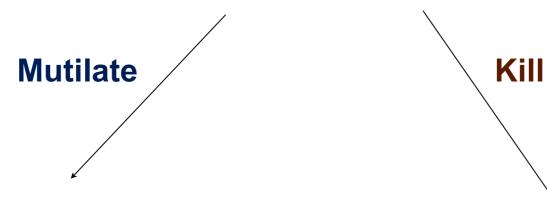


T. Senthil (MIT)

Some collaborators: Chong Wang, R. Nandkishore, M. Metlitski, A. Vishwanath

A common phase diagram

NFL due to quantum criticality?


Approach from Fermi liquid

Crucial: Fate of Fermi surface as a Fermi liquid metal undergoes a quantum phase transition?

Approach from Fermi liquid

Crucial: Fate of Fermi surface as a Fermi liquid metal undergoes a quantum phase transition?

Fermi surface evolves continuously but is distorted in some way. (Ferromagnet, nematic, SDW, CDW,.....)

Original Fermi surface completely disappears. (Mott transition, Kondo breakdown,....)

Approach from Fermi liquid

Crucial: Fate of Fermi surface as a Fermi liquid metal undergoes a quantum phase transition?

Mutilate

Fermi surface evolves continuously but is distorted in some way. (Ferromagnet, nematic, SDW, CDW,.....)

Many talks at this meeting!

Kill

Original Fermi surface completely disappears. (Mott transition, Kondo breakdown,....)

Mutilate the Fermi surface

Model: Electron Fermi surface + X

X = critical order parameter fluctuations

Criticality and non-Fermi liquids at ``low" energy scales?

Killing a Fermi surface

Expect

- strong NFL physics near transition
- change of electronic structure happens on electronic energy scales
- theory not described as electron Fermi surface + X

How does a Fermi surface die?

Fascinating question fundamental to many issues

1. Quasiparticle residue Z vanishes continuously on approaching transition. (Brinkman, Rice 1970).

Concrete examples: (d = 2,3) TS, Vojta, Sachdev 2004, TS, 2008, Nandkishore, Metlitski, TS (2012); DMFT in d = ∞

2. Fermi surface stays sharp at QCP even though there is no Landau quasiparticle (TS, 2008).

"Critical Fermi Surface"

Concrete examples: (d = 2) TS, 2008, Nandkishore, Metlitski, TS (2012).

Other related problems: Non-fermi liquid *phases*, some (gapless) quantum spin liquids..... Goal: Construct tractable, emergable effective field theories of these phenomena (Emergable: capable of emerging from microscopic lattice models in the `right' physical Hilbert space with the right symmetries.)

A powerful approach

Slave particles (partons): Fractionalize spin/electron into partons which are then gapless.

Effective theory: Gapless partons + dynamical gauge fields.

An example Orthogonal Metals: The simplest non-fermi liquids

Nandkishore, Metlitski, TS, 12

'Slave spin' representation:

$$c_{i\alpha} = \tau_i^x f_{i\alpha}$$

 τ_i^x : Ising spin; $f_{i\alpha}$: charge-1, spin-1/2 fermion.

 Z_2 gauge redundancy

$$\tau_i^x \to -\tau_i^x$$

$$f_{i\alpha} \to -f_{i\alpha}$$

Phase where $\langle \tau_i^x \rangle = 0$, the $f_{i\alpha}$ form a Fermi surface, and Z_2 gauge field is deconfined:

Electron spectral function gapped (Z = 0) but still a metal: ``Orthogonal metal'' Charge carriers have no overlap with electrons.

(Prior literature: Mis-interpreted as Mott insulator)

Comments

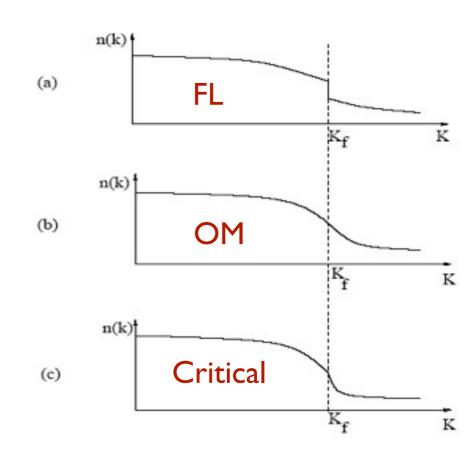
- 1. Relation to usual slave bosons/rotors: $c_{i\alpha} = b_i f_{i\alpha}$ Condense $\langle b_i^2 \rangle \neq 0$ with $\langle b_i \rangle = 0$.
- 2. OM Wavefunction

$$\psi(\vec{r}_i\alpha_i) = \psi_{PSF}(\vec{r}_i)\psi_{Slater}(\vec{r}_i\alpha_i)$$

 ψ_{PSF} : wave function of paired boson superfluid $(\propto \mathcal{S}[g(\vec{r}_1 - \vec{r}_2)g(\vec{r}_3 - \vec{r}_4)....g(\vec{r}_{N-1} - \vec{r}_N)]).$

- 3. OM phase can exist at any density or even in continuum.
- 4. Exactly soluble lattice models easy to write down.

