Approximation Algorithms for
Dynamic Resource Allocation

Vivek F. Farias' Benjamin Van Roy*
March 8, 2005

Abstract

We consider a problem of allocating limited quantities)ftypes of resources amordg independent activities that
evolve overT epochs. In each epoch, we assign to each activity a task which consumes resources, generates utility, and
determines the activity’s subsequent state. We study the complexity of, and approximation algorithms for, maximizing
average utility.

1 Introduction

We consider a problem of allocating limited quantitiesidf types of resources amony independent activities that
evolve over! time periods. During each period, a task is assigned to each activity. A task consumes resources, generates
utility, and determines the subsequent state of the activity. The goal is to maximize average utility.

As a motivating context, consider dynamic allocation of hundreds of computers and human experts among tens of
thousands of information processing activities, each of which involves a sequence of tasks such as document translation,
natural language processing, speech recognition, document comparison, and web crawling. Such activities might be
managed, say, at a news organization such as the Associated Press. There are potentially many ways to carry out each
activity, each of which may require different resources and generate a different level of utility. Further, as major news
events occur, the portfolio of activities can change significantly, and the organization may require rapid reallocation of
resources.

In this paper, we propose a model that aims to capture salient features of this problem. Our problem bears some
similarities with the decision-CPM problem [2, 5], which is known to be intractable [3]. Our problem also encompasses
the project selection problem studied in [4].

We prove that the associated optimization problem is NP-hard to approximate within any constant factor. We then
propose and study two polynomial-time approximation algorithms which guarantee small errors in different regimes. The
first leads to an error of no more tha\/7T /N, whereU is the maximal time-averaged utility that can be generated by
an activity. The second algorithm promise§lU /N In(MT)/R) error, whereR is the available quantity of the scarcest
resource.

Our bounds are worst-case and additive. Computational experiments on randomly drawn problem instances suggest
that the approximate solutions generally result in moderate percentage losses in parameter regimes for which the algo-
rithms are designed.

The remainder of this paper is organized as follows. In Section 2 we present the problem formulation and compare
it with models studied in [2, 4]. In Section 3 we show that the corresponding optimization problem is NP-hard to ap-
proximate to within any constant factor. We then present two equivalent integer programming formulations in Section 4.
Section 5 presents linear programming relaxations to these integer programs. One has a polynomial number and the other
an exponential number of decision variables. We show that an optimal solution to the second can be efficiently computed
using an optimal solution to the first. Section 6 establishes integrality properties of vertices of the second linear program.
and presents an approximation algorithm that provides useful performance guaranteed i tkielV regime. Then, in
Section 7, we discuss a randomized rounding approach to the problem that uses ideas from [8]. This approach provides

*Electrical Engineering, Stanford University
TElectrical Engineering and Management Science and Engineering, Stanford University
fCorresponding author: Terman 315, Stanford University, Stanford, CA 94305-4023. email:bvr@stanford.edu

approximation guarantees that can be useful whER > N. In Section 8 we discuss some computational experience
with randomly drawn problem instances. That section also introduces a useful integer programming heuristic for problems
inthe MT" < N regime. Finally, in Section 9, we present extensions of the model.

2 Problem Formulation

We consider the allocation dff resource types (indexed = 1,..., M) to N activities (indexech = 1,..., N) over
T time periods (indexed = 1,...,7T). In each time period, a quantity,, € R of eachm!" resource is available for
allocation. Unused resources do not accumulate; the quantity of resources remains fixed over time. At the beginning of
each time period, the state of each activity takes on a value in a finifesefl, . . ., |S|} and for each activity, a task is
selected from a finite sed = {1,. .., |A|}.

Letz, . € S anda,; € A denote the state of and task assigned toudeactivity in thetth time period. The state of
the activity at the beginning of the + 1)th time period is given by, (x,, ¢, an). Further, during theth time period, the
activity generates utilitys,, (z,, ¢, an,¢) and consumes resources,, (z, ¢, an,t). We assume that there is a distinguished
taska’ € A that generates no utility and consumes no resourcesyj,éx, a’) = 0 andr,, ., (z,a’) = 0 for all n, m, and
x. This can be thought of as an option to idle, however, it is not essential to agsume’) = «.

