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ABSTRACT3

Idealized climate modeling studies often choose to neglect spatiotemporal variations in so-4

lar radiation, but doing so comes with an important decision about how to average solar5

radiation in space and time. Since both clear-sky and cloud albedo are increasing functions6

of the solar zenith angle, one can choose an absorption-weighted zenith angle which repro-7

duces the spatial- or time-mean absorbed solar radiation. Here, we perform calculations8

for a pure scattering atmosphere and with a more detailed radiative transfer model, and9

find that the absorption-weighted zenith angle is usually between the daytime-weighted and10

insolation-weighted zenith angles, but much closer to the insolation-weighted zenith angle in11

most cases, especially if clouds are responsible for much of the shortwave reflection. Use of12

daytime-average zenith angle may lead to a high bias in planetary albedo of ∼3%, equivalent13

to a deficit in shortwave absorption of ∼10 W m−2 in the global energy budget (comparable14

to the radiative forcing of a roughly sixfold change in CO2 concentration). Other studies that15

have used general circulation models with spatially constant insolation have underestimated16

the global-mean zenith angle, with a consequent low bias in planetary albedo of ∼2-6%, or17

a surplus in shortwave absorption of ∼7-20 W m−2 in the global energy budget.18
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1. Introduction19

Comprehensive climate models suggest that a global increase in absorbed solar radiation20

by 1 W m−2 would lead to an 0.6-1.1 ◦C increase in global-mean surface temperatures (Soden21

and Held 2006). The amount of solar radiation absorbed or reflected by the Earth depends22

on the solar zenith angle (ζ), or angle the sun makes with a line perpendicular to the surface.23

When the sun is low in the sky (high ζ), much of the incident sunlight may be reflected even24

for a clear sky; when the sun is high in the sky (low ζ), even thick clouds may not reflect25

most of the incident sunlight. The difference in average zenith angle between the equator26

and poles is an important reason why the albedo is typically higher at high latitudes.27

In order to simulate the average climate of a planet in radiative-convective equilibrium,28

one must globally average the incident solar radiation, and define either a solar zenith angle29

which is constant in time, or which varies diurnally (i.e., the sun rising and setting). The30

top-of-atmosphere incident solar radiation per unit ground area, or insolation I, is simply31

the product of the solar constant S0 and the cosine of the solar zenith angle, µ ≡ cos ζ:32

I = S0 cos ζ, (1)

where the planetary-mean insolation is simply 〈I〉 = S0/4 ≈ 342 W m−2 (in this paper, we33

will denote spatial averages with 〈x〉 and time averages with x). A global-average radiative34

transfer calculation requires specifying both an effective cosine of solar zenith angle µ∗, and35

an effective solar constant, S∗0 , such that the resulting insolation matches the planetary-mean36

insolation:37

〈I〉 = S0/4 = S∗0µ
∗. (2)

Matching the mean insolation constrains only the product S∗0µ
∗, and not either parameter38

individually, so additional assumptions are needed.39

The details of these additional assumptions are quite important to simulated climate,40

because radiative transfer processes, most importantly cloud albedo, depend on µ (e.g.,41

Hartmann (1994)). For instance, the most straightforward choice for a planetary-average42
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calculation might seem to be a simple average of µ over the whole planet, including the dark43

half, so that S∗0S = S0 and µ∗S=1/4. However, this simple average would correspond to a sun44

that was always near setting, only ∼15◦ above the horizon; with such a low sun, the albedo45

of clouds and the reflection by clear-sky Rayleigh scattering would be highly exaggerated.46

A more thoughtful, and widely used choice, is to ignore the contribution of the dark half of47

the planet to the average zenith angle. With this choice of daytime-weighted zenith angle,48

µ∗D=1/2, and S∗0D = S0/2.49

A slightly more complex option is to calculate the insolation-weighted cosine of the zenith50

angle, µ∗I :51

µ∗I =

∫
µS0µP (µ)dµ∫
S0µP (µ)dµ

, (3)

where P (µ) is the probability distribution function of global surface area as a function of the52

cosine of the zenith angle, µ, over the illuminated hemisphere. For the purposes of a planetary53

average, P (µ) simply equals 1. This can be seen by rotating coordinates so that the north54

pole is aligned with the subsolar point, where µ = 1; then µ is given by the sine of the latitude55

over the illuminated northern hemisphere, and since area is uniformly distributed in the sine56

of the latitude, it follows that area is uniformly distributed over all values of µ between 057

and 1. Hereafter, when discussing planetary averages, it should be understood that integrals58

over µ implicitly contain the probability distribution function P (µ) = 1. Evaluation of (3)59

gives µ∗I=2/3, and S∗0I = 3S0/8. Since most of the sunlight falling on the daytime hemisphere60

occurs where the sun is high, µ∗I is considerably larger than µ∗D. A schematic comparison61

of these three different choices – simple average, daytime-weighted, and insolation-weighted62

zenith angles – is given in Figure 1.63

The daytime-average cosine zenith angle of 0.5 has been widely used. The early studies64

of radiative-convective equilibrium by Manabe and Strickler (1964), Manabe and Wetherald65