`Death' of a Fermi surface: FL- Orthogonal Metal transition

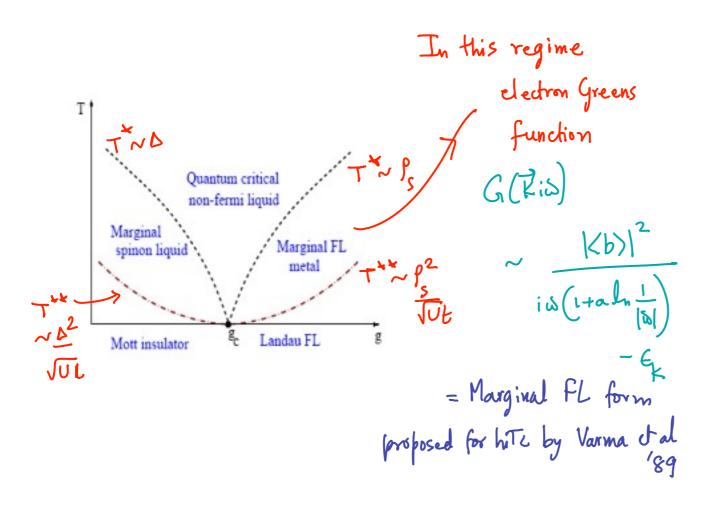

Approach from FL: electron Fermi surface dies.

Slave spin disordering transition

Critical theory: Critical slave spin + f-Fermi surface with energy-energy coupling. (Second order in some situations).

Critical electron Fermi surface: exponents exactly determined by Ising exponents.

$$A(\vec{q},\omega) \sim \omega^{d-2+\eta} g\left(\frac{\omega}{v_f q_\perp}\right)$$



Critical theory \neq electron Fermi surface + X

Similar story: Theory of continuous Mott transitions

Mott metal-insulator transition can be continuous in d = 2 or d = 3 if insulator is spin liquid.

Slave mean field: Florens, Georges 04; Fluctuations, field theory: TS 08; Numerics: Motrunich, Fisher, et al 14.

Many interesting properties:

Eg:Two crossovers

Emergence from criticality # Fermi liquid coherence

Comments on slave particle framework

- 1. Conceptually important construction of effective field theories of a class of quantum phases/phase transitions that are beyond standard quasiparticles
- 2. Slave particle effective field theories are emergable, and often tractable.

Theoretical demonstration of many unusual phenomena; some successful contact with experiments (eg, FQHE, 1/2-filled Landau level, some quantum spin liquids)

Essentially only available framework for field theory 'beyond quasiparticles'.

Beyond (standard) slave particles?

Are there gapless quantum liquids that cannot be understood (easily) within the slave particle framework?

Yes!

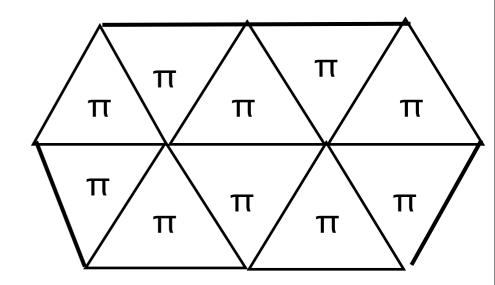
Two examples in quantum spin/bose liquids

(i) Quantum vortex liquid phases of quantum XY magnets/frustrated boson systems

Chong Wang, TS to appear.

- (ii) Quantum liquid of fluctuating spiral magnetic orders (inspired by MnSi).
- A. Vishwanath, TS, to appear.

Example-I: Gapless quantum vortex liquids


d = 2 XY spin-S triangular lattice quantum antiferromagnet = bosons with frustrated hopping.

Duality: Vortices at 1/2 filling on honeycomb lattice.

Interesting early attempt: (Fisher et al)

Fermionize vortices through flux attachment and let then form a gapless fluid (``Algebraic Vortex Liquid'')

Flaw (Wang, TS 13): With time reversal, this state cannot exist in strict d = 2 (but can exist at boundary of a 3d ``SPT" state)

Fractionalizing vortices

Chong Wang, TS 14; also Hermele 10

Dual theory:

$$\mathcal{L} = \mathcal{L}[\Phi_v, a_\mu]$$

 Φ_v : vortex field on honeycomb lattice

 a_{μ} : non-compact U(1) gauge field.

