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Plan of talk

Part 1. Theory of a continuous Mott metal-insulator transition in d = 2.

Evolution from Fermi liquid to quantum spin liquid insulator:
Predictions for transport experiments

Part 2. Metal-insulator transitions in doped semiconductors (Si:P, Si:B).

New questions/insights inspired by quantum spin liquid theory/experiments. 
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The electronic Mott transition

Difficult old problem in quantum many body physics

How does a metal evolve into a Mott insulator?

Prototype: One band Hubbard model at half-filling on non-bipartite lattice

t/U
Fermi liquid;

Full fermi surface 
AF insulator;

No Fermi surface

?????
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Why hard?

1. No order parameter for the metal-insulator transition

2. Need to deal with gapless Fermi surface on metallic side

3. Complicated interplay between metal-insulator transition and 
magnetic phase transition

Typically in most materials the Mott transition is first order. 

But (at least on frustrated lattices) transition is sometimes only weakly first order
- fluctuation effects visible in approach to Mott insulator from metal. 
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Quantum spin liquid Mott insulators: 

Opportunity for progress on the Mott transition - 
study metal-insulator transition without complications of magnetism. 
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ZnCu3(OH)6Cl2

Some candidate spin liquid materials

2d Kagome lattice (`strong’ Mott insulator)

�� (ET )2Cu2(CN)3

Na4Ir3O8

EtMe3Sb[Pd(dmit)2]2

Quasi-2d, approximately isotropic triangular lattice; best 
studied candidate spin liquids

Three dimensional `hyperkagome’ lattice

Volborthtite, ..........
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ZnCu3(OH)6Cl2

Some candidate materials

2d Kagome lattice (`strong’ Mott insulator)

�� (ET )2Cu2(CN)3

Na4Ir3O8

EtMe3Sb[Pd(dmit)2]2

Quasi-2d, approximately isotropic triangular lattice; best 
studied candidate spin liquids

Three dimensional `hyperkagome’ lattice

Close to pressure driven Mott 
transition: `weak’ Mott insulators

Volborthtite, ..........

Friday, June 6, 14



Some phenomena in experiments

8

ALL candidate quantum spin liquid materials:

Gapless excitations down to T << J. 

Most extensively studied in organic spin liquids with J ≈ 250 K. 

exponential decay of the NMR relaxation indicates
inhomogeneous distributions of spin excitations
(22), which may obscure the intrinsic properties
of the QSL. A phase transition possibly associated
with the charge degree of freedom at ~6 K further
complicates the situation (23). Meanwhile, in
EtMe3Sb[Pd(dmit)2]2 (dmit-131) such a transi-
tion is likely to be absent, and a muchmore homo-
geneous QSL state is attained at low temperatures
(4, 5). As a further merit, dmit-131 (Fig. 1B) has
a cousinmaterial Et2Me2Sb[Pd(dmit)2]2 (dmit-221)
with a similar crystal structure (Fig. 1C), which
exhibits a nonmagnetic charge-ordered state with
a large excitation gap below 70 K (24). A com-
parison between these two related materials will
therefore offer us the opportunity to single out
genuine features of the QSL state believed to be
realized in dmit-131.

Measuring thermal transport is highly advan-
tageous for probing the low-lying elementary
excitations in QSLs, because it is free from the
nuclear Schottky contribution that plagues the
heat capacity measurements at low temperatures
(21). Moreover, it is sensitive exclusively to itin-
erant spin excitations that carry entropy, which
provides important information on the nature of the

spin correlation and spin-mediated heat transport.
Indeed, highly unusual transport properties includ-
ing the ballistic energy propagation have been re-
ported in a 1D spin-1/2 Heisenberg system (25).

The temperature dependence of the thermal
conductivity kxx divided by Tof a dmit-131 single
crystal displays a steep increase followed by a
rapid decrease after showing a pronounced maxi-
mum at Tg ~ 1 K (Fig. 2A). The heat is carried
primarily by phonons (kxx

ph) and spin-mediated
contributions (kxx

spin). The phonon contribution
can be estimated from the data of the nonmagnetic
state in a dmit-221 crystal with similar dimensions,
which should have a negligibly small kxx

spin. In
dmit-221, kxx

ph/T exhibits a broad peak at around
1 K, which appears when the phonon conduction
grows rapidly and is limited by the sample bound-
aries. On the other hand, kxx/Tof dmit-131, which
well exceeds kxx

ph/T of dmit-221, indicates a sub-
stantial contribution of spin-mediated heat con-
duction below 10K. This observation is reinforced
by the large magnetic field dependence of kxx of
dmit-131, as discussed below (Fig. 3A). Figure
2B shows a peak in the kxx versus T plot for dmit-
131, which is absent in dmit-221. We therefore
conclude that kxx

spin and kxx
spin/T in dmit-131 have

a peak structure at Tg ~ 1 K, which characterizes
the excitation spectrum.