(1967), Ramanathan (1976), and the early review paper by Ramanathan and Coakley (1978),66

all took µ∗ = 0.5. The daytime-average zenith angle has also been used in simulation of67

climate on other planets (e.g., Wordsworth et al. (2010)), as well as estimation of global68
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radiative forcing by clouds and aerosols (Fu and Liou 1993; Zhang et al. 2013).69

To our knowledge, no studies of global-mean climate with radiative-convective equilib-70

rium models have used an insolation-weighted cosine zenith angle of 2/3. The above consid-71

erations regarding the spatial averaging of insolation, however, also apply to the temporal72

averaging of insolation that is required to represent the diurnal cycle, or combined diurnal73

and annual cycles, with a zenith angle that is constant in time. In this context, Hartmann74

(1994) strongly argues for the use of insolation-weighted zenith angle, and provides a figure75

with appropriate daily-mean insolation-weighted zenith angles as a function of latitude for76

the solstices and the equinoxes (see Hartmann (1994), Figure 2.8). Romps (2011) also uses77

an equatorial insolation-weighted zenith angle in a study of radiative-convective equilibrium78

with a cloud-resolving model, though other studies of tropical radiative-convective equilib-79

rium with cloud-resolving models, such as the work by Tompkins and Craig (1998), have used80

a daytime-weighted zenith angle. In large-eddy simulations of marine low clouds, Bretherton81

et al. (2013) advocate for the greater accuracy of the insolation-weighted zenith angle, noting82

that the use of daytime-weighted zenith angle gives a 20 W m−2 stronger negative shortwave83

cloud radiative effect than the insolation-weighted zenith angle. Biases of such a magnitude84

would be especially disconcerting for situations where the surface temperature is interactive,85

as they could lead to dramatic biases in mean temperatures.86

Whether averaging in space or time, an objective decision of whether to use daytime-87

weighted or insolation-weighted zenith angle requires some known and unbiased reference88

point. In section 2, we develop the idea of absorption-weighted zenith angle as such an un-89

biased reference point. We show that if albedo depends nearly linearly on the zenith angle,90

which is true if clouds play a dominant role in solar reflection, then the insolation-weighted91

zenith angle is likely to be less biased than the daytime-weighted zenith angle. We then92

calculate the planetary-average absorption-weighted zenith angle for the extremely idealized93

case of a purely conservative scattering atmosphere. In section 3, we perform calculations94

with a more detailed shortwave radiative transfer model, and show that differences in plan-95
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etary albedo between µ∗D=1/2 and µ∗I = 2/3 can be ∼3%, equivalent to a radiative forcing96

difference of over 10 W m−2. In section 4 we show that the superiority of insolation-weighting97

also applies for diurnally- or annually-averaged insolation. Finally, in section 5, we discuss98

the implications of our findings for recent studies with global models.99

2. Absorption-Weighted Zenith Angle100

For the purposes of minimizing biases in solar absorption, the zenith angle should be101

chosen to most closely match the spatial- or time-mean albedo. By this, we do not intend102

that the zenith angle should be tuned so as to match the observed albedo over a specific103

region or time period; rather, we wish to formulate a precise geometric closure on (2). If the104

albedo is a known function of the zenith angle (i.e., α = fα(µ) = fα(cos ζ)), then we can105

choose a zenith angle, µ∗A, such that its albedo matches the albedo that would be calculated106

from a full average over space or time (as weighted by the probability density function P (µ)):107

fα(µ∗A)

∫
S0µP (µ)dµ =

∫
S0µfα(µ)P (µ)dµ (4)

If the albedo function fα is smooth and monotonic in the zenith angle – the likely (albeit108

not universal) case for planetary reflection – then fα can be inverted, and the problem is109

well-posed, with a unique solution:110

µ∗A = f−1
α

[∫
µfα(µ)P (µ)dµ∫
µP (µ)dµ

]
, (5)

where f−1
α represents the inverse function of fα. For the case of planetary-average solar111

absorption, the probability density function of µ over the sunlit half of the globe is uniform112

(see discussion following equation (3)). Taking P (µ) = 1, equation (5) simplifies to:113