The objective is to maximize utility, averaged over activities and time. In particular, we have the following optimization
problem, which we will refer to as the dynamic resource allocation (DRA) problem:

max ﬁ Zt Zn Un (mn,ta an,t)
s. t. Zn rn,m(xn,tyan,t) S Rm Vt,m,
fn(xn,ta an,t) = Tn,t+1 Vn, t.

The decision variables are the actians;. Note that the problem data consist of functions: S x A — R, r, ., -
SxA—R, f,: S x A— S, scalar resource quantitiés,,, and initial states:,, ;. Hence, the problem data is encoded
asO(|S|?|A|N + |S||A|N M) real numbers. We assume that these numbers are rational so that the input representation
is finite.

One way to view the DRA problem involves drawiig directed acyclic graphs, each representing one activity. The
nodes of each graph are partitioned ifita- 1 subsets, each representing a time period. (The- 1)th subset consists of
a single node representing termination of the activity. hesubset (for < T') consists of up t¢S| nodes, representing
the possible states of the activity at that time. Edges represent potential state transitions, each edge pointing from a node
in atth period to one in & + 1)th period. Each edge is also associated with a bundle of resources consumed and utility
generated during the transition. The DRA problem is to determine trajectories through the activity graphs that maximize
aggregate utility subject to resource constraints.

Our problem bears similarities with the decision-CPM problem [2]. Decision-CPM requires finding a directed acyclic
subgraph (specified by a suitable, possibly non-linear constraint set) of an activity graph which is itself an arbitrary
directed acyclic graph. Edges have associated costs and the goal is to minimize total cost incurred. Our problem may be
viewed as a discrete-time decision-CPM problem wherein the activity graph is a forest that decomposes intdva set of
separate activity graphs. We are required to find paths in each of these to maximize aggregate utility. Resource constraints
preclude a trivial decomposition of the problem. These resource constraints impose an activity selection problem similar
to that discussed in [4], which considers the selection of an activity portfolio wherein each activity is associated with a
time-dependent resource consumption profile and resource consumption is constrained by a prescribed budget.

3 Computational Complexity

What quality of approximations might we expect? We use a result of Chekuri and Khanna [1] that establishes inapprox-
imability of the packing integer program to show that the DRA problem is hard to approximate to within any constant
factor.

Theorem 1. For anya < oo, the DRA problem is NP-hard to approximate to within a factos.of

Proof: We consider a restricted class of DRA problems, With= 1 and|.A| = 2. The first of the two tasks consumes
a quantityC,,,, € [0,1] (rational) of the resource and generates utilitye [0, 1] (rational), while the second consumes

nothing and earns no utility. There aRg, € [1, o0) units of eachnth resource. This DRA problem is equivalent to the

packing integer program:
1

max ~u'a
s. t. Ca<R
a€{0,1}N
By Theorem 6 of [1], for anyx < oo, this problem is NP-hard to approximate to within a factowof O

Our proof above reduces a packing integer program to a DRA problem with the same input size. In particular, optimal
solutions of a packing integer program with variables and\/ constraints correspond to optimal solutions of a DRA
problem with M resource types andy’ activities. Theorem 6 of [1] is proved via a reduction of maximum independent
set to the packing integer program problem whate« M, which illustrates the hardness of the DRA problem in the
N <« M regime. It may still be possible to generate good approximations in other regimes.

4 Integer Programming Formulations

The approximation algorithms we will develop revolve around two integer programs (IP), each of which solves the DRA
problem, and their linear programming (LP) relaxations. We present these two IPs in this section.

4.1 The Edge IP

For eachn, z, a, andt, let ¢,, , . » be an indicator taking value 1 if at tinteactivity » is in statex and assigned task
and 0 otherwise. Further, for eagh

__ . _J1 if f,(z,a) = =,
Fo(@,a,2) = { 0 otherwise.
The DRA problem can then be solved via the following 0-1 integer program:
max ﬁ Zn,x,a,t Un (:Ev a)¢n,r,a,t
s. t. Zn,;@a rn,m(x)a)¢n,1,a,t S Rm Vt,m,
¢n,z,a,1 - O; Vn, a,T 7£ Tn,1,
22 (T80, %)z a,t-1 = D g Pnzant Vn,x,t > 1,
Zz,a (bn,ac,a,t <1 Vn, t,
¢n,x,a,t S {0, 1} Vn,w,a,t.

