

#### THE GLOBAL ISSUE



- Globally, 1.1 billion people lack access to an "improved" drinking water source
- 1.7 million deaths annually are from unsafe water, sanitation, & hygiene
  - 90% of these deaths in children
  - Virtually all in developing countries

#### Millenium Development Goals

To halve by 2015 the proportion of people without sustainable access to safe drinking water

# HOUSEHOLD DRINKING WATER TREATMENT AND SAFE STORAGE (HWTS)

- Treats water at the point of use
- Made out of local materials
- > Relatively cheap
- > Hard to implement



#### PURE HOME WATER TEAM



- > 2 Ghanaian social entrepreneurs
- > MIT engineering and business teams
- > Local Partners: World Vision

#### PURE HOME WATER

- Selling Household Treatment Products
  - Tamakloe
  - Nnsupa
  - Safe Storage



#### GHANA BACKGROUND

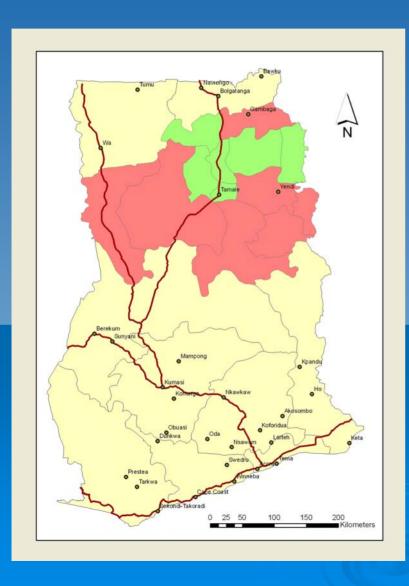
#### > General

- West Africa
- Population: 21 million
- Size: ~ Oregon
- Language
  - English and over 60 Tribal

