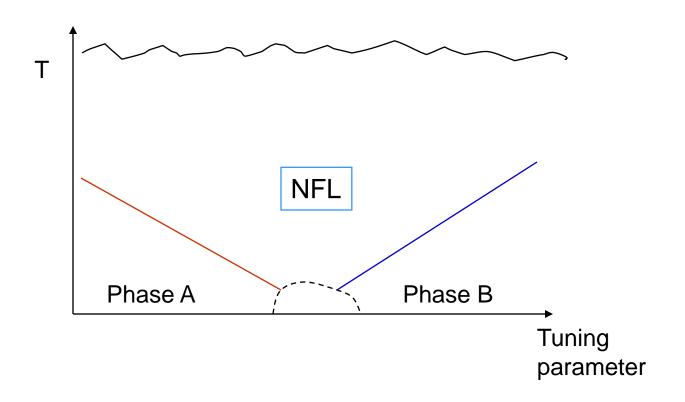
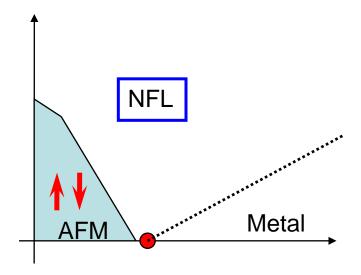
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm

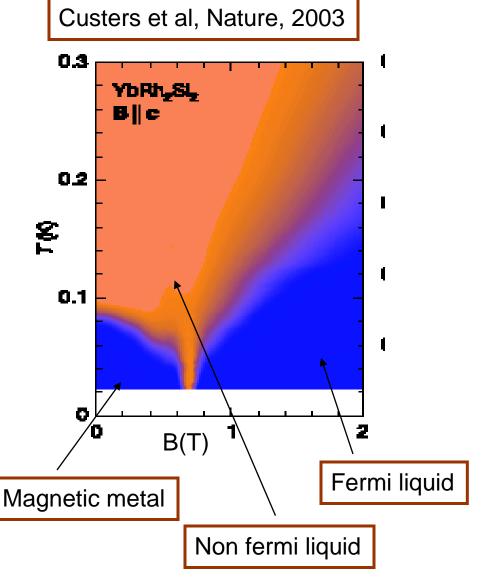

T. Senthil (IISc (India) and MIT (USA))

P. Ghaemi(MIT), M. Levin (MIT)
M. Hermele (UCSB)

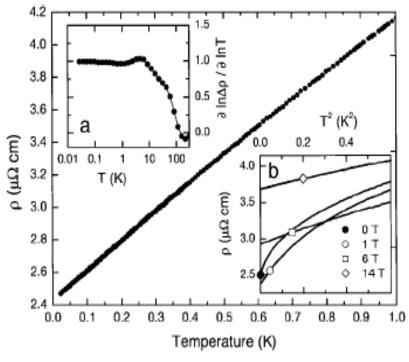

O. Motrunich (MIT \rightarrow KITP), A. Vishwanath (MIT \rightarrow UC B)

L. Balents(UCSB), S. Sachdev(Yale), M.P.A. Fisher(KITP), M. Vojta(Karlsruhe) P. Lee (MIT), N. Nagaosa (Tokyo), X.-G. Wen (MIT)

Competing orders and non-fermi liquids(NFL) in correlated electron systems



Example: Magnetic ordering in heavy electron systems CePd₂Si₂, CeCu_{6-x}Au_x, YbRh₂Si₂,......



Model as lattice of localized magnetic moments coupled to conduction electrons by spin exchange (the Kondo lattice)

Representative data on YbRh₂Si₂

Trovarelli et al, PRL 2000

T-dependence of resistivity at critical point: $\rho(T) \sim T$ for three decades in temperature!

"Classical" assumptions

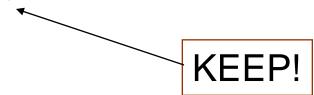
 NFL: Universal physics associated with quantum critical point between phases A and B.

 Landau: Universal critical singularities ~ fluctuations of order parameter for transition between phases A and B.

Try to play Landau versus Landau.

 However ``classical' assumptions have difficulty with producing NFL at quantum critical points!!