The variables of this IP represent flows along edges of activity graphs. We will refer to this |PEdghé? We digress
to note that the above program permits that for seme,, . .+ = 0 for all z, a in everyepoch; in such a case setting
®n.z. 1,01 = 1, and selecting the idling actiogf in each subsequent epoth- 1 for activity n will also be a feasible
solution of equal value to the above integer program and the corresponding DRA problem.

4.2 The Trajectory IP

It is useful to consider another IP that has as its variables flows along possible trajectories in each activity graph. Here,

a trajectory for thenth project is a sequence @f state-task pairs(x,, 1, an.1), (Tn,2,@n2), -, (Tn1,an,7). Note that
there arglA|” possible trajectories per activity. We assume that these trajectories are indexed Ky, ..., |A|”},
denoting trajectory of activity n by (=}, 1, an1),-- -, (], 7, @}, 7).

For eachn andj, letd,, ; be an indicator taking value 1 if activity follows trajectoryj and0 otherwise. The DRA
problem can then be solved by the followitrgjectory IP.

max T Dot un(% a{)end

s. t. Do Tnm(27,08)0n; < Ry Vt, m,
Zj Gn,j < 1 VTL7
0, € {0,1} n, j.

Analogous to the case of the Edge IP, we note that the above formulation permits that fou,syme= 0 for all j; in
such a case settirl), ; = 1 for some; such that], , = o’ for all ¢ will also be a feasible solution of equal value to the
above integer program and the corresponding DRA problem.

5 LP Relaxations

Our approximation algorithms entail solving a relaxation of the trajectory IP (which we will refer to dsafbetory

LP) wherein we relax the constraifi, ; € {0,1} to ¢, ; > 0. Since the number of decision variables is exponential

in T', straightforward formulation and solution of the trajectory LP is impractical. Instead, we develop an algorithm that
efficiently solves the trajectory LP in two steps. The first step is to solve a relaxation of the edge IP (which we will refer
to as theedge LR, wherein we relax the constraig}, ; .+ € {0,1} t0 ¢y, 5.0, > 0. This LP involvesNT|S||.A| decision
variables and can therefore be solved in polynomial time.

Each decision variable of the edge LP is associated with an edge in an activity graph. For any optimal solution of
the trajectory LP, there is a feasible solution to the edge LP with equal objective value. The latter can be generated by
assigning to each edge a value equal to the sum of values associated with trajectories that traverse the edge.

The converse is also true. That is, for any optimal solution of the edge LP, the trajectory LP has a feasible solution with
equal objective value. Consequently, lettitjj , be the optimal objective value of the edge LP, we have the following
result:

Theorem 2.
ZELP = ZTLP
We will now present a polynomial time algorithm that computes an optimal solution to the trajectory LP, given an
optimal solution to the edge LP. In addition to completing the proof of the above lemma, this algorithm provides the
second step of our algorithm for solving the trajectory LP.
Let ¢* be an optimal solution of the edge LP. Fix Flow conservation implies that if;, , ,, > 0 for some edge
(z,a,t), the edge must be part of a trajectgrfor which ng* it 0 for all ¢.

We consider an iterative algorithm that computes an opt|mal soldtionf the trajectory LP. The algorithm is ini-
tialized withd = 0 and¢ = ¢* and terminates witd = 6* and¢ = 0. In each iteration, the algorlthm identifies the
edge(z,a,t) = argmin{¢, ...+ > 0} with minimal positive value and gth trajectory for which(z? 7, t) = (Z,a)
and Praiale 2 Prai for all t. Then, the algorithm se®%, ; := ¢, ; ;7 and for each, update&;ﬁnm al b T
Prai 0l .t~ Pnzai that is, values along the trajectory are deducted from the edge LP solution and added to the tra-
jectory LP solution. Because the sequence of edge LP solutions is monotonically decreasing and each iteration sets one
component to zero, the algorithm terminates in no more (S |T iterations. Further, after each iteration, we have

Z un(xv a)qﬁn,w.,a’t + Z un(xgv a{)en,j = Z un(x a)(bn z,a,t

x,a,t t,7 x,a,t

Z un(zg, az)en-j = Z Un (I a)gb” ,x,a,t*
t,j

x,a,t

It follows that, upon termination,

If we apply the algorithm we have described to each of Mectivities, we arrive at an optimal solution to the
trajectory LP with at mosiV|S||.A|T nonzero valued variables. Note tifétneed not be represented exhaustively; only
storage of the nonzero variables is required.

