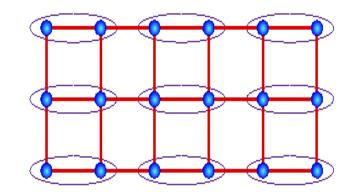
Phase transitions in quantum magnetism


$$H = J \sum_{\langle rr' \rangle} \vec{S}_r \cdot \vec{S}_{r'} + \dots$$

- Spin-1/2 quantum antiferromagnets on a square lattice.
- ``.....' represent frustrating interactions that can be tuned to drive phase transitions.

(Eg: Next near neighbour exchange, ring exchange,.....).

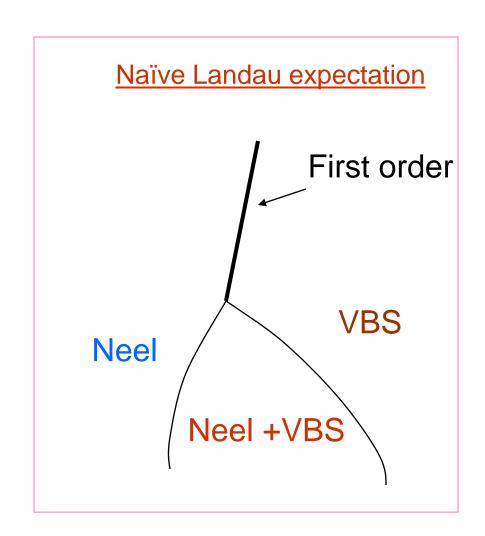
Possible quantum phases


Neel ordered state

Possible quantum phases (contd)

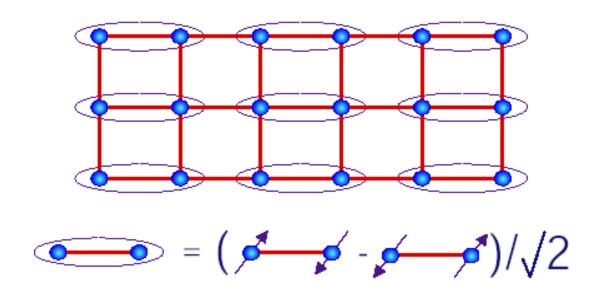
QUANTUM PARAMAGNETS

- Simplest: Valence bond solids.
- Ordered pattern of valence bonds breaks lattice translation symmetry.
- Elementary spinful excitations have
 S = 1 above spin gap.

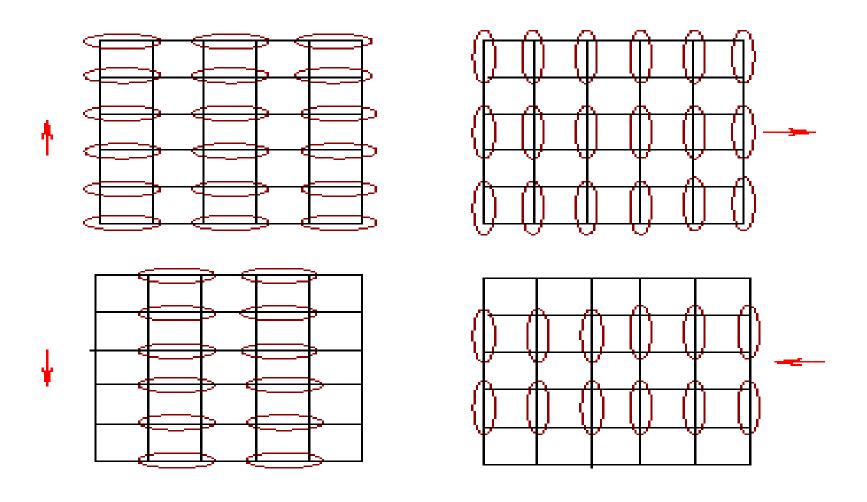


$$= (/ - / - /) / \sqrt{2}$$

Neel-valence bond solid(VBS) transition


- Neel: Broken spin symmetry
- VBS: Broken lattice symmetry.
- Landau Two independent order parameters.
- no generic direct second order transition.
- either first order or phase coexistence.

This talk: Direct second order transition but with description not in terms of natural order parameter fields.