The low-energy excitation spectrum can be
inferred from the thermal conductivity in the low-
temperature regime. In dmit-131, kxx/T at low
temperatures is well fitted by kxx/T= k00/T + bT2

(Fig. 2C), where b is a constant. The presence of a
residual value in kxx/T at T→0 K, k00/T, is clearly
resolved. The distinct presence of a nonzero k00/T
term is also confirmed by plotting kxx/T versus T
(Fig. 2D). In sharp contrast, in dmit-221, a corre-
sponding residual k00/T is absent and only a pho-
non contribution is observed (26). The residual
thermal conductivity in the zero-temperature limit
immediately implies that the excitation from the
ground state is gapless, and the associated correla-
tion function has a long-range algebraic (power-law)
dependence. We note that the temperature depen-
dence of kxx/T in dmit-131 is markedly different
from that in k-(BEDT-TTF)2Cu2(CN)3, in which
the exponential behavior of kxx/Tassociated with
the formation of excitation gap is observed (18).

Key information on the nature of elementary
excitations is further provided by the field depen-
dence of kxx. Because it is expected that kxx

ph is
hardly influenced by the magnetic field, particu-
larly at very low temperatures, the field depen-
dence is governed by kxx

spin(H) (26). The obtained
H-dependence, kxx(H), at low temperatures is
quite unusual (Fig. 3A). At the lowest temperature,
kxx(H) at low fields is insensitive toH but displays
a steep increase above a characteristic magnetic
fieldHg ~ 2 T. At higher temperatures close to Tg,
this behavior is less pronounced, and at 1K kxx(H)
increases with H nearly linearly. The observed
field dependence implies that some spin-gap–like
excitations are also present at low temperatures,
along with the gapless excitations inferred from
the residual k00/T. The energy scale of the gap is
characterized by mBHg, which is comparable to
kBTg. Thus, it is natural to associate the observed
zero-field peak in kxx(T)/Tat Tgwith the excitation
gap formation.

Next we examined a dynamical aspect of the
spin-mediated heat transport. An important ques-
tion is whether the observed energy transfer via
elementary excitations is diffusive or ballistic. In
the 1D spin-1/2 Heisenberg system, the ballistic
energy propagation occurs as a result of the con-
servation of energy current (25). Assuming the
kinetic approximation, the thermal conductivity
is written as kxx

spin = Csvs‘s /3, where Cs is the spe-
cific heat, vs is the velocity, and ‘s is themean free
path of the quasiparticles responsible for the ele-
mentary excitations. We tried to estimate ‘s sim-
ply by assuming that the linear term in the thermal
conductivity arises from the fermionic excitations,
in analogy with excitations near the Fermi surface
in metals. The residual term is written as k00/T ~
(kB

2/daħ)‘s, where d (~3 nm) and a (~1 nm) are
interlayer and nearest-neighbor spin distance. We
assumed the linear energy dispersion e(k)= ħvsk,
a 2D density of states and a Fermi energy com-
parable to J (26). From the observed k00/T, we
find that ‘s reaches as long as ~1 mm, indicating
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Fig. 2. The temperature dependence of kxx(T)/T (A) and kxx(T) (B) of dmit-131 (pink) and dmit-221
(green) below 10 K in zero field [kxx(T) is the thermal conductivity]. A clear peak in kxx/T is observed in
dmit-131 at Tg ~ 1 K, which is also seen as a hump in kxx. Lower temperature plot of kxx(T)/T as a function
of T2 (C) and T (D) of dmit-131, dmit-221, and k-(BEDT-TTF)2Cu2(CN)3 (black) (18). A clear residual of
kxx(T)/T is resolved in dmit-131 in the zero-temperature limit.