6 Using an Optimal Vertex

Our first approximation algorithm converts an optimal soluti¢rof the trajectory LP to an optimal vertex. Task assign-
ment is then carried out based on this optimal vertex.

6.1 Vertices of the Trajectory LP

Each activity is associated wittd|” variables, 1 type 2 constraint, ahd|” type 3 constraints. It is easy to see that at
most|.4|T among these type 2 and type 3 constraints can be binding. Furth&l ibf these type 2 and type 3 constraints
are binding, all|.A|” variables associated with the activity are integer valued.

There are a total aV|.A|” variables. Hence, at any vertex, at leA§tA|” constraints are binding. No more thahT’
of these can be of type 1. Hence, at leAst4|” — M T of these must be of types 2 or 3. It follows that no more than
MT activities can have non-integer valued variables. We state this fact as a lemma, which is very similar to a well-known
result from [7].

Lemma 1. At any vertex of the trajectory LP, no more th&fl" activities are associated with non-integer values.

Given an optimal solutiod*, an optimal vertex can be computed by solving a linear program involving only the
nonzero-valued components®f, which is equivalent to solving the trajectory LP with all other variables constrained to
be equal to zero. Since the number of nonzero components is polynomial in the input size, this can be done in polynomial
time.

6.2 Task Assignment

To convert an optimal vertex of the trajectory LP to a suboptimal feasible solution of the DRA problem, consider idling
during every period in each activity for which (1) there are associated non-integer-valued variables or (2) every variable is
equal to zero. The variables associated with each other activity assign value 1 to a selected trajectory and O to all others,
and we simply assign tasks to follow the selected trajectory. It is easy to see that this results in a feasible solution to the
DRA problem. Further, if

= max — uwa
MTZ” 1:0t)

the utility is at least the objective value of the trajectory LP mibug/7//N. Since the objective value of the trajectory
LP exceeds that of the DRA problem, this also offers a performance loss bound.

We conclude our discussion in terms of a theorem. 4fg{, andzj;p denote the optimal objective values of the
DRA problem and the trajectory LP, respectively. g p denote the objective value associated with the suboptimal
solution to the DRA that we have described.

Theorem 3. A feasible solution to the DRA problem with an objective value of

UMT _ , UMT

= *
ZTLP 2 Z71p — N 2> ZDRA — N

can be computed in polynomial time.

7 Randomized Rounding

In Section 5, we presented a means of producing a sparse optimal solution to the trajectory LP. This sparsity enables
construction of feasible solutions to the trajectory IP via the randomized rounding techniques of [8]. Such solutions are
near optimal wherR > /N, whereR = min,,, R.,. That is, the availability of the scarcest resource is large relative to

the square root of the number of projects.

Letd; ;,j € {1,...,|A"},n € {1,..., N}, be a basic optimal solution to the trajectory LP. If one were to randomly
assign trajectory to activityn with a probability slightly less tha#¥, ;, and assign the idling trajectory with the remaining
probability, then one might hope to hope to generate a feasible solution to the DRA with value cipge tdhis is the
spirit of the randomized rounding approach we pursue in this section.

7.1 An Existence Result

We will first show that there exists a feasible solution to IP that is within an additive en@(@t/N In MT/R) of the
optimal solution to the trajectory-LP. Towards this end we introduce some notation and preliminary results. For some
fixed scalaw, v € (0, 1], we define the following random variables:

e Foreachn,n,t, letRY

m,n,t

represent the random quantity of resourceonsumed by activity, in time ¢ if activity

n were aSS|gned trajectopywnh probability ¢}, ;v and the idling trajectory with probability — v/ Zj 5.j- Note
thatRy, , , has supporf (7 m (. al); 5 =1,...,|A|T}U{0} and takes value, ., (7, a]) with probabilityv0;; ;

ando with the remaining probability.

e For eachn, let U} represent the random utility earned by activ;ityif it were assigned trajectory with prob-
ability »9;, ; and the idle trajectory with probability — v 3" 0 .. Note thatU;, has suppor{u,(z},a]);j =

., |A|T} U {0} and takes value,,(z], a]) with probability6;; ; and0 with the remaining probability.