Broken symmetry in the valence bond solid(VBS) phase

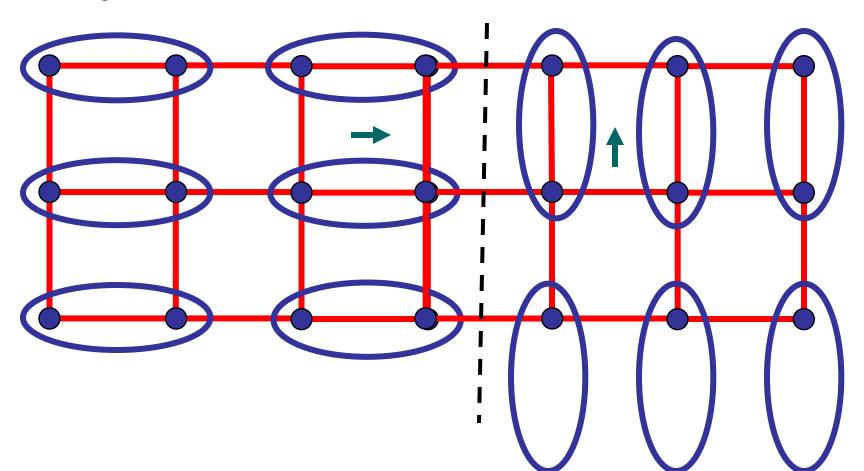
Valence bond solid with spin gap.

Discrete Z₄ order parameter

Neel-Valence Bond Solid transition

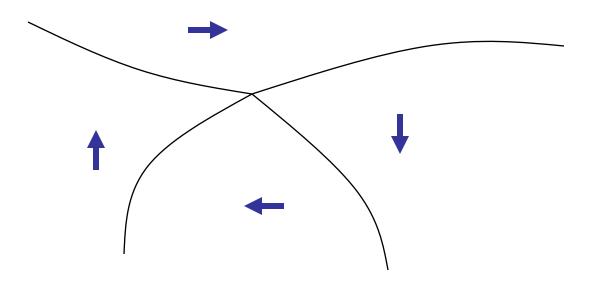
Naïve approaches fail

Attack from Neel \neq Usual O(3) transition in D = 3 Attack from VBS \neq Usual Z₄ transition in D = 3 (= XY universality class).


Why do these fail?

Topological defects carry non-trivial quantum numbers!

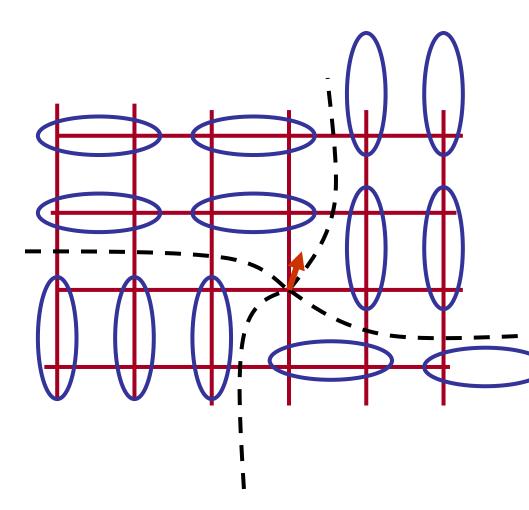
This talk: attack from VBS (Levin, TS, cond-mat/0405702)


Topological defects in Z₄ order parameter

 Domain walls – elementary wall has π/2 shift of clock angle

Z₄ domain walls and vortices

- Walls can be oriented; four such walls can end at point.
- End-points are Z₄ vortices.



Z₄ vortices in VBS phase

Vortex core has an unpaired spin-1/2 moment!!

Z₄ vortices are ``spinons".

Domain wall energy confines them in VBS phase.

Disordering VBS order

 If Z₄ vortices proliferate and condense, cannot sustain VBS order.

Vortices carry spin =>develop Neel order

Z₄ disordering transition to Neel state

• As for usual (quantum) Z₄ transition, expect clock anisotropy is irrelevant.

(confirm in various limits).

Critical theory: (Quantum) XY but with vortices that carry physical spin-1/2 (= spinons).