#### > Project

- Fieldwork: January 2-27th
- Northern Region
- Accra, Kumasi -> Tamale

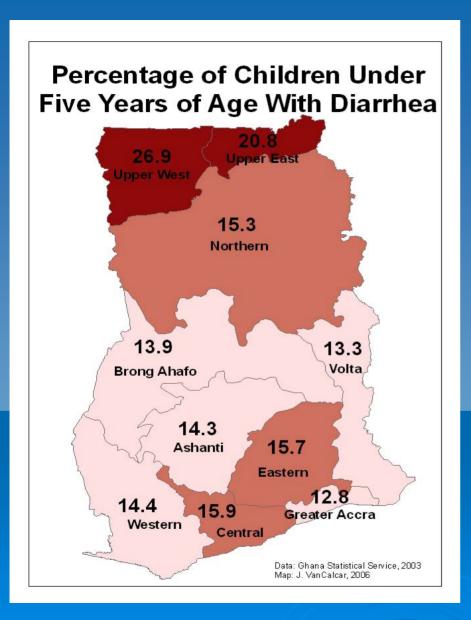


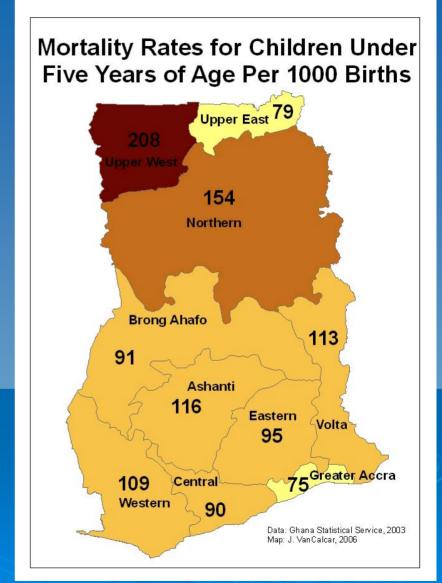

# Collection and Representation of GIS Data to Aid HWTS Implementation in the Northern Region of Ghana



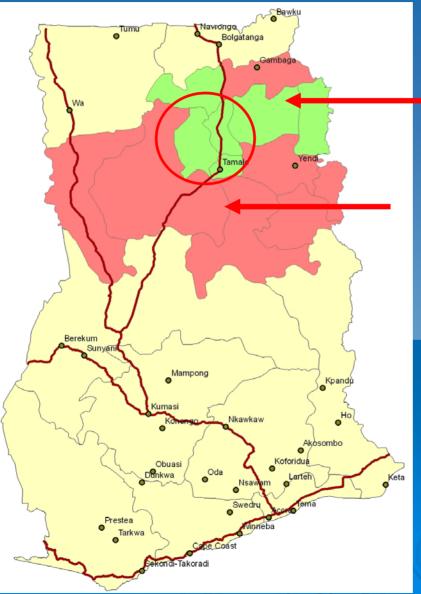
#### THESIS OBJECTIVE

- Perform reconnaissance to see what kind of spatial and statistical information was available.
  - Demographics
  - Health
  - Water and Sanitation Infrastructure
- Display information in a way that is useful to Pure Home Water, future MIT teams and other interested parties.


#### WHAT IS GIS?



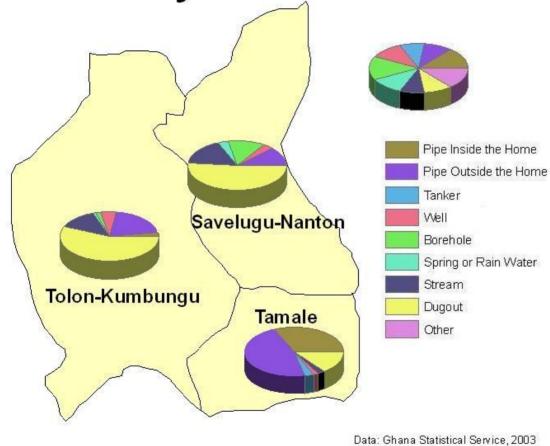

- A way to view and analyze data from a geographic perspective
- Spatial features can be connected to statistical information
- Overlaying of data layers to show interrelations


#### **CURRENT SITUATION**

- Paper Maps within Ghana are from the 1960's and 1970's and contain little relevant information.
- Ghana Statistical Service provides a wealth of statistical information.
  - Year 2000 Census
  - 2003 Health and Living Standards Survey
- GIS work beginning but focused in the capital of Accra





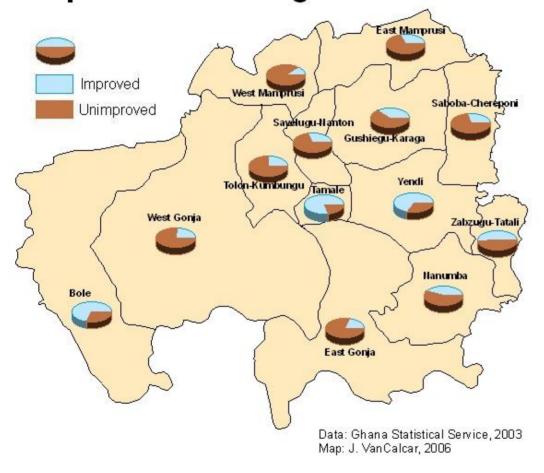

#### PROJECT LOCATION



Original Six
Districts of Pure
Home Focus

Northern Region

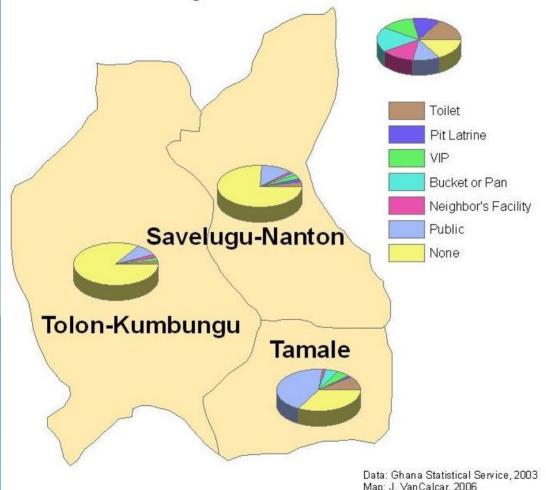
### Types of Water Sources Used by Households