Now observe that if one were to construct a random solution to the DRA wherein activwigre assigned trajectory
with probability»¢;, ; and the idle trajectory with probability—v . 0}, ;, thenZnN o Uy /NT corresponds to the value

of such a randomly generated solution wiiilg, — ano .n,¢ 1S the quantity of resource: left unused at time. The
following concentration results will be useful in establishlng existence of a feasible solution with objective value close to

*
RTLp-

Lemma 2. For anye > 0 lety = 1 — L/ XIWTELT) 4, > () then we have for each, t:

1
- MT+1+4c¢

ZRmnt—

Lemma 2 gives us an upper-bound on the probability that the resource constraint for resanriime ¢ is violated by
our randomly generated solution.

Lemma 3. Givene > 0, letrv be as in the previous Lemma and assunme 0. Let§ = VZ*U IH(M;jHe). Then,
TLP
N 1
P § VINT < v(l—9)z% < - -

Lemma 3 gives us an upper-bound on the probability that the value of our randomly generated solution to the DRA is less

thanv(1 — 6)2iy p = 2y p — [% + %] | M MT+14)

The proofs of both Lemmas rely essentially on the Hoeffding bound [6], and have been omitted for brevity.
Armed with Lemmas 3 and 2, we are ready to prove our main result on the existence of a feasible solution to the DRA
with value close ta}; p:

Lemma 4. Givene > 0 letr be as in Lemma 2. if > 0, then there exists a feasible solution to IP with value

> 2 p— U\2NIn(MT +1+¢)/R

Proof: From Lemma 2, we have that for eagh ¢:

N
ZR:)nnt>R

n=0

1
MT+1+6

That is, the probability that a randomly generated solution violates the resource constraint for resouticee ¢ is less
thanl/(MT + 1 +¢).
Letd be as in Lemma 3. Then, we also have that:

N
v * 1

That is, the probability that the value of a randomly generated solution is lessithan- {% + %} \/ w
islessthan/(MT + 1 + €). Thus the probability that any of these events occur

N N
P [uW){Z R s> R} UL UL/NT < w(1 6)%}}
n=0 n=0

is, by the union bound, less than

< MT +1
T MT+1+¢€

+Y P

m,t

ZRmnt

N
P> UY/NT <v(l—8)zipp
n=0

Consequently we have that the probability that no constraint is violated and that the value of the randomly generated

ﬁ} N In(MT+1+e)
2

solution is greater thagy.; », — {% +5 is

N
{Z Ry, i < R Vm, ;> UY/NT > v(1 — 5)2:;“,}
n=0 (1)

v * €
=1- [U(m r){z Ry ne 2 B} U {Z Up/NT < v(1 5)ZTLP}] > MT+1+te

n=0

That is, we have the existence of a feasible solution to IP with value

o [T, T mMT 1+

We assume without loss of generality thiiatc NV (for otherwise every solution to the DRA is feasible, trivializing IP), so
that, we have the existence of a feasible solution to IP with value

>zt p—U\2NIn(MT +1+¢€)/R

a

7.2 Task Assignment via Randomized Rounding

Our discussion thus far suggests the following natural randomized algorithm which may be used to generate a feasible
solution to IP, of the quality indicated by Lemma 4. Given a solutlpn,j € {1,...,J},n € {1,..., N} to the TLP,

the algorithm assigns (independently for eaghtrajectoryj to activity n with probability v¢;, . and assigns the idle
trajectory with probabilityl — VZ ¢, ;- Since solutions to the TLP havé + MT positive components cf. Lemmal,

this procedure take®(N + MT) t|me In the event that the resultant solution is not feasible, or the value of the resultant
solution is less thany.; , — {E +Z % the solution is discarded and the procedure repeated. Now by
(1) the probability that the rounded solution does not need to be discarded is greatefthan so that the expected

number of iterations required is less thtfd-+4<. We conclude our discussion in this section with the following theorem.
Let the random variablég Axp denote the ‘objective value associated with the suboptimal solution to the DRA that the
procedure we have described terminates on.