Fig. 3. (A) Field dependence of
thermal conductivity normalized
by the zero field value, [kxx(H) –
kxx(0)]/kxx(0) of dmit-131 at low
temperatures. (Inset) The heat cur-
rent Q was applied within the 2D
plane, and the magnetic field H was
perpendicular to the plane. kxx and
kxy were determined by diagonal
and off-diagonal temperature gra-
dients, DTx and DTy, respectively.
(B) Thermal-Hall angle tanq(H) =
kxy/(kxx – kxxph)as a function ofH at
0.23 K (blue), 0.70 K (green), and
1.0 K (red).
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Example: Thermal transport in dmit SL. 

Electrical Mott insulator but thermal 
metal!
 

M. Yamashita 
et al, Science 
2010.
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Possible experimental realization of a second 
order(?) Mott transition
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Quantum spin liquids and the Mott transition

10

Some questions:

1. Can the Mott transition be continuous at T = 0? 

2. Fate of the electronic Fermi surface? 

t/U

Fermi liquid;
Full fermi surface 

Spin liquid insulator;
No Fermi surface

?????
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Killing the Fermi surface

t/U

Fermi liquid;
Full fermi surface 

Spin liquid insulator;
No Fermi surface

?????

At half-filling, through out metallic phase, 
Luttinger theorem => size of Fermi surface is fixed. 

Approach to Mott insulator: entire Fermi surface must 
die while maintaining size (cannot shrink to zero). 

If Mott transition is second order, critical point necessarily very unusual. 

``Fermi surface on brink of disappearing” - expect non-Fermi liquid physics. 

Similar ``killing of Fermi surface” also at Kondo breakdown transition in heavy fermion metals, and 
may be also around optimal doping in cuprates. 
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How can a Fermi surface die continuously?

 
1. Quasiparticle weight Z vanishes 
continuously everywhere on the 
Fermi surface (Brinkman, Rice, 
1970)*

2. Fermi surface remains sharp at 
critical point: ``Critical Fermi 
surface” (TS, 2008)

Metal

Mott insulator

Mott critical point

*Concrete examples:  DMFT in infinite d (Vollhardt, Metzner, Kotliar, 
Georges 1990s), slave particle theories in d = 2, d = 3 (TS, Vojta, Sachdev 
2003, TS 2008)
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Quantum spin liquids and the Mott transition

13

Some questions:

1. Can the Mott transition be continuous at T = 0? 

2. Fate of the electronic Fermi surface? 

t/U

Fermi liquid;
Full fermi surface 

Spin liquid insulator;
No Fermi surface

?????

Only currently available theoretical framework to answer these questions is slave particle 
gauge theory. 

(Mean field: Florens, Georges 2005; 
Spin liquid phase: Motrunich, 07, S.S. Lee, P.A. Lee, 07)
 

Friday, June 6, 14



Slave particle framework

Split electron operator
c†r⇥ = b†rfr�

Fermi liquid: hbi 6= 0

Mott insulator: br gapped

Mott transition: br critical

In all three cases fr� form a Fermi surface.

Low energy e�ective theory: Couple b, f to fluctuating U(1) gauge field.
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Picture of Mott transition

15

Metal

Mott spin liquid
near metal

Electrons swimming in 
sea of +vely charged 
ions

Electron charge gets 
pinned to ionic lattice 
while spins continue to 
swim freely.
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Quantum spin liquids and the Mott transition

16

1. Can the Mott transition be continuous? 

2. Fate of the electronic Fermi surface? 

Concrete tractable theory of a continuous Mott transition; 
demonstrate critical Fermi surface at Mott transition; 

Definite predictions for many quantities (TS, 2008). 

-   Universal jump of residual resistivity on approaching from metal
-  Log divergent effective mass
-   Two diverging time/length scales near transition
-  Emergence of marginal fermi liquids
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 Finite-T crossovers: emergence of a Marginal Fermi Liquid

 

TS, 2008
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Structure of critical theory

 

Field theory for critical point

S = S[b, a] + S[f�, a]

Gauge fluctuations are Landau damped by spinon Fermi surface:

Seff [a] =

Z

q,⇥

✓
KF

|�|
|q| + ..