Dual partons:

$$\Phi_v = d_1 d_2$$

 $d_{1,2}$: Fermionic 1/2-vortices.

Dual parton field theory:

Put d in various 'mean field' states; analyze fluctuations.

Fractionalized vortex liquids

Dual parton mean field:

Can arrange to break all gauge structure associated with fractionalizing Φ_v .

d-fermions gapped: Paired superfluid (spin nematic) of original bosons (spins).

Dirac nodes for d-fermions => new gapless spin liquid phase. Effective theory:

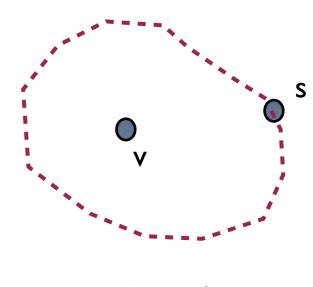
$$\mathcal{L} = \bar{d} \left(\gamma_{\mu} (i\partial_{\mu} - a_{\mu}) d + \frac{1}{g} f_{\mu\nu}^{2} \right)$$

Dual massless non-compact QED_3 .

Power law correlations for many quantities.

Physical picture

Excitations of paired boson superfluid:


- I. Gapless sound waves
- 2. Gapped neutralized unpaired boson s
- 3. Gapped 1/2-vortices v

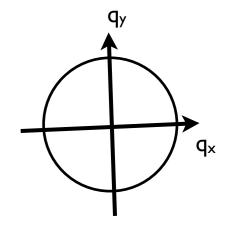
s and v are mutual semions.

s-v bound state is a fermionic vortex.

Proliferate to get a gapless fractionalized vortex liquid.

Beyond (standard) slave particles: in terms of original bosons, short distance physics is that of pairing, not fractionalization.

Phase of π


Example-II: Bose Luttinger Liquid in d > I

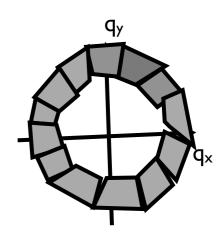
Some situations in which bosonic degree of freedom has dispersion minima along surfaces in momentum space:

Eg: Incipient spiral magnetic order (eg MnSi), bosons with Rashba coupling,......

Model action

$$S = \int_{\vec{q},\omega} (\omega^2 + (q^2 - q_0^2)^2 + r) |b(\vec{q},\omega)|^2 + S_{int}$$

Usually interactions will spontaneously pick out some q-vectors for ordering.


This talk: a fluctuating quantum liquid state without any ordering by 'bosonizing' the bosons.

Patch construction

Divide vicinity of Bose surface into discrete patches

Bose field

$$b(\vec{r},\tau) = \frac{1}{\sqrt{N}} \sum_{S} b_{S}(\vec{r},\tau) e^{i\vec{q}_{S}.\vec{r}}$$

Amplitude-phase representation

$$b_S = b_0 e^{i\phi_S}$$

Strategy:

- 1. Assume initially b_0 is uniform on Bose surface but ϕ_S may fluctuate.
- 2. Study "phase-only" theory of ϕ_S
- 3. Worry about vortices
- 4. Take patch continuum limit, thermodynamic limit.

Phase-only theory on Bose surface

First also ignore inter-patch coupling.

Quadratic action:

$$\mathbf{L}_{\phi}^{(0)} = \frac{1}{N} \sum_{S=1}^{N} \rho_S \left\{ (\partial_{\tau} \phi_S)^2 + (\vec{v}_S \cdot \vec{\nabla} \phi_S)^2 \right\}$$

I+I-d XY field for each patch:

Boson has power law correlations centered at Bose surface with continuously varying exponent.

$$\langle \bar{b}_S(\vec{q},i\omega)b_S(\vec{q},i\omega)\rangle \sim \frac{1}{\left(v^2q_\perp^2+\omega^2\right)^{1-\frac{\eta}{2}}} \qquad \text{``Bose Luttinger Liquid''}$$

Stability

Interpatch interactions: As in Fermi Liquid Theory, only `forward' scattering and `BCS' interactions survive.

"BCS": Irrelevant by power counting if $\eta > 1$.

"Forward" scattering: Couple together density and currents of XY fields at different patches.

Landau interactions with same qualitative effects as in Fermi Liquid

(similar renormalizations, collective zero sound modes, etc).

Vortices: Only legitimate vortex is in I = 0 phase mode.

This can be suppressed => Bose Luttinger Liquid exists as stable phase of matter.

Summary

I. Slave particle framework: effective field theories which concretely demonstrate many interesting phases/phase transitions beyond quasiparticles.

2. There are interesting states beyond slave particles.