Eg: Landauesque theory of magnetic ordering in metallic environment (``Moriya-Hertz-Millis theory'') spectacularly inconsistent with NFL near heavy fermion critical points.


Reexamine ``classical'' assumptions

1. NFL: Universal physics associated with quantum critical point between phases A and B.

 Landau: Universal critical singularities ~ fluctuations of order parameter for transition between phases A and B.

Reexamine ``classical'' assumptions

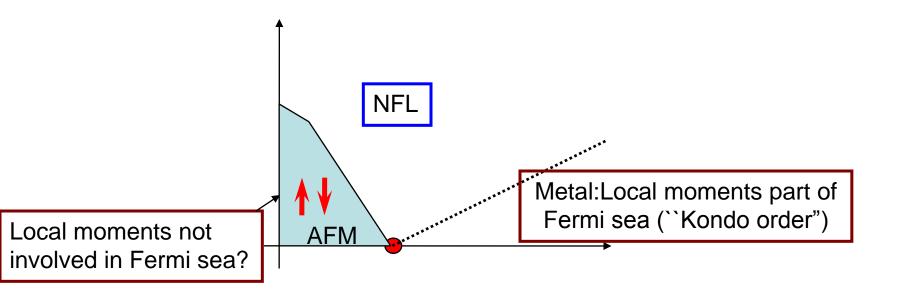
1. NFL: Universal physics associated with quantum critical point between phases A and B.

2. Landau: Universal critical singularities ~ fluctuations of order parameter for transition between phases A and B.

Reexamine ``classical'' assumptions

1. NFL: Universal physics associated with quantum critical point between phases A and B.

KEEP!

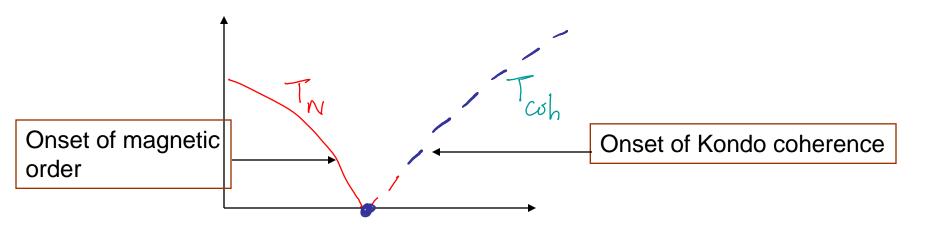

2. Landau: Universal critical singularities ~ fluctuations of order parameter for transition between phases A and B.

??IS THIS REALLY CORRECT??

(Radical) alternate to classical assumptions

- Universal singularity at some quantum critical points: Not due to fluctuations of natural order parameter but due to some other competing effects.
- Order parameters/broken symmetries of phases A and B mask this basic competition.
- => Physics beyond Landau-Ginzburg-Wilson paradigm of phase transitions.

NFL in heavy electron systems




```
Critical NFL physics: are fluctuations of loss of local moments from Fermi sea important? (Si, Coleman,.....)

Is magnetic ordering itself a distraction?? (TS, Vojta,Sachdev)

Perhaps NFL only due to fluctuations of ``Kondo order"??
```

Questions

- Is such a second order transition generically possible?
 (Loss of magnetic order happens at same point as onset of ``Kondo'' order)
- 2. Theoretical description?
- 3. Will it reproduce observed non-fermi liquid behaviour?

Answers not known!!

General observations

f-moments drop out of Fermi surface (change of electronic structure)

Associated time scale t_e.

Onset of magnetic order

Associated time scale t_m.

Both time scales diverge if there is a critical point.

General observations

f-moments drop out of Fermi surface (change of electronic structure)

Associated time scale t_e.

Onset of magnetic order

Associated time scale t_m.

Both time scales diverge if there is a critical point.

Suggestion: t_m diverges faster than t_e. (electronic structure change first, magnetic order comes later)

Separation between two competing orders as a function of scale (rather than tuning parameter) might make second order transition possible.

Some implications

• <u>"Underlying"</u> transition: loss of participation of the f-electrons in forming the heavy fermi liquid.

(View as a Mott ``metal-insulator'' transition of f-band).