◆
|a(q,�)|2

=> at low energies gauge field decouples from critical b fluctuations.
E�ective critical action

Seff = S[b] + S[f, a]

S[b]: critical D = 2+1 XY model
S[f ]: spinon Fermi surface + Landau damped gauge field with zb = 2
Both individually understood.
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Non-zero temperature transport/dynamics

 

Seff [a] =

Z

q

1

�

X

�n

✓
KF

|⇤n|
|q| + ..

◆
|a(q,⇤n)|2

Static gauge fluctuations (⇤n = 0) escape Landau damping, and do not

decouple from critical bosons.

Universal transport in a large-N approximation (Witzcak-Krempa, Ghaemi,

TS, Y.B. Kim, 2012):

Gauge scattering reduces universal conductivity by factor of � 8 from 3D
XY result (Damle, Sachdev ’97).

Electronic Mott transition: Net resistivity ⇥ = ⇥b + ⇥f
Universal resistivity jump = ⇥b enhanced by factor of � 8.
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Non-zero temperature transport
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FIG. 3. Sketch of low temperature behaviour of the resistivity near the quantum critical (QC) Mott transition.
Panel c) shows the resistivity vs T for di�erent values of the onsite repulsion over the bandwidth (tuned by �),
with the corresponding cuts shown in the phase diagram in a). Panel d) shows the resistivity vs � at di�erent
temperatures, with the corresponding cuts shown in the phase diagram in b). In c) and d), the markers
correspond to the location of the resistivity jump upon entering the QC state from the FL. The value of the
jump is universal: R~/e2. Our calculations yield R = 49.8, which translates to a jump of � 8h/e2.

the SL, in which the electron is fractionalized into spin and charge carrying “partons”:

cr⇧ = ⌥⇧rbr . (4)

The fermionic spinons, ⌥⇧r, carry the spin, while the bosonic rotors, br = e�i⇤r , the charge of the
original electron. The projection from the enlarged Hilbert space to the physical one is obtained from
the operator identity relating the rotor charge or “angular momentum”, lb, to the fermion number, nf :
lb = 1� nf , which is enforced at each site, where nf = n is the actual electronic occupation number
(because |b| = 1). By virtue of Pauli exclusion, the charge relative to half-filling at each site can
only be �1 (double occupancy), +1 (hole) and 0 (single occupancy). Hence, the positive (holon) and
negative (doublon) charge excitations encoded in the rotors relate to the holes and doubly-occupied
sites of the half-filled Hubbard model, see Fig. 4. Moreover, since the system is at half-filling, there is
a low-energy particle-hole symmetry between these positive and negative charge excitations.

In the long-wavelength limit, a U(1) gauge structure emerges.3 The temporal component of the
gauge field results from the above constraint necessary to recover the physical Hilbert space, while
the spatial components derive from the fluctuations of spinon bilinears about their saddle-point con-
figuration. After coarse-graining, the low-energy e�ective action for the Hubbard model in terms of
the fractionalized degrees of freedom can be written as

S = Sb,a + Sf,a + Sa , (5)

Sb,a =
1

2g

⇧

x

�
|(⌦⌅ � ia⌅)b|2 + i⌅(|b|2 � 1)

⇥
, (6)

Sf,a =

⇧

x
⌥̄⇧

⇤
⌦⌃ � µ� ia0 +

(r� ia)2

2mf

⌅
⌥⇧ , (7)

Sa =
1

e20

⇧

x
(⇤⌅⇥�⌦⇥a�)

2 . (8)

We work in units where the rotor velocity, c, is set to one, unless otherwise specified. The complex
boson field b is constrained to lie on the unit circle via the Lagrange multiplier field ⌅. The indices
⌃, ⇥,� run over imaginary time and the two spatial dimensions; µ is the electronic chemical potential.

