

Water and Sanitation Service Coverage and Health Consequences

- Developing countries have prevalent health problems due to lack of water and sanitation.
- Paraty's service coverage:
 - 60% potable water; 12% sewerage connection
- Water and sanitation-related diseases
 - 32% of all hospital admissions in Brazil
 - >100 diarrhea cases/month (443 diarrhea cases from 9/02 to 12/02) in Paraty
 - Include: diarrhea, typhoid, viral hepatitis A, cholera, dysentery, guinea worm disease

Prob. 1: Drinking Water Quality

- 64% of Municipality's water sources (21% of which were chlorinated) did not comply with drinking water standards.
- 24% of City's chlorinated water did not comply.

Prob. 2: Heavily Contaminated Surface Waters

- Jabaquara Beach:
 - Inadequate for primary
- Perequet Riveration (e.g. Mathemsi River
- Gravite qualted for servopen second warefunction water that earlies ports wastewater from houses to Paraty Bay, has qualities of raw sewage.

Proposed Policy/City's Needs

- Wastewater collection infrastructure and treatment plant
 - Limit pollution of rivers and beaches
 - Reduce risks to health
 - Improve aesthetics in the city.
- Drinking water treatment plant
 - Removal of particulate matter by filtration
 - Effective disinfection

Cost Estimate for Improvements

- Criteria:
 - Population = 15,000; 3x increase in summer
 - Flow = 3 mgd (assuming 180 L/capita-day)
- Wastewater treatment plant + infrastructure:
 - Total annual cost = Annual O&M + Amortized capital cost (20 years at 6 percent) = R\$ 0.5 million
- Drinking water treatment plant:
 - Conventional filtration or Direct filtration
 - Total annual cost = R\$ 1 million

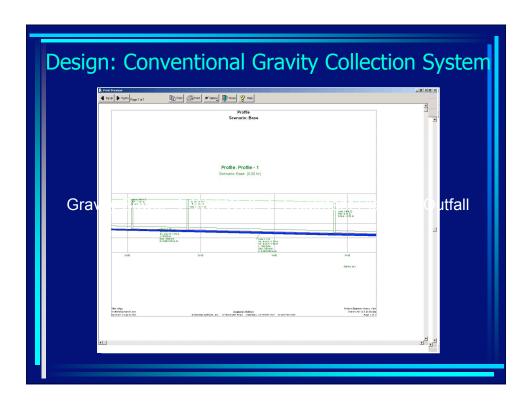
Cost vs. Willingness to Pay

- Cost for improvement:
 - R\$ 32/household-month (w/o meter)
 - R\$ 0.35/m^3 (w/ meter)
- Willingness to pay (WTP):
 - WTP = current payment for existing services + bottled water + (min wage lost from sickness)
 - = R\$7+ R\$36 (assuming 2L/capita-day) + (R\$7/capita-day)
 - = R\$43 ~ R\$50/household-month
- Willingness to Pay > Cost for improvement

The Need for Infrastructure Development

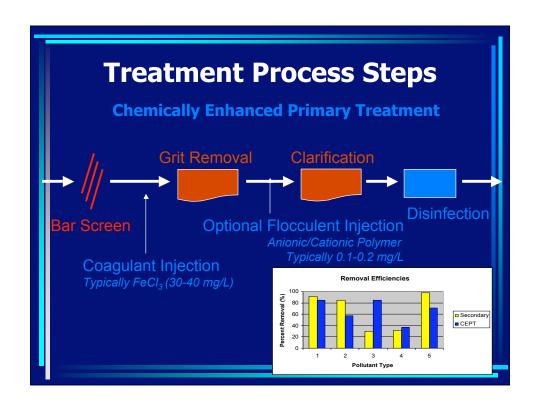
Propose a design of a wastewater collection system for the Historical Center of Paraty, Brazil.

Design Considerations

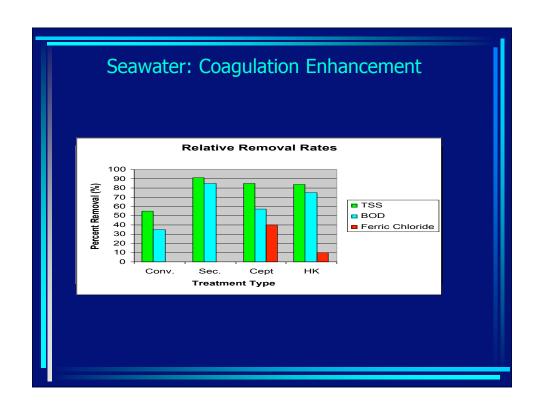

- High water table
- Flat land
- No vehicles
- Roads in poor condition
- No basements
- Underground structures (water distribution system, telephone line, nonfunctional sewer collection system)
- Recent Survey: 415 residential lots, 211 commercial lots, 6 vacant lots, and 66 other lots