Map: J. VanCalcar, 2006






#### Percentage Use of Improved and Unimproved Drinking Water Sources

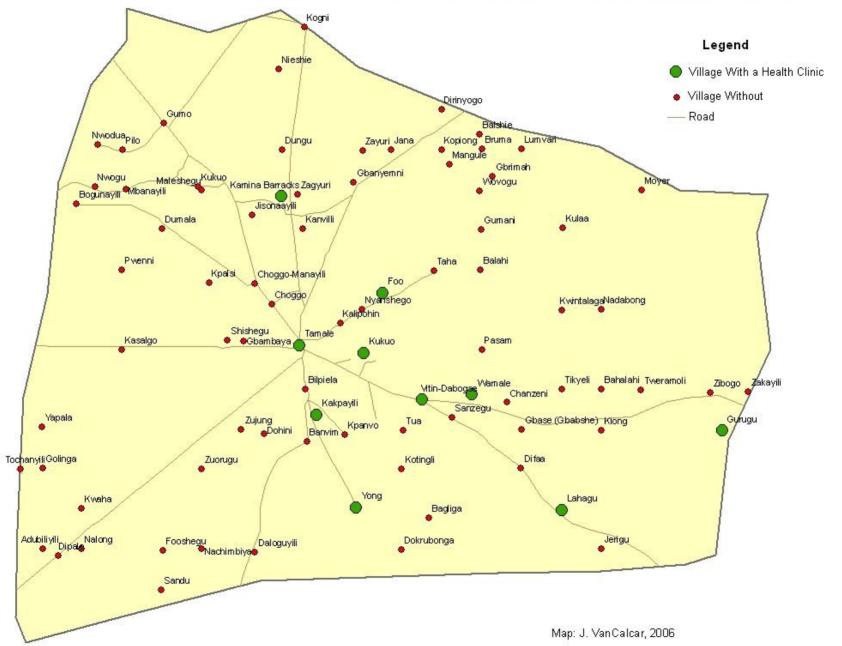


- Improved Sources
  - Boreholes
  - Household connection
  - Public standpipe
  - Rainwater harvesting
  - Protected springs and dug wells
- > Unimproved Sources
  - All surface water sources
  - Unprotected springs and dug wells
  - Tanker trucks
  - Vendor water

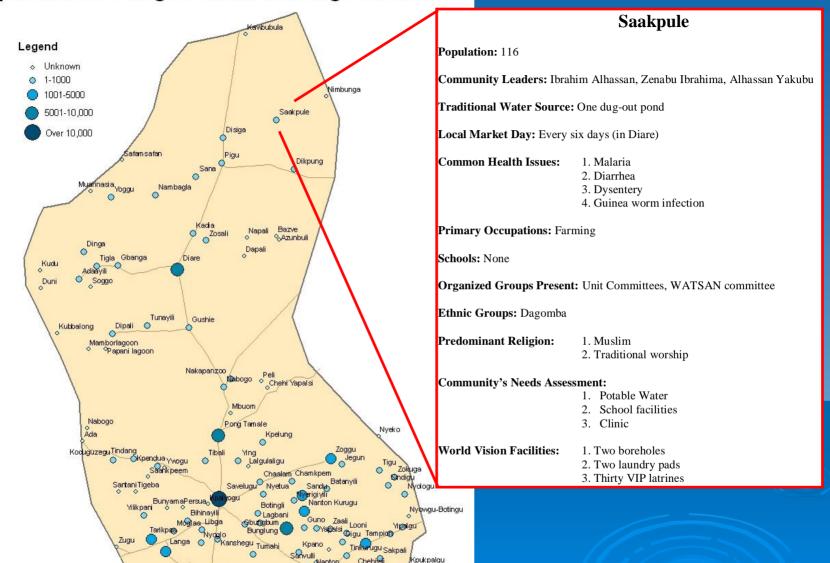
1 million out of 1.8 million people in the Northern Region are currently using an unimproved source

### Types of Sanitation Facilities Used by Households






#### VILLAGE DATABASE


Take a closer look at the characteristics of individual villages.

|          | Number of Villages According to the Gazetteer | Number of<br>Villages on<br>the Map | Percentage of the Population Accounted For |
|----------|-----------------------------------------------|-------------------------------------|--------------------------------------------|
| Tamale   | 140                                           | 85                                  | 86%                                        |
| Savelugu | 148                                           | 109                                 | 82%                                        |
| Tolon    | 251                                           | 137                                 | 58%                                        |