4

the Fermi liquid (pink/light shading), and the quantum critical state bridging the two (blue/dark
shading). The latter state is a non-FL where the Landau quasiparticle has been destroyed, yet a
sharp Fermi surface persists: an instance of a “critical Fermi surface”. In exiting the QC region, one
enters two intermediate phases: a marginal spinon liquid (MSL) or a marginal Fermi liquid (MFL).
These are similar to their low temperature counterparts, the SL and FL, except that the spinons and
gauge bosons still behave as in the QC region. As these correspond to fluctuations in the spin degrees
of freedom, the two crossovers may be interpreted as corresponding to spin and charge degrees of
freedom exiting criticality at parametrically di⇥erent temperatures. At su⇧ciently low temperature
they crossover to the usual SL and FL states. The behavior of the electric resistivity as one tunes
across the phase diagram is illustrated in Fig. 3. Panels a) and c) correspond to the T -dependent
behaviour at fixed � (i.e. pressure), and vice-versa for b) and d). The important crossovers for low
temperature transport are the boundaries of the QC region: there, the charge degree of freedom either
localizes (SL) or condenses (FL). At the former crossover the resistivity becomes thermally activated,
⇥ e�+/T , because of the finite Mott charge gap �+. This can be seen in curves 1-2 in Fig. 3(c). At
the crossover to the FL, it abruptly drops to its residual metallic value ⌅m (curves 4-5 in Fig. 3(c)).
The regime of interest for transport corresponds to the QC non-FL, where the resistivity relative to
its residual value in the metal, ⌅m, is purely universal: ⌅ � ⌅m ⇤ (~/e2)R, where R is a universal
dimensionless constant. Our controlled calculation of R in a large-N approximation gives the estimate
R = 49.8. R sets the size of the jump shown in Fig. 1, which is reproduced in Fig. 3(d), curve 1.
At finite temperature, this jump becomes a steep increase, as shown in curves 2-3 of Fig. 3(d). We
emphasize that the low temperature resistivity above the QCP, � = 0, is T -independent and takes the
value ⌅ = ⌅m + (~/e2)R.

The diverse behavior shown in Fig. 3 can be obtained from a single-variable function. Indeed, the
temperature and pressure dependent resistivity (relative to its constant residual value in the FL) can
be collapsed by a universal scaling function G associated with the Mott QCP:

⌅� ⌅m =
~
e2

G

�
�z�

T

⇥
, (2)

where the dynamical and correlation length exponents correspond to those of the 3D XY universality
class: z = 1 and ⇤ ⇤ 0.672. Indeed, the critical charge degrees of freedom can be e⇥ectively described
by a Bose-Hubbard model at half-filling near its insulator-superfluid transition, which belongs to that
universality class. We show that although the spin fluctuations encoded in the emergent gauge field
associated with the electron fractionalization do not alter these exponents, they have strong e⇥ects
on the scaling function, and thus on the value of the universal jump, (~/e2)R.

We predict that thermal transport also shows signatures of the critical Fermi surface. In particular,
the thermal conductivity divided by temperature, ⇥/T , has a universal jump at criticality, by an
amount (k2B/~)K, where K is a dimensionless number just like R. As we explain in section VII, the
emergent gauge fluctuations play an important role by breaking the conformal invariance present in
their absence, thus reducing ⇥/T from a formally infinite value to a finite, universal one. Finally,
combining the electric resistivity and thermal conductivity jumps, we predict that the QC non-FL
violates the Wiedemann-Franz law by a universal amount: the Lorentz number di⇥ers from its usual
value in the FL by (kB/e)2RK, as shown in Fig. 1.

III. MOTT TRANSITION IN THE HUBBARD MODEL: A SLAVE-ROTOR
FORMULATION

To set the stage we briefly review the description of the insulating quantum spin liquid with a spinon
Fermi surface,3 and the continuous bandwidth-tuned Mott transition5 to it from a Fermi liquid. We
consider a single-band Hubbard model at half-filling on a 2D non-bipartite lattice (for e.g. triangular):

H = �t
⇤

�rr�⇥

(c†⇥rc⇥r� + h.c.) + U
⇤

r

(nr � 1)2, (3)

where c⇥r annihilates an electron with spin ⇧ at site r, and nr = c†⇥rc⇥r. In the small U/t limit,
the ground state is a Fermi liquid metal, while in the opposite limit a Mott insulator results. The
interplay of frustration and strong charge fluctuations can lead to a quantum spin liquid ground state
instead of a conventional antiferromagnetic Mott insulator. We shall focus on the transition to such
a state.

The slave-rotor construction2 is tailor-made to describe the spin-charge separation that occurs as
the charge localizes when the electronic repulsion becomes su⇧ciently large, yet weak enough for the
spins to remain disordered, even at T = 0. At the level of the microscopic Hubbard model, Eq. (3),
the slave-rotor construction is a change of variables to degrees of freedom better suited to describe

z = 1, � ⇡ 0.672

Witczak-Krempa,
Ghaemi, TS, Kim, 

2012
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Eg: Si:P, Si:B

Subject of many studies over last 3 decades.