Theorem 4. Givene > 0, if %w/ w < 1 then a feasible solution to the DRA problem with an objective value
of B

ZRAND > Zipp — UV2NIn(MT +1+€)/R > 25 — UV2NIn(MT + 1+ €)/R,

can be computed in randomized polynomial time.

8 Computational Experience

The bounds of Theorems 3 and 4 are worst-case and additive. In this section, we present computational experiments
on randomly drawn problem instances. The results suggest that the approximate solutions generally result in moderate
percentage losses in parameter regimes for which they are designed. Alongside performance, we report statistics on
compute time to demonstrate that the algorithms scale well to large problems. Finally, we propose an integer programming
heuristic that, for problems in the/ T << N regime, further improves approximations without requiring much additional
compute time.

8.1 Generative Model

We consider random problem instances wWigh = 10, |A| = 3, N = 100, and various values ¥/ andT. For fixed
N, S|, |Al, M andT, we generate the activity graph for a single project as follows. Connect the start state forproject

M 5 10 20
T Approx. \ Time Approx. \ Time Approx. \ Time
Opt.Vert. | 0.889 +/- 0.005| 8.308 +/- 0.187| 0.774 +/-0.016| 15.91 +/- 0.331| 0.605 +/-0.016| 31.21 +/-0.731
5 Heur. 0.971 +/- 0.009| 4.107 +/-0.077| 0.915 +/-0.019| 7.082 +/- 0.379| 0.916 +/- 0.030| 16.52 +/- 1.490
Rounding.| 0.758 +/- 0.017| 8.416 +/-0.201| 0.713 +/-0.019| 16.07 +/- 0.346| 0.708 +/- 0.016| 31.62 +/- 0.741
Opt.Vert. | 0.771 +/- 0.012| 42.01 +/- 0.639| 0.620 +/-0.012| 115.3 +/- 2.996| 0.380 +/- 0. 016| 296.8 +/- 17.16
10 Heur 0.986 +/- 0.002| 21.76 +/- 2.715| 0.975 +/- 0.003| 132.2 +/- 28.41| 0.968 +/- 0.022| 1663 +/- 564.8
Rounding | 0.709 +/- 0.017| 42.31 +/- 0.611| 0.682 +/- 0.014| 116.1 +/- 3.019| 0.679 +/-0.017| 298.2 +/- 170.9
Opt.Vert. | 0.614 +/- 0.011| 239.6 +/- 5.790| 0.365 +/- 0. 015| 741.4 +/- 24.90| 0.127 +/- 0.012| 1196 +/- 22.52
20 H eur. *k%k *k%k *k*k *k%k *k%k *k%k
Rounding | 0.701 +/- 0.020| 240.7 +/-5.793| 0.686 +/- 0.018| 743.5 +/- 24.90| 0.668 +/- 0.018| 1201 +/- 22.50

Table 1: Performance for the optimal vertex and rounding algorithms, as well as the heuristic for varying valuasf

T'. Approximation ratios reported are lower bounds computed from the value of the LP-relaxations. *** indicates that the
heuristic was unsuccessful in finding a feasible solution after a day of computation. Computation time reported in seconds
for SunBlade 2000 machines with 2GB of RAM.

(which is selected uniformly at random fraff), x,, 1, to k randomly selected states fra$twherek is selected uniformly

at random betweenand|.4|. Each of thesé states represent the reachable statés-ap. We repeat the procedure for

each of thesé states and continue in this fashion, to construct an activity graph spaifingpgchs. For each edge in

the activity graph, we set resource consumption of each olMesources to some random value distributed uniformly

on [0, 1]. We also set the utility of the edge to some random value distributed uniformy,h N project-graphs are
generated in this manner. We 94, = 0.5N for eachm. Such a model, while fairly general, allows us transparent
control on two parameters required to identify the regime of the algorithms’ applicability. First, we are assured that
E[25r4l/U > 0.25 where the expectation is over problem instances, and secondg A#af > 5 for n > 100.

8.2 The Optimal Vertex Algorithm

We will call our two algorithms th@ptimal vertex algorithnand therandomized rounding algorithmWe first discuss

the performance of the optimal vertex algorithm. We would like to study percentage losses associated with problems
for which MT <« N, this being the regime in which Theorem 3 assures small additive loss. Table 1 illustrates that
for problems from our generative model, moderate percentage losses result for instances with ialgsvoés high

as1/2. Further the algorithm requires only a few seconds to solve each instance. The performance of the algorithms
deteriorates when T' grows larger thanV.