〈α〉 = 2

∫ 1

0

µfα(µ)dµ, (6)

µ∗A = f−1
α

[
2

∫ 1

0

µfα(µ)dµ

]
, (7)
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where 〈α〉 is the planetary albedo, or ratio of reflected to incident global shortwave radiation.114

Note that a bias in planetary albedo by 1% would lead to a bias in planetary-average absorbed115

shortwave radiation of 3.42 W m−2.116

If the albedo is a linear function of the zenith angle, we can write:117

fα(µ) = αmax − α∆µ, (8)

where αmax is the maximum albedo (for µ = 0), and α∆ is the drop in albedo in going from118

µ = 0 to µ = 1. In this case, we can show that the absorption-weighted zenith angle is119

exactly equal to the insolation-weighted zenith angle, regardless of the form of P (µ). From120

(3), (4), and (8), it follows that:121

αmax

∫
µP (µ)dµ− α∆µ

∗
A

∫
µP (µ)dµ = αmax

∫
µP (µ)dµ− α∆

∫
µ2P (µ)dµ

µ∗A =

∫
µ2P (µ)dµ∫
µP (µ)dµ

= µ∗I . (9)

Thus, if the albedo varies roughly linearly with µ, then we expect the insolation-weighted122

zenith angle to closely match the absorption-weighted zenith angle.123

For planetary-average solar absorption, the simplicity of P (µ) allows us to perform an124

additional analytic calculation of the absorption-weighted zenith angle. Consider an albedo125

similar to (8), but which may now vary nonlinearly, as some power of the cosine of the zenith126

angle:127

fα(µ) = αmax − α∆µ
b. (10)

The power b is likely equal to or less than 1, so that the albedo is more sensitive to the zenith128

angle when the sun is low than when the sun is high. For a general value of b, the planetary129

albedo and absorption-weighted zenith angle are given by:130

〈α〉 = αmax −
α∆

1 + b/2

µ∗A =

(
1

1 + b/2

)1/b

. (11)
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As noted above, if the albedo depends linearly on µ (b=1), then the absorption-weighted131

zenith angle has a cosine of 2/3, which is equal to to planetary-average value of the insolation-132

weighted cosine zenith angle (µ∗I). For 0 < b < 1, µ∗A always falls between e−1/2 ≈0.607 and133

2/3, suggesting that µ∗I = 2/3 is generally a good choice for the zenith angle in planetary-134

mean calculations. The albedo must be a strongly nonlinear function of µ, with significant135

weight at low µ, in order to obtain values of µ∗A < 0.6.136

a. Example: A Pure Scattering Atmosphere137

How strongly does the planetary albedo depend on µ for a less idealized function fα(µ)?138

For a pure conservative scattering atmosphere, with optical thickness τ ∗, two-stream coef-139

ficient γ (which we will take =3/4, corresponding to the Eddington approximation (Pier-140

rehumbert 2010)), and scattering asymmetry parameter ĝ, equation 5.38 of Pierrehumbert141

(2010) gives the atmospheric albedo as:142

αa =
(1/2− γµ)(1− e−τ∗/µ) + (1− ĝ)γτ ∗

1 + (1− ĝ)γτ ∗
. (12)

Defining a constant surface albedo of αg, and a diffuse atmospheric albedo α′a, the total143

albedo is:144

α = 1− (1− αg)(1− αa)
(1− αg)α′a + (1− α′a)

. (13)

Using this expression, we can calculate how the albedo depends on zenith angle for different145

sky conditions. Figure 2 shows the dependence of the albedo on the cosine of the solar146

zenith angle, for a case of Rayleigh scattering by the clear sky (τ ∗ ≈ 0.12, ĝ = 0), for a147

cloudy-sky example (τ ∗ = 3.92, ĝ = 0.843), and for a linear mix of 68.6 % cloudy and148

31.4 % clear sky, which is roughly the observed cloud fraction as measured by satellites149

(Rossow and Schiffer 1999). Values of average cloud optical thickness are taken from Rossow150

and Schiffer (1999), with the optical thickness equal to the sum of cloud and Rayleigh151

scattering optical thicknesses (3.8 and 0.12, respectively), and the asymmetry parameter set152

to a weighted average of cloud and Rayleigh scattering asymmetry parameters (0.87 and 0,153
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respectively). Figure 2 also shows the appropriate choice of the cosine of the absorption-154

weighted zenith angle, µ∗A, for the clear and cloudy-sky examples. The clear-sky case has155

µ∗A = 0.55, the cloudy-sky case has µ∗A = 0.665, and the mixed-sky case has µ∗A = 0.653.156

