Organizing Object Knowledge by Real-World Size

Talia Konkle & Aude Oliva

Department of Brain and Cognitive Sciences, MIT

Introduction

Object categories have distinct distributed patterns of activity (e.g. Haxby et al., 2001)

Patterns are reliable with increased spatial smoothing (Op de Beeck, 2010)

This suggests a large-scale organization of object knowledge in ventral visual cortex

Question

What is this large-scale organization?

Proposal: Object representations are organized by their real-world size

Small Objects > Big Objects Contrast Lateral Surface **SmallP** Ventral Surface **BigD**

Konkle & Oliva, VSS 2010

Is there a sizeotopic map of object representations?

Expt 1: Phase-Encoding

Small Objects

Some subjects show a gradient of selectivity; others show two poles

Expt 2: Blocked Design

Medium Objects Large Objects

16s stimulus blocks 18 images/block 650ms per image

24 blocks/condition over 7 runs

N=6

Results

medium-object selective areas BigV and SmallA regions of interest localized from an

localized BigV and SmallA Regions

Whole-brain contrasts revealed no

independent localizer for each subject FusA region drawn anatomically between functionally

FusA BigV SmallA Anterior fusiform is active to large, peta 1.0 medium, and small objects **Small Objects Medium Objects Large Objects** Coarse "MVPA": 2.0 Peak of activation across cortex shifts

BigV FusA SmallA

Phase-Encoding Analysis Method

Movement/Smoothing cannot lead to false maps

Subject 7

Conclusions

Big Objects

1) Sizeotopic Organization?

BigV FusA SmallA

Reliable big and small poles but only a mild preference for medium objects in between

2) Reliable Large-Scale Patterns

BigV FusA SmallA

with object size

Peak of activity shifts across cortex with increasing object size