- Magnetic order: "secondary" effect a low energy complication once Kondo effect is suppressed.
- Non-fermi liquid due to fluctuations associated with change of electronic structure rather than those of magnetic order parameter.
- ⇒ PHYSICS BEYOND LANDAU-GINZBURG-WILSON PARADIGM FOR PHASE TRANSITIONS.

(Natural magnetic order parameter is a distraction).

This talk – more modest goal

 Are there any clearly demonstrable theoretical instances of such strong breakdown of Landau-Ginzburg-Wilson ideas at quantum phase transitions?

This talk – more modest goal

 Are there any clearly demonstrable theoretical instances of such strong breakdown of Landau-Ginzburg-Wilson ideas at quantum phase transitions?

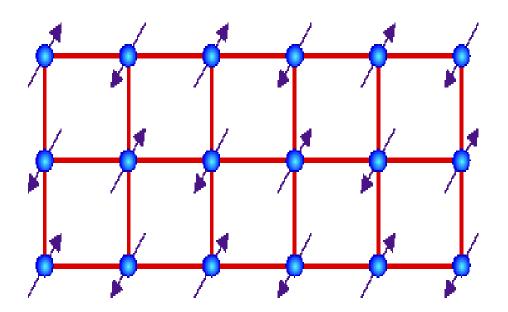
Study phase transitions in insulating quantum magnets

- Good theoretical laboratory for physics of phase transitions/competing orders.

Highlights

- Failure of Landau paradigm at (certain) quantum transitions
- Emergence of `fractional' charge and gauge fields near quantum critical points between two <u>CONVENTIONAL</u> phases.
- ``Deconfined quantum criticality'' (made more precise later).
- Many lessons for competing order physics in correlated electron systems.

Phase transitions in quantum magnetism


$$H = J \sum_{\langle rr \rangle} \vec{S}_r, + \cdots$$

- Spin-1/2 quantum antiferromagnets on a square lattice.
- ``.....' represent frustrating interactions that can be tuned to drive phase transitions.

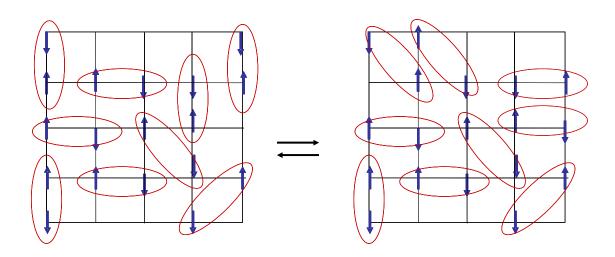
(Eg: Next near neighbour exchange, ring exchange,.....).

Possible quantum phases

Neel ordered state

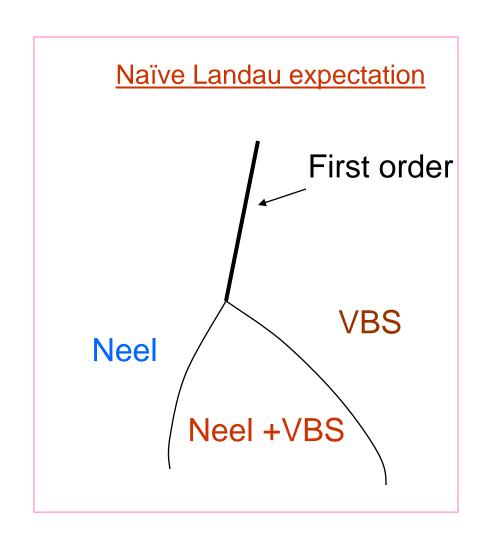
Possible quantum phases (contd)

QUANTUM PARAMAGNETS

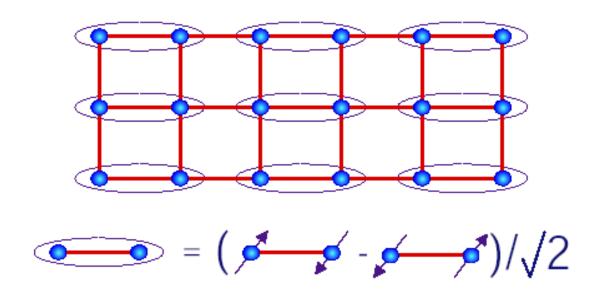

- Simplest: Valence bond solids.
- Ordered pattern of valence bonds breaks lattice translation symmetry.