In these calculations, and others throughout the paper, we have fixed the surface albedo157

to a constant of 0.12, independent of µ, in order to focus on the atmospheric contribution158

to planetary reflection. The particular surface albedo value of 0.12 is chosen following the159

observed global mean surface reflectance from Figure 5 of Donohoe and Battisti (2011)160

(average of the hemispheric values from observations). Of course, surface reflection also161

generally depends on µ, with the direct-beam albedo increasing at lower µ, but surface162

reflection plays a relatively minor role in planetary albedo, in part because so much of the163

Earth is covered by clouds (Donohoe and Battisti 2011).164

We can also use these results to calculate what bias would result from the use of the165

daytime-weighted zenith angle (µ∗D=1/2) or the insolation-weighted zenith angle (µ∗I=2/3).166

The planetary albedo is generally overestimated by use of µ∗D and underestimated by use of167

µ∗I ; the first three rows of Table 1 summarize our findings for a pure scattering atmosphere.168

For a clear sky, the daytime-weighted zenith angle is a slightly more accurate choice than169

the insolation-weighted zenith angle. On the other hand, for a cloudy sky with moderate170

optical thickness, the insolation-weighted zenith angle is essentially exact, and a daytime-171

weighted zenith angle may overestimate the planetary albedo by over 7%. For Earthlike172

conditions, with a mixed sky that has low optical thickness in clear regions, and moderate173

optical thickness in cloudy regions, a cosine-zenith angle close to but slightly less than the174

planetary insolation-weighted mean value of 2/3 is likely the best choice. The common175

choice of µ∗ = 1/2 will overestimate the negative shortwave radiative effect of clouds, while176

choices of µ∗ > 2/3 will underestimate the negative shortwave radiative effect of clouds.177

Our calculations here, however, are quite simplistic, and do not account for atmospheric178

absorption or wavelength-dependence of optical properties. In the following section, we will179

use a more detailed model to support the assertion that the insolation-weighted zenith angle180
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leads to smaller albedo biases than the daytime-weighted zenith angle.181

3. Calculations with a Full Radiative Transfer Model182

The above calculations provide a sense for the magnitude of planetary albedo bias that183

may result from different choices of average solar zenith angle. In this section, we calculate184

albedos using version 3.8 of the shortwave portion of the Rapid Radiative Transfer Model,185

for application to GCMs (RRTMG SW, v3.8; Iacono et al. (2008); Clough et al. (2005));186

hereafter we refer to this model as simply “RRTM” for brevity. Calculations with RRTM187

allow for estimation of biases associated with different choices of µ when the atmosphere has188

more realistic scattering and absorption properties than we assumed in the pure scattering189

expressions above ((12), (13)). RRTM is a broadband, two-stream, correlated k-distribution190

radiative transfer model, which has been tested against line-by-line radiative transfer models,191

and is used in several general circulation models (GCMs). For calculation of radiative fluxes192

in partly cloudy skies, the model uses the Monte-Carlo independent column approximation193

(McICA; Pincus et al. (2003)), which stochastically samples 200 profiles over the possible194

range of combinations of cloud overlap arising from prescribed clouds at different vertical195

levels, and averages the fluxes that result.196

We use RRTM to calculate the albedo as a function of zenith angle for a set of built-197

in reference atmospheric profiles, and several cloud profile assumptions. The atmospheric198

profiles we use are the Tropical atmosphere, the 1976 U.S. Standard Atmosphere, and the199

Subarctic Winter atmosphere, and we perform calculations with clear skies, as well as two200

cloud profile assumptions (Table 2). One cloud profile is a mixed sky, intended to mirror201

Earth’s climatological cloud distribution, with four cloud layers having fractional coverage,202

water path, and altitudes based Rossow and Schiffer (1999); we call this case “RS99”. The203

other cloud profile is simply fully overcast with a low-level “Stratocumulus” cloud deck,204

having a water path of 100 g/m2. Table 2 gives the values for assumed cloud fractions,205
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altitudes, and in-cloud average liquid and ice water in clouds at each level. Cloud fractions206

have been modified from Table 4 of Rossow and Schiffer (1999) because satellites see clouds207

from above, and will underestimate true low cloud fraction that is overlain by higher clouds.208

If multiple cloud layers are randomly overlapping, and seen from above, then, indexing cloud209

layers as (1,2,...) from the top down, we denote σ̂i as the observed cloud fraction in layer i,210

and σi as the true cloud fraction in layer i. The true cloud fraction in layer i is:211