8.3 The Randomized Rounding Algorithm

For the randomized rounding algorithm, we would like to examine percentage losses for problems idAihisHarge

relative toN. Table 1 illustrates that moderate percentage losses are obtained for instances with ali&9\oés large

as4. Further the algorithm requires only a few minutes to solve each instance. Even for the cheiassofall ag0~5,

the algorithm required just a single rounding iteration. This is attributed to the fact that the bounds used to compute the
and¢ parameters are themselves extremely conservative. In contrast, a commercial integer programming solver (CPLEX)
employing heuristics to find a first feasible solution quickly, was unable to produce a feasible solution even after a day of
computation for most instances in thé7" > N regime.

8.4 A Task Assignment Heuristic for theMT < N regime

We also believe that the use of a generic integer programming technique such as branch-and-bound with a tree exploration
heuristic that emphasizes finding feasible solutions quickly is likely to perform very well on problemsinthe: N

regime. This is because the root node relaxation for the Edge integer program has very few fractional variables cf.
Corollary 1 bellow, and a simple depth first search on the fractional variables is guaranteed to produce a feasible solution
no worse than that produced by our algorithm.

Corollary 1. There exists a basic optimal solution to the Edge LP wherein at lastM T projects have integral flows
and at mosRM T2 variables are fractional.

Proof: Lemma 1 shows the existence of an optimal, possibly over-complete basis for the Edge LP wherein at least
N — MT projects have integral flows and at m@di/7? variables are fractional. Since there must be a subset of columns
of such an over-complete optimal basis that forms an optimal basis, and since this subset necessarily includes columns
corresponding to projects with integer solutions, the claim follows. O

One heuristic we experimented with along these lines, is presented in Table 1. After computing an optimal vertex to
the trajectory LP, the heuristic fixes integer valued variables in the edge LP, and in place of the task assignment procedure
of Section 6.2, uses the first feasible solution from a generic integer programming solver to resolve fractional edges. As
illustrated in Table 1, the heuristic takes very little additional time, and produces significantly better approximations for
problems in theMT < N regime. As the value oM T/N increases, the heuristic quickly become computationally
infeasible.

9 Resource Roles and other Extensions

We introduce the concept ofrale. The execution of a task requires certain roles be filled by available resources. As an
illustration, returning to the example of the Associated Press, the role of translating Arabic to English might be filled by a
translator (the resource) that is bilingual in English and Arabic, or by one that is trilingual is English, Arabic and Hindi.
The optimal vertex algorithm can be extended to accommodate this.

More formally, we consider the model of Section 2, where in plac&/afesource types, we havd roles. We will
assume that at each of tieepochs we havé resource units indexed (indexéd= 1,..., L), where each resource is
associated with a qualification sgt C {1,..., M} that represents the roles unitmay be assigned to. Here, we let
rn.m (2, a) denote the number ables of type m that need to be filled by theth project if it were in stater and took
actiona. Matching resources to roles in timienay be viewed as a transportation problem withupply nodes each with
a supply ofl, and M demand nodes each with a demand determined by the choice of actions for each project.in time
The f}, variables in the edge LP and trajectory LP below correspond to the flow variables for the transportation problem
for time ¢; an edge from resourddo rolem exists iffm € ¢;. We have the following analogue of the edge LP (ELP’):

max ﬁ Zn,x,a,t Un, (.%‘, a)(bn,%,aﬂt

8.t Zn,x,a T'n,m (33, a)¢n,m,a,t < Zl fltm Vt, m
¢n,$,a,1 = 07 Vn’ a,x ;é Tn,1,
Zf@ Fn(fa a, x)(bn,f,a,t—l = Za ¢7L,a:,a,,t VTL, z,t > 1,
Zw,a (bn,a:,a,t S 1 VTL, t,
Zm fltm < 1 Vl,t
fim 20 Vi, m,t.
Onzat >0 Vn,x,a,t.