Alternate (dual) view

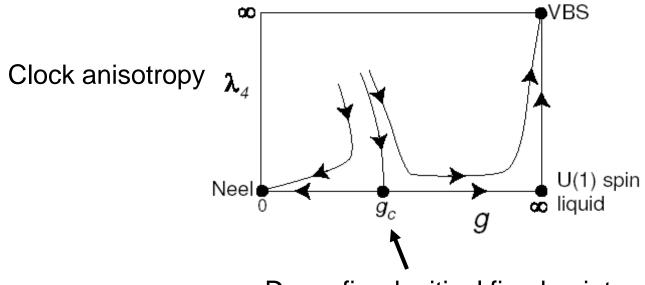
Duality for usual XY model (Dasgupta-Halperin)
 Phase mode - ``photon''

Vortices – gauge charges coupled to photon.

Neel-VBS transition: Vortices are spinons

=> Critical spinons minimally coupled to fluctuating U(1) gauge field*.

^{*}non-compact

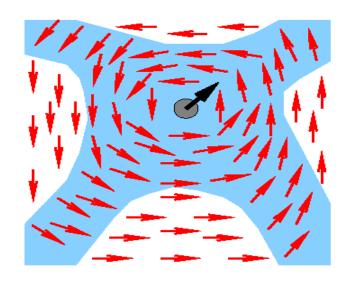

Proposed critical theory "Non-compact CP₁ model"

$$S = \int d^2x d\tau |(\partial_{\mu} - ia_{\mu})z|^2 + r|z|^2 + u|z|^4$$
$$+ (\varepsilon_{\mu\nu\lambda}\partial_{\nu}a_{\lambda})^2$$

z = two-component spin-1/2 spinon field $a_{\mu} =$ non-compact U(1) gauge field. <u>Distinct</u> from usual O(3) or Z_4 critical theories.

Theory not in terms of usual order parameter fields but involve spinons and gauge fields.

Renormalization group flows



Deconfined critical fixed point

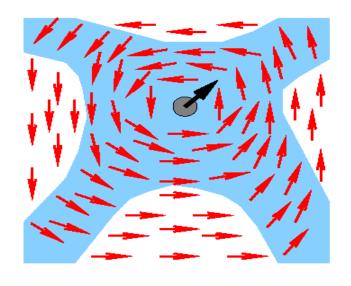
Clock anisotropy is ``dangerously irrelevant".

Precise meaning of deconfinement

- Z₄ symmetry gets enlarged to XY
- ⇒ Domain walls get very thick and very cheap near the transition.
- => Domain wall energy not effective in confining Z₄ vortices (= spinons)

Formal: Extra global U(1) symmetry not present in microscopic model :

Two diverging length scales in paramagnet



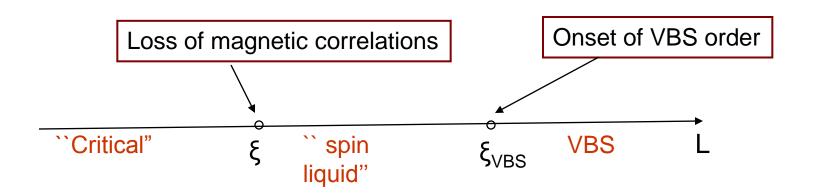
ξ: spin correlation length

 ξ_{VBS} : Domain wall thickness.

 $\xi_{VBS} \sim \xi^{\kappa}$ diverges faster than ξ

Spinons confined in either phase but `confinement scale' diverges at transition.

Other examples


 Similar phenomena at other quantum transitions of spin-1/2 moments in d = 2

(VBS-spin liquid, VBS-VBS, Neel – spin liquid, ...)

Apparently fairly common

Some lessons-I

Separation between the two competing orders not as a function of tuning parameter but as a function of (length or time) scale (exactly as suggested near heavy fermion critical point)

Some lessons-II

 Striking ``non-fermi liquid'' (morally) physics at critical point between two competing orders.

Eg: At Neel-VBS, magnon spectral function is anamolously broad (roughly due to decay into spinons) as compared to usual critical points.

Most important lesson:

Failure of Landau paradigm – order parameter fluctuations do not capture true critical physics.

Caricature of phenomena suggested near heavy fermion critical points.

Experiments: Are there really two distinct time/length scales at heavy fermion critical points?