σi = σ̂i

(
1−

i−1∑
j=1

σ̂j

)−1

, (14)

which can be seen because the summation gives the fraction of observed cloudy sky above212

level i, so the term in parentheses gives the fraction of clear sky above level i, which is equal to213

the ratio of observed cloud fraction to true cloud fraction in layer i (again assuming random214

cloud overlap). Applying this correction to observed cloud fractions (σ̂1, σ̂2, σ̂3, σ̂4)=(0.196,215

0.026, 0.190, 0.275) from Table 4 of Rossow and Schiffer (1999) gives the cloud fractions216

listed in Table 2: (σ1, σ2, σ3, σ4)=(0.196, 0.032, 0.244, 0.467).217

To isolate the contributions from changing atmospheric (and especially cloud) albedo as218

a function of µ, the surface albedo is set to a value of 0.12 for all calculations, independent of219

the solar zenith angle. Using RRTM calculations of albedo at 22 roughly evenly-spaced values220

of µ, we interpolate fα(µ) to a grid in µ with spacing 0.001, calculate the planetary albedo221

〈α〉 from equation (6), and find the value of µ∗A whose albedo most closely matches 〈α〉. The222

dependence of albedo on µ is shown in Figure 3; atmospheric absorption results in generally223

lower values of albedo than in the pure scattering cases above, as well as lower sensitivity224

of the albedo to zenith angle. For partly or fully cloudy skies, the albedo is approximately225

linear in the zenith angle. Note that fα(µ) here is not necessarily monotonic, as it decreases226

for very small µ. This implies that the inverse problem can return two solutions for µ∗A in227

some cases; we select the larger result if this occurs.228

For clear skies, biases in 〈α〉 are nearly equal in magnitude for µ∗D and µ∗I (Table 1). For229

partly cloudy or overcast skies, however, biases in 〈α〉 are much larger for µ∗D than for µ∗I ; the230
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insolation-weighted zenith angle has an albedo bias that is lower by an order of magnitude231

than the albedo bias of the daytime-weighted zenith angle. The bias in solar absorption for232

partly-cloudy or overcast skies for µ∗D is on the order of 10 W m−2. While we have only233

tabulated biases for the 1976 U.S. Standard Atmosphere, results are similar across other234

reference atmospheric profiles.235

4. Diurnal and Annual Averaging236

Thus far, we have presented examples of albedo biases only for the case of planetary-mean237

calculations. The absorption-weighted zenith angle can also be calculated and compared to238

daytime-weighted and insolation-weighted zenith angles for the case of diurnal- or annual-239

average solar radiation at a single point on the Earth’s surface, using (5). The latitude and240

temporal averaging period both enter into the calculation of the probability density function241

P (µ), as well as the bounds of the integrals in (5). We will look at how µ∗A varies as a242

function of latitude for two cases: an equinoctial diurnal cycle and a full average over annual243

and diurnal cycles. In both cases, we will use fα(µ) as calculated by RRTM, for the 1976244

U.S. Standard Atmosphere, and the mixed-sky cloud profile of RS99.245

For an equinoctial diurnal cycle at latitude φ, the cosine of the zenith angle is given by246

µ(h) = cosφ cos(π(h − 12)/12), where h is the local solar time in hours. Since time (h) is247

uniformly distributed, this can be analytically transformed to obtain the probability density248

function P (µ):249

P (µ) =
2

π
√

cos2 φ− µ2
, (15)

which is valid for 0 ≤ µ < cosφ. For the equinoctial diurnal cycle, daytime-weighting gives250

µ∗D = (2/π) cosφ, while insolation-weighting gives µ∗I = (π/4) cosφ. Figure 4 shows that the251

absorption-weighted zenith angle is once again much closer to the insolation-weighted zenith252

angle than to the daytime-weighted zenith angle for partly cloudy skies. We can also look at253

how the time-mean albedo α compares to the albedo calculated from µ∗D or µ∗I . Albedo biases254
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at the equator are -0.2% for insolation-weighting, and +2.6% for daytime-weighting, which255

translates to solar absorption biases of +0.9 W m−2 and -11.2 W m−2, respectively. For256

clear-sky calculations (not shown), results are also similar to what we found for planetary-257

average calculations: the two choices are almost equally biased, with albedo underestimated258

by ∼0.5% when using µ∗I , and overestimated by ∼0.5% when using µ∗D.259

For the full annual and diurnal cycles of insolation, P (µ) must be numerically tabu-260

lated. For each latitude band, we calculate µ every minute over a year, and construct P (µ)261

histograms with bin width 0.001 in µ, then we calculate the insolation-weighted, daytime-262

weighted, and absorption weighted cosine zenith angles and corresponding albedos (Figure263