We also have the following analogue to the trajectory-LP (TLP’):

max NT Donit Un (x{, ai)fn;

s. t. an T'n,m ($g7 ai)emj S Zl flfm Vt? m (type 1)
Zm fltm S 1 Vl, t.
fltm > 0 W,m,t.
>ibn; <1 vn, (type 2)
0n; >0 vn, j. (type 3)

Analogous to Theorem 2, we have the following theorem:

Theorem 5.
ZELPY = 2TLP
The proof of this result is identical to that presented in Section 5; given an optimal solution to ELP’, it is possible using

the flow decomposition procedure in that section to construct an optimal solution to TLP’ in polynomial time. Furthermore
it is not hard to see that the following analogue to Lemma 1 holds (the argument used in Lemma 1 applies identically).

Lemma 5. At any vertex of TLP’, no more thaW T" activities are associated with non-integer values.

Finally, given an optimal solutiori¢;, ;, [*) to TLP’, we assign trajectories to activities exactly as described in
Section 6.2. In doing so, we are assured of integral demands for each role, less than or &quAl‘tdor eachm, t.
Arriving at an allocation of resources to roles then requires the solutid’Bftransportation problems whose feasibility
follows from the feasibility of(0; ;, /). We conclude our discussion of this extension with the following theorem. Let

ZrLp denote the objective value associated with the suboptimal solution to the DRA problem with roles that we have
described.

Theorem 6. A feasible solution to the DRA problem with roles having an objective value of

) . UMT _ UMT
ZTLP’ 2 ZTLpr — B > ZDRA’ — N

can be computed in polynomial time.

We close the paper mentioning a few immediate extensions of our model and results. Instead of assuming that the
availability of a resource stays fixed over time, we may also model the vector of available resources evolving according
to some time varying linear dynamical system. Denotingpythe M -dimensional vector of available resources at time
t, and assuming that at time R; evolves according to the linear syste®p, | = A;R; + b;, whereA;, € RM*M and
b, € RM, and further that?; is known in advance, we may consider the following DRA problem with time-varying
resource availability:

max ﬁ Dot D on Un Tty Gnt)

s. t. Zn Tn,m(xn,t) an,t) < (Rt)m Vt, m,
fn(xn,h an,t) = Tn t+1 Vn, t.
Rt+1 = AR, + b Vi< T

The natural analogues to the Edge and Trajectory LPs for the above problem have properties identical to those of the
Edge LP and Trajectory LP explored in Sections 5 and 6; the proofs and algorithms of those sections apply identically. It
is therefore possible to efficiently produce, for the DRA problem with time varying resource availability, a solution having
value> zfp, —UMT/N.

Finally, we note that there is no reason to assume, for either the optimal vertex algorithm or the rounding algorithm,
that the functions.,, : S x A— R, 7, : Sx A= R, f, : S x A — S are independent @f such a dependence merely
increases problem description length by a factdr of

Acknowledgments

This research was supported by a supplement to NSF Grant ECS-9985229 provided by the Management of Knowledge
Intensive Dynamic Systems Program (MKIDS). We thank Sid Berkowitz for stimulating discussions that inspired the
problem formulation and Ashish Goel, Pete Veinott, and Yinyu Ye, for helpful discussions on approximation algorithms.

References

[1] Chandra Chekuri and Sanjeev Khanna. On Multidimensional Packing Prob®As Journal on Computing33(4):837—851,
2004.

[2] W. Crowston and G. L. Thompson. Decision CPM: A Method for Simultaneous Planning, Scheduling, and Control of Projects.
Operations Resear¢ii5(3):407-426, 1967.

[3] P. De; E. J. Dunne; J. B. Ghosh and C. E. Wells. Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks.
Operations Resear¢d5(2):302-306, 1997.

[4] G.L.Nemhauser and Z. Ullman. Discrete Dynamic Programing and Capital Allocadamagement Sciencé5(9):494-505,
1969.

[5] Thomas J. Hindelang and John F. Muth. A Dynamic Programming Algorithm for Decision CPM Netv@plksations Research
27(2):225-241, 1979.

[6] W. Hoeffding. Probability for sums of bounded random variablesAmer. Stat.58:13-30, 1963.
[7] Alan S. Manne. Programming of Economic Lot Siz&éanagement Sciencé(2):115-135, 1958.

[8] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms approximating packing integer praguanas.of
Computer and System Sciencg&s:130-143, 1988.

10