 Elementary spinful excitations have S = 1 above spin gap.

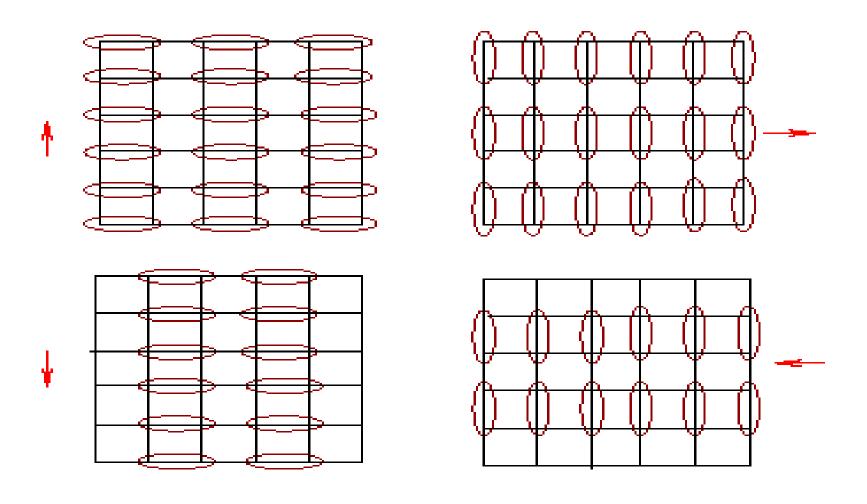
Possible phases (contd)


- Exotic quantum paramagnets ``resonating valence bond liquids''.
- Fractional spin excitations, interesting topological structure.

Neel-valence bond solid(VBS) transition


- Neel: Broken spin symmetry
- VBS: Broken lattice symmetry.
- Landau Two independent order parameters.
- no generic direct second order transition.
- either first order or phase coexistence.

This talk: Direct second order transition but with description not in terms of natural order parameter fields.



Broken symmetry in the valence bond solid(VBS) phase

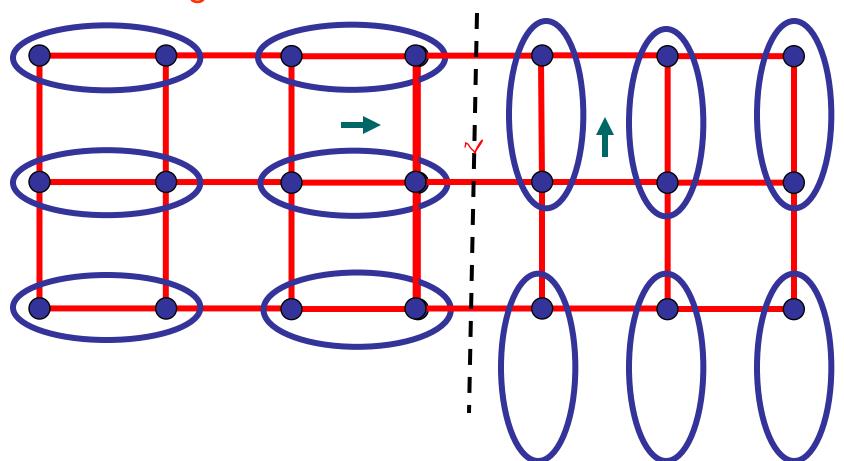
Valence bond solid with spin gap.

Discrete Z₄ order parameter

Neel-Valence Bond Solid transition

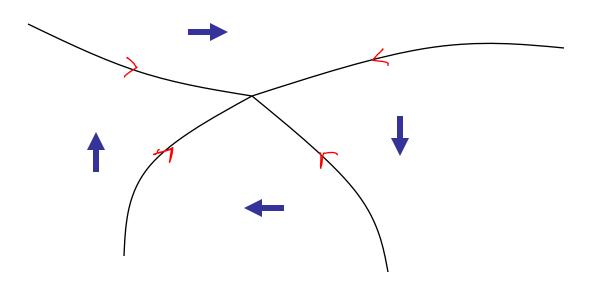
Naïve approaches fail

Attack from Neel \neq Usual O(3) transition in D = 3 Attack from VBS \neq Usual Z₄ transition in D = 3 (= XY universality class).