5). For partly cloudy skies, the insolation-weighted zenith angle is a good match to the264

absorption-weighted zenith angle, with biases in albedo of less than 0.2%. Albedo biases for265

the daytime-weighted zenith angle are generally ∼2-3%, with a maximum of over 3% around266

60 degrees latitude. The solar absorption biases at the equator are similar to those found in267

the equinoctial diurnal average, though slightly smaller. Overall, these findings indicate that268

insolation-weighting is generally a better approach than daytime-weighting for representing269

annual or diurnal variations in insolation.270

5. Discussion271

The work presented here addresses potential climate biases in two major lines of inquiry in272

climate science. One is the use of radiative-convective equilibrium, either in single-column or273

small-domain cloud resolving models, as a framework to simulate and understand important274

aspects of planetary-mean climate, such as surface temperature and precipitation. The275

second is the increasing use of idealized three-dimensional general circulation models (GCMs)276

for understanding large-scale atmospheric dynamics. Both of these categories span a broad277

range of topics, from understanding the limits of the circumstellar habitable zone and the278

scaling of global-mean precipitation with temperature in the case of radiative-convective279
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models, to the location of midlatitude storm tracks and the strength of the Hadley circulation280

in the case of idealized GCMs. Both categories of model often sensibly choose to ignore281

diurnal and annual variations in insolation, so as to reduce simulation times and avoid282

unnecessary complexity. Our work suggests that spatial or temporal averaging of solar283

radiation, however, can lead to biases in total absorbed solar radiation on the order of 10 W284

m−2, especially if the models used have a large cloud area fraction.285

The extent to which a radiative-convective equilibrium model forced by global-average286

insolation accurately captures the global-mean surface temperature of both the real Earth,287

and more complex three-dimensional GCMs, is a key test of the magnitude of nonlinearities288

in the climate system. For instance, variability in tropospheric relative humidity, as induced289

by large-scale vertical motions in the tropics, can give rise to dry-atmosphere “radiator290

fin” regions that emit longwave radiation to space more effectively than would a horizontally291

uniform atmosphere, resulting in a cooling of global mean temperatures relative to a reference292

atmosphere with homogeneous relative humidity (Pierrehumbert 1995). This “radiator fin”293

nonlinearity can appear in radiative-convective equilibrium simulations with cloud-resolving294

models as a result of self-aggregation of convection, with a large change in domain-average295

properties such as relative humidity and outgoing longwave radiation (Muller and Held 2012;296

Wing and Emanuel 2013). But many other potentially important climate nonlinearities –297

such as the influence of ice on planetary albedo, interactions between clouds and large-298

scale dynamics (including mid-latitude baroclinic eddies and the clouds they generate), and299

rectification of spatiotemporal variability in lapse rates – would be quite difficult to plausibly300

incorporate into a radiative-convective model. Thus, despite its simplicity, the question of301

how important these and other climate nonlinearities are – in the sense of how much they302

alter Earth’s mean temperature as compared to a hypothetical radiative-convective model303

of Earth – remains a fundamental and unanswered question in climate science.304

The recent work of Popke et al. (2013) is possibly the first credible stab at setting up305

an answer to this broader question of the significance of climate nonlinearities. Popke et al.306
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(2013) use a global model (ECHAM6) with uniform insolation and no rotation to simu-307

late planetary radiative-convective equilibrium with column physics over a slab ocean, thus308

allowing for interactions between convection and circulations up to planetary scales. One309

could imagine a set of simulations with this modeling framework where various climate non-310

linearities were slowly dialed in. For example, simulations could be conducted across a range311

of planetary rotation rates, as well as with a range of equator-to-pole insolation contrasts;312

progressively stronger mid-latitude eddies would emerge from the interaction between in-313

creasing rotation rate and increasing insolation gradients, and the influence of mid-latitude314

dynamics on the mean temperature of the Earth could be diagnosed. But the study of Popke315

et al. (2013) does not focus on comparing the mean state of their simulations to the mean316

climate of the Earth; they find surface temperatures of ∼28 ◦C, which are much warmer317

than the observed global-mean surface temperature of ∼14 ◦C. The combination of warm318

temperatures and nonrotating dynamics prompts comparison of their simulated cloud and319

relative humidity distributions to the Earth’s Tropics, where they find good agreement with320

the regime-sorted cloud radiative effects in the observed tropical atmosphere.321