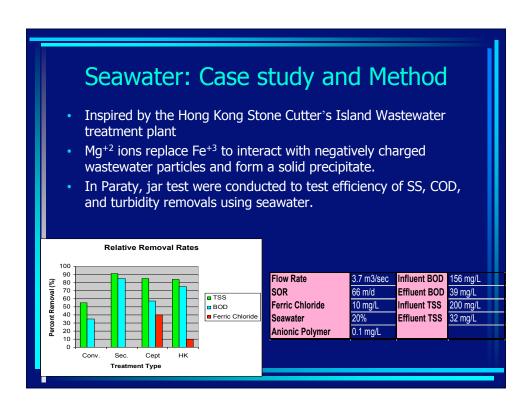
Potential Collection Systems

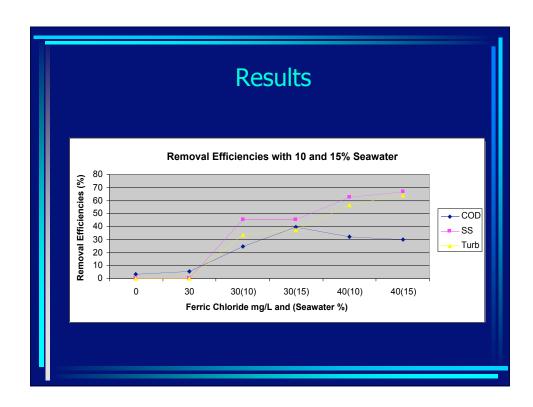
- Conventional Gravity Sewers
- Pressure Sewers
- Vacuum Sewers
- Small-diameter Gravity Sewers


System Criteria

- Expandable: Future collection additions
- Economical: Low cost system
- Adaptable: Flexible to seasonal fluxes
- Simple: Ease of operation and maintenance



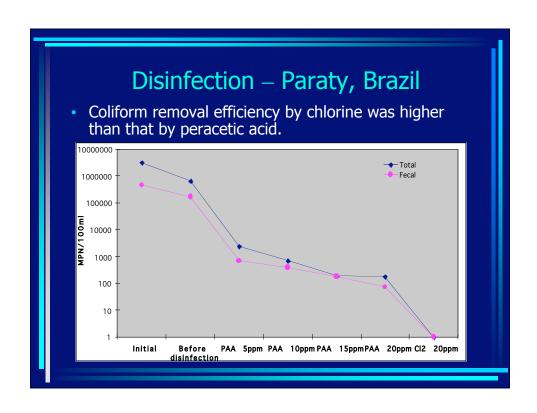


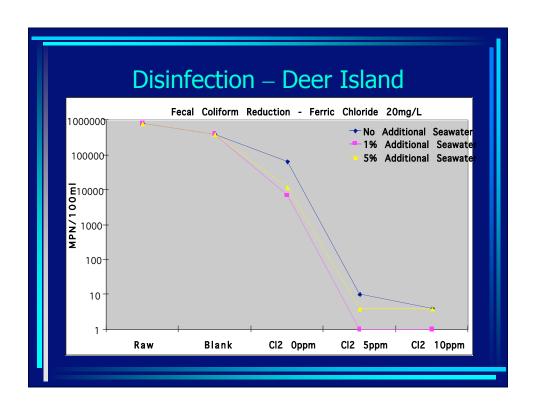


Seawater as an economic coagulant?

- Seawater is responsible for 20% increases in removal efficiencies of SS, Turbidity and COD at the same FeCl₃ concentration
- Significant reductions in required volume of FeCl₃
- Ideal for treatment plants with easy access to the ocean
- Easier handling and storage requirements compared to other chemical coagulants
- More research is needed on a pilot test scale but data from this project is positive.
- Hong Kong, Norway, San Diego and Boston examples.

CEPT & Disinfection


- Why does CEPT efficiently and economically produce a disinfected effluent?
 - Quality
 - Lower coliform concentration in the effluent from CEPT settling tank
 - Cost
 - Lower amount of a disinfection agent required


Disinfection - Chlorine

- Disinfection & Effects of Seawater
- Addition on Chlorination Process
 - $\,-\,$ Most commonly used throughout the world
 - Inexpensive equipment and operation
 - Easy to apply and measure
 - DBP: THMs, AHHs

Disinfection - Alternatives

- Peracetic Acid (PAA)
 - Solution containing acetic acid, hydrogen peroxide, peracetic acid, and water
 - Efficient bactericide and virucide
 - Not influenced by pH
 - Short contact time
 - No formation of DBPs
 - Biodegradable Products : Acetic Acid
- Ozone
- UV Radiation

Disinfection - Results

- Effect of seawater addition
 - Reduced coliform level in the effluent from CEPT
- Disinfection is essential for the WWTP.

Conclusions

- Wastewater infrastructure and treatment and drinking water treatment for the city.
- A conventional gravity collection system is a feasible solution because of:
 - Relatively low costs
 - Simple operation and maintenance
 - Ease of expandability to future connections
 - Adaptability to seasonal changes
- Chemically Enhanced Primary Treatment is the recommended treatment alternative for Paraty.
- Seawater addition is a promising coagulation enhancement mechanism.
- Seawater addition improves the rate of coliform removal.
- Need to consider the use of PAA as an alternative disinfection agent

Thank You

- Professor Donald Harleman
- Frederic Chagnon
- Dr. Ricardo Tsukamoto

QUESTIONS?