Why do these fail?

Topological defects carry non-trivial quantum numbers!

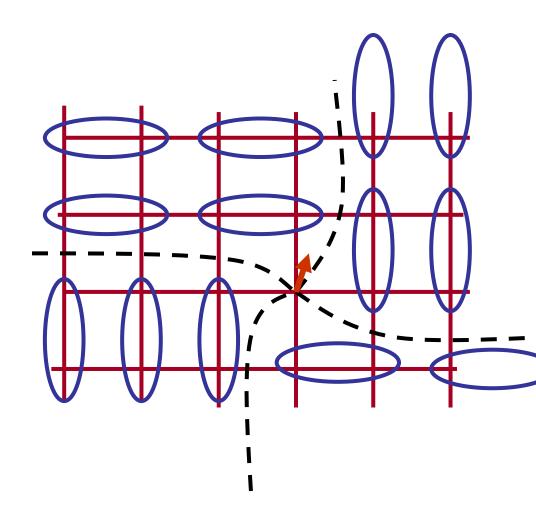
Attack from VBS (Levin, TS, '04)


Topological defects in Z₄ order parameter

 Domain walls – elementary wall has π/2 shift of clock angle

Z₄ domain walls and vortices

- Walls can be oriented; four such walls can end at point.
- End-points are Z₄ vortices.



Z₄ vortices in VBS phase

Vortex core has an unpaired spin-1/2 moment!!

Z₄ vortices are ``spinons".

Domain wall energy confines them in VBS phase.

Disordering VBS order

 If Z₄ vortices proliferate and condense, cannot sustain VBS order.

Vortices carry spin =>develop Neel order

Z₄ disordering transition to Neel state

 As for usual (quantum) Z₄ transition, expect clock anisotropy is irrelevant.

(confirm in various limits).

Critical theory: (Quantum) XY but with vortices that carry physical spin-1/2 (= spinons).

Alternate (dual) view

Duality for usual XY model (Dasgupta-Halperin)
 Phase mode - ``photon''

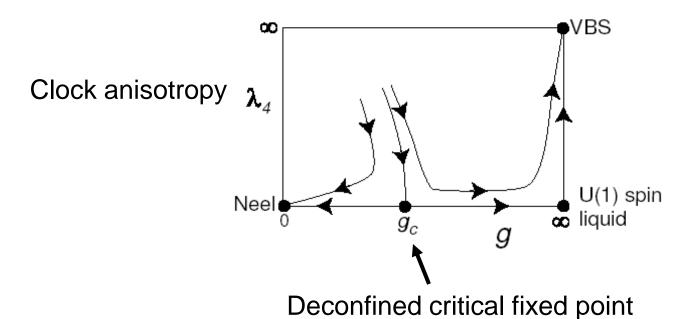
Vortices – gauge charges coupled to photon.

Neel-VBS transition: Vortices are spinons

=> Critical spinons minimally coupled to fluctuating U(1) gauge field*.

^{*}non-compact

Proposed critical theory "Non-compact CP₁ model"

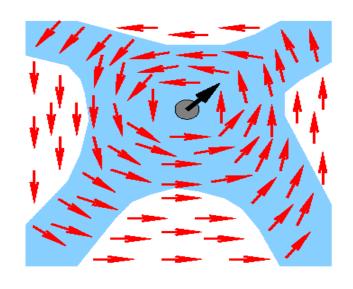

$$S = \int d^2x d\tau |(\partial_{\mu} - ia_{\mu})z|^2 + r|z|^2 + u|z|^4 + (\varepsilon_{\mu\nu\lambda}\partial_{\nu}a_{\lambda})^2$$

z = two-component spin-1/2 spinon field $a_{\mu} =$ non-compact U(1) gauge field. <u>Distinct</u> from usual O(3) or Z_4 critical theories*.

Theory not in terms of usual order parameter fields but involve spinons and gauge fields.

*Distinction with usual O(3) fixed point definitively established by detailed numerics (Motrunich, Vishwanath, '03)

Renormalization group flows


Clock anisotropy is ``dangerously irrelevant".