The most obvious cause of the warmth of their simulations is that Popke et al. (2013)322

also find an anomalously low planetary albedo of ∼0.2, much lower than Earth’s observed323

value of 0.3 (e.g., Hartmann (1994)). Although part of the reason for this low albedo can324

be readily explained by the low surface albedo of 0.07 in Popke et al. (2013), the remaining325

discrepancy is large, in excess of 5% of planetary albedo. It is possible that this remaining326

discrepancy arises principally due to the lack of bright clouds from mid-latitude storms. But327

our study indicates that their use of a uniform equatorial equinox diurnal cycle of insolation,328

with µ∗I = π/4, also contributes to the underestimation of both cloud and clear-sky albedo.329

For RS99 clouds and an equatorial equinox diurnal cycle, we estimate a time-mean albedo330

of 32.7%; the same cloud field would give a planetary albedo of 34.6% if the planetary-331

average insolation-weighted cosine zenith angle of 2/3 were used. In other words, if the332

cloud distribution from Popke et al. (2013) were put on a realistically illuminated planet,333
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we estimate that the planetary albedo would be ∼2% higher; the shortwave absorption in334

Popke et al. (2013) may be biased by ∼6.7 W m−2 due to zenith angle considerations alone.335

Previous simulations by Kirtman and Schneider (2000), and Barsugli et al. (2005) also336

found very warm global-mean temperatures when insolation contrasts were removed; plan-337

etary rotation was retained in both studies. Kirtman and Schneider (2000) found a global-338

mean surface temperature of ∼26 ◦C with a reduced global-mean insolation of only 315 W339

m−2; realistic global-mean insolation led to too-warm temperatures and numerical instability.340

Kirtman and Schneider (2000) offer little explanation for the extreme warmth of their sim-341

ulations, but apparently also chose to homogenize insolation by using an equatorial equinox342

diurnal cycle, with µ∗I = π/4. Barsugli et al. (2005) obtained a global-mean surface temper-343

ature of ∼38 ◦C when using a realistic global-mean insolation of 340 W m−2. Similarly to344

Popke et al. (2013), Barsugli et al. (2005) also invoke a low planetary albedo of 0.21 as a345

plausible reason for their global warmth, and explain their low albedo as a consequence of346

a dark all-ocean surface. This work, however, suggests that their unphysical use of constant347

µ=1 may lead to a large albedo bias on its own. For RS99 clouds, we estimate an albedo348

of 28.8% for µ=1, as compared to 34.6% for µ=2/3, so their albedo bias may be as large349

as -5.8%, with a resulting shortwave absorption bias of +19.8 W m−2. Use of these three350

studies (Kirtman and Schneider 2000; Barsugli et al. 2005; Popke et al. 2013) as a starting351

point for questions about the importance of climate nonlinearities may thus be impeded by352

biases in planetary albedo and temperature due to a sun that is too high in the sky. While it353

was not the primary focus of these studies to query the importance of climate nonlinearities,354

these studies nonetheless serve as a reminder that care is required when using idealized solar355

geometry in models.356

Because global-mean temperatures are quite sensitive to planetary albedo, we have fo-357

cused in this work on matching the top-of-atmosphere shortwave absorption. For either a358

radiative-convective model or a GCM, we expect biases in mean solar absorption to translate359

cleanly to biases in mean temperature. The bias in mean temperature, T ′, should scale with360
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the bias in solar absorption, R′S (units: W m−2), divided by the total feedback parameter361

of the model, λ (units: W m−2 K−1): T ′ = R′S/λ. But matching the top-of-atmosphere362

absorbed shortwave radiation does not guarantee unbiased partitioning into atmospheric363

and surface absorption, although our method of bias minimization could be altered to match364

some other quantity instead, such as the shortwave radiation absorbed by the surface. Based365

on our calculations with RRTM, it appears that a single value of µ∼0.58 will give both the366

correct planetary albedo and the correct partitioning of absorbed shortwave radiation for367

clear skies; however, for partly cloudy or overcast skies, a single value of µ cannot simultane-368

ously match both the planetary albedo and the partitioning of absorbed shortwave radiation.369

Together with the correspondence between global precipitation and free-tropospheric radia-370

tive cooling (e.g., Takahashi (2009)), the dependence of atmospheric solar absorption on371

zenith angle suggests that idealized simulations could obtain different relationships between372

temperature and precipitation due solely to differences in solar zenith angle.373

Finally, we note that the use of an appropriately-averaged solar zenith angle still has374

obvious limitations. Any choice of insolation that is constant in time cannot hope to capture375

any covariance between albedo and insolation, which might exist due to diurnal or annual376

cycles of cloud fraction, height, or optical thickness. Furthermore, use of an absorption-377

weighted zenith angle will do nothing to remedy model biases in cloud fraction or water378

content that arise from the model’s convection or cloud parameterizations. We hope that379

the methodology and results introduced in this paper will mean that future studies make380

better choices with regards to solar zenith angle averaging, and thus will not convolute real381

biases in cloud properties with artificial biases in cloud radiative effects that are solely related382

to zenith angle averaging.383
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Table 1. Table of planetary albedos and biases.
〈α〉 µ∗A Biases in α (%)