``Anderson-Mott” transition

Is there a quantum spin liquid?
(Potter, Barkeshli, McGreevy, TS, PRL 2012)

 

Part 2: Metal-insulator transitions in doped 
semiconductors
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Basic picture for Si:P (Si:B, etc)

Extra electron of P
forms a hydrogen-like 
state.  

aB ⇡ 20A

Simple model: Randomly placed ``Hydrogen atoms”. 
Half-filled Hubbard model on random lattice. 
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Increase P concentration to get metal
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Local moments in insulator: Random 
singlets

Each local moment forms a singlet bond with a fixed 
partner. 

Broad distribution of singlet bond energies. 

Anomalous low-T thermodynamics: diverging spin 
susceptibility, C/T (dominated by rare weakly coupled spin 
pairs). 

 

Bhatt, Lee, 1982
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Metallic phase: persistence of some 
local moments

Near transition, some rare fraction of sites retain local moments 
which then dominate low-T thermodynamics. 

Picture: 
Hubbard-U 
on localized 
states 
produces 
local 
moments. 
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Two fluid phenomenology of metal

Itinerant electron fluid
coexisting with small fraction 
of local moments.  

Near transition, fraction of 
local moment sites about 15%. 

Thermodynamics: independent 
contribution from both fluids. 

Paalanen et al, 1988;  Gan, Lee, 86;  
Milovanovic, Sachdev, Bhatt, 1989;

Bhatt, Fisher, 1992
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Evolution across Metal-Insulator Transition (MIT)

What is fate of conducting fluid?

Three possibilities: 

1. ``Conventional wisdom”
Itinerant electrons -------> Anderson insulator

2. Fraction of sites with local moments increases to approach 1 
at MIT (generically unlikely). 

3. New possibility: Conducting fluid Mott localizes into a 
quantum spin liquid with diffusive spinons (Potter, Barkeshli, 
McGreevy, TS, 2012)
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Possible route to metal-insulator 
transition

n

Diffusive electron 
metal + local moments

Diffusive spinon 
metal + local moments

nc1nc2

Anderson-Mott insulator
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Some consequences-I

Diffusive spinon metal is electrical insulator but a thermal 
conductor. 
=> electrical metal-insulator transition separated 
from thermal metal-insulator transition. 

n

Diffusive electron 
metal + local moments

Diffusive spinon 
metal + local moments

nc1nc2

Anderson-Mott insulator

Electrical/thermal metalElectrical insulator
-thermal metal
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Some consequences-I
Diffusive spinon metal is electrical insulator but a thermal conductor. 
=> electrical metal-insulator transition separated 
from thermal metal-insulator transition. 

n

Diffusive electron 
metal + local moments

Diffusive spinon 
metal + local moments

nc1nc2

Anderson-Mott insulator

Electrical/thermal metalElectrical insulator
-thermal metal

Electrical MITThermal MIT

Crucial test: measure thermal transport in insulator. 
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Some consequences -II
Existence of diffusive spinon metal will impact critical 
behavior of electrical conductivity near electrical MIT. 

Jump of residual conductivity at MIT; non-monotonic T-
dependence. 

κ/TL L: Lorentz number

n
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Some consequences -II
Existence of diffusive spinon metal will impact critical 
behavior of electrical conductivity near electrical MIT. 

Jump of residual conductivity at MIT; non-monotonic T-
dependence. 

κ/TL
= σ

L: Lorentz number

n
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Some consequences -II
Existence of diffusive spinon metal will impact critical 
behavior of electrical conductivity near electrical MIT. 

Jump of residual conductivity at MIT; non-monotonic T-
dependence. 

κ/TL
= σ

L: Lorentz number

Thermal rounding of jump; complicates extrapolation to T=0 
conductivity. 

n
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Summary

34

 
Quantum spin liquids provide an opportunity for progress on classic old problems: 
Mott and Anderson-Mott metal-insulator transitions. 

Clean limit (organics, hyperkagome iridate): 
Continuous Mott transition possible; several predictions for experiment (eg: 
universal resistivity jump in d = 2, resistivity peak in d = 3)

Disordered limit (doped semiconductors Si:P, Si:B): 
Do electrical and thermal metal-insulator transitions occur simultaneously? 
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