#### Villages With Health Clinics Within Tamale District



#### Population of Villages within Savelugu District



Dingoni/Ziengo

Map: J. VanCalcar, 2006

Dohi Nya@andu

#### IS GIS APPROPRIATE?

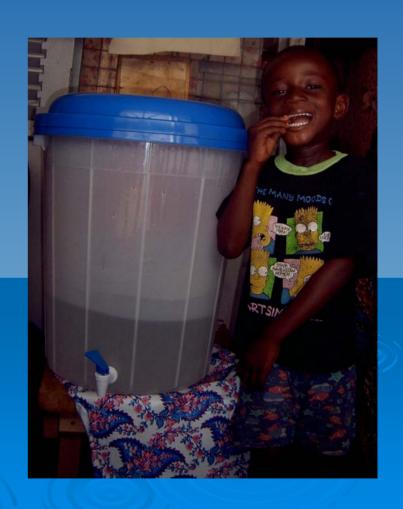
- Technologies from the developed world do not necessarily transfer to the developing world.
  - Cost
  - Technical expertise
- Is the output worth the effort?
  - Planning
  - Data Management



# CROSS-SECTIONAL EPIDEMIOLOGICAL STUDY

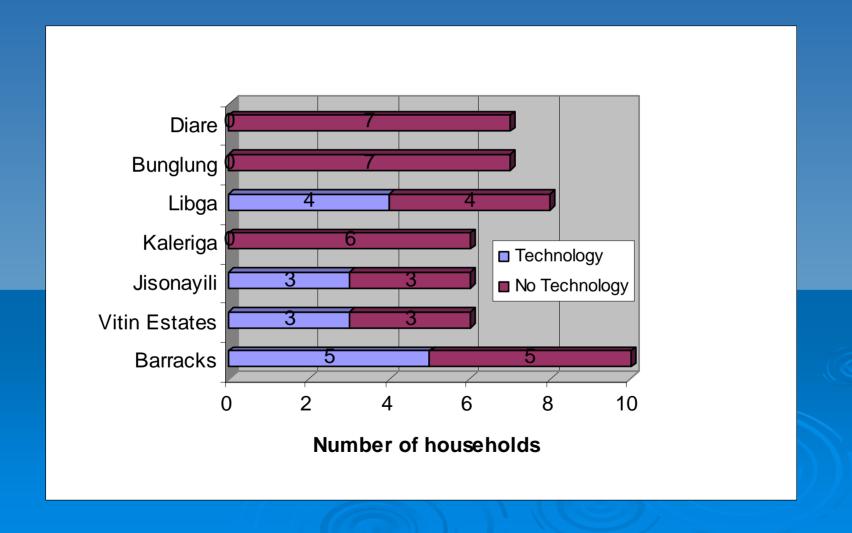
On Water and Sanitation Practices in the Northern Region of Ghana




#### THESIS OBJECTIVE

#### Surveys for baseline data on

- > Water sources
- > Sanitation practices
- > Product feedback
- > GIS and water testing


#### Information for

- ▶ Pure Home Water
- > MIT student teams
- World Health Organization (WHO) International Network



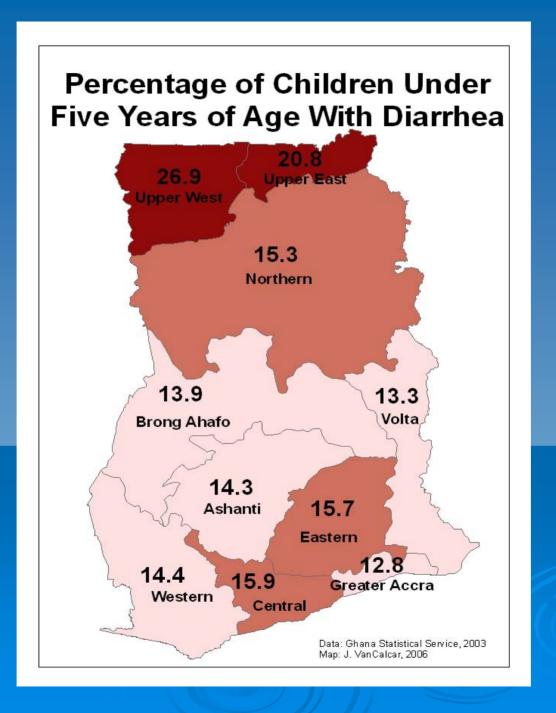
#### COMMUNITIES SURVEYED

50 Households, 7 Communities, Mothers Interviewed