Radiative Transfer Model Atmospheric Profile (%) µ=1/2 µ=2/3
Pure scattering clear sky 19.9 0.550 0.78 -1.40
Pure scattering 68.6% ISCCP cloud, 31.4% clear 31.9 0.653 5.57 -0.49
Pure scattering ISCCP cloud 37.4 0.665 7.77 -0.08
RRTM 1976 U.S. Standard - clear 14.1 0.576 0.56 -0.53
RRTM 1976 U.S. Standard - RS99 clouds 34.8 0.657 3.16 -0.19
RRTM 1976 U.S. Standard - Stratocumulus 51.5 0.686 3.53 0.37
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Table 2. Cloud profiles used in calculations with RRTM. The multiple cloud layers of
Rossow and Schiffer (1999) are used together, and are assumed to overlap randomly. Cloud
fractions are based on Table 4 of Rossow and Schiffer (1999), but adjusted for random overlap
and observation from above (see text). Cloud-top altitudes are based on top pressures from
Rossow and Schiffer (1999) and pressure-height profile from 1976 U.S. Standard Atmosphere.
Cloud water/ice allocation uses 260 K as a threshold temperature.

fraction top altitude water path ice path
Cloud Profile (-) (km) (g/m2) (g/m2)
Rossow and Schiffer (1999) RS99 low 0.475 2 51 0
Rossow and Schiffer (1999) RS99 medium 0.244 5 0 60
Rossow and Schiffer (1999) RS99 convective 0.032 9 0 261
Rossow and Schiffer (1999) RS99 cirrus 0.196 10.5 0 23
Stratocumulus 1.0 2 100 0
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Fig. 1. Schematic example of three different choices of zenith angle and solar constant that
give the same insolation. The solar zenith angle ζ is shown for each of the three choices,
which correspond to simple average, daytime-weighted, and insolation-weighted choices of
µ, as in the text.
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Fig. 2. Plot of albedo against cosine of the zenith angle, for a pure conservative scattering
atmospheric column, based on Pierrehumbert (2010), equation (5.41). We show calculations
for a clear-sky case with τ ∗=0.12 and ĝ=0 (blue), for a cloudy case, with τ ∗=3.92 and
ĝ=0.843 (gray), and a linear mix of the two for a sky that is 68.6 % cloudy and 31.4 % clear
(blue-gray). The average cloud fraction and optical thickness are taken after International
Satellite Cloud Climatology Project (ISCCP) measurements (Rossow and Schiffer 1999), and
the surface albedo is set to a constant of 0.12, independent of µ. The values of the cosines
of absorption-weighted zenith angle are indicated by the x-locations of the vertical dotted
lines, and the planetary-average albedos are indicated by the y-locations of the horizontal
dotted lines (see also Table 1).
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Fig. 3. Plot of albedo against cosine of the zenith angle, for calculations from RRTM.
Albedo is shown for three atmospheric profiles: Tropical (red), 1976 U.S. Standard (green),
and Subarctic winter (blue). We also show results for clear-sky radiative transfer (bottom
set of lines), as well two cloud profile assumptions: observed RS99 cloud climatology (middle
set of lines), and Stratocumulus overcast (upper set of lines) – see Table 2 for more details on
cloud assumptions. The surface albedo is set to a constant of 0.12 in all cases, independent
of µ.
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Fig. 4. Plot of diurnal-average zenith angles (top), and biases in time-mean albedo (bottom)
for equinoctial diurnal cycles, as a function of latitude. Albedo is calculated in RRTM,
using the 1976 U.S. Standard Atmosphere and RS99 clouds (Table 2). Albedo biases for the
daytime-weighted zenith angle (µ∗D, red) and the insolation-weighted zenith angle (µ∗I , blue)
are calculated relative to the absorption-weighted zenith angle (µ∗A, black).
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Fig. 5. Plot of annual-average zenith angles (top), and biases in time-mean albedo (bottom)
for full annual and diurnal cycles of insolation, as a function of latitude. Albedo is calculated
in RRTM, using the 1976 U.S. Standard Atmosphere and RS99 clouds (Table 2). Albedo
biases for the daytime-weighted zenith angle (µ∗D, red) and the insolation-weighted zenith
angle (µ∗I , blue) are calculated relative to the absorption-weighted zenith angle (µ∗A, black).
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