Precise meaning of deconfinement

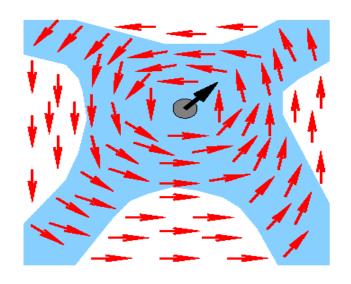
 Z₄ symmetry gets enlarged to XY

⇒ Domain walls get very thick and very cheap near the transition.

Domain wall energy not effective in confining Z₄ vortices (= spinons)

Formal: Extra global U(1) symmetry not present in microscopic model :

Two diverging length scales in paramagnet



ξ: spin correlation length

 ξ_{VBS} : Domain wall thickness.

 $\xi_{VBS} \sim \xi^{\kappa}$ diverges faster than ξ

Spinons confined in either phase but `confinement scale' diverges at transition.

Extensions/generalizations

- Similar phenomena at other quantum transitions of spin-1/2 moments in d = 2
- 1. VBS- spin liquid (Senthil, Balents, Sachdev, Vishwanath, Fisher, '03)
- 2. Neel -spin liquid (Ghaemi, Senthil)
- 3. Certain VBS-VBS (Vishwanath, Balents, Senthil, '03; Fradkin, Huse, Moessner, Oganesyan, Sondhi, '03)

Apparently fairly common!

- Deconfined critical <u>phases</u> with gapless fermions coupled to gauge fields also exist in 2d quantum magnets (Hermele, Senthil, Fisher, Lee, Nagaosa, Wen, '04)
- interesting applications to cuprate theory.

Numerical/experimental sightings of Landau-forbidden transitions

Weak first order/second order transitions between two phases with very different broken symmetry surprisingly common....

```
Numerics (more in the next 2 talks)
```

Antiferromagnet – superconductor

(Assaad et al 1996)

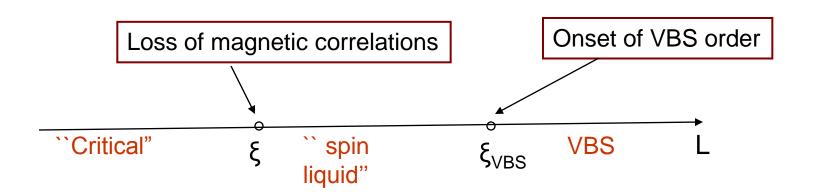
Superfluid – some kinds of charge density wave

(Sandvik et al 2002)

J1-J2 spin-1/2 quantum AF on square lattice:

Second order Neel -VBS?

(Singh, Sushkov,....)


Experiments:

 $UPt_{3-x}Pd_x$ SC - AF with increasing x.

(Graf et al 2001)

Some lessons-I

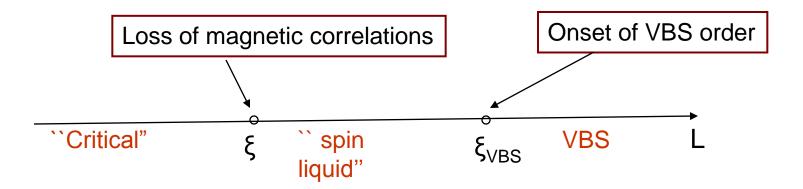
Separation between the two competing orders not as a function of tuning parameter but as a function of (length or time) scale (exactly as suggested near heavy fermion critical point)

Some lessons-II

• Striking ``non-fermi liquid'' (morally) physics at critical point between two competing orders.

Eg: At Neel-VBS, magnon spectral function is anamolously broad (roughly due to decay into spinons) as compared to usual critical points.

Most important lesson:


Failure of Landau paradigm – order parameter fluctuations do not capture true critical physics.

Caricature of phenomena suggested near heavy fermion critical points.

Experiments: Are there really two distinct time/length scales at heavy fermion critical points?

Summary and some lessons-I

- Direct 2nd order quantum transition between two phases with different competing orders possible
- Separation between the two competing orders not as a function of tuning parameter but as a function of (length or time) scale

Summary and some lessons-II

 Striking ``non-fermi liquid" (morally) physics at critical point between two competing orders.

Eg: At Neel-VBS, magnon spectral function is anamolously broad ($\eta \sim 0.6$)- roughly due to decay into spinons- as compared to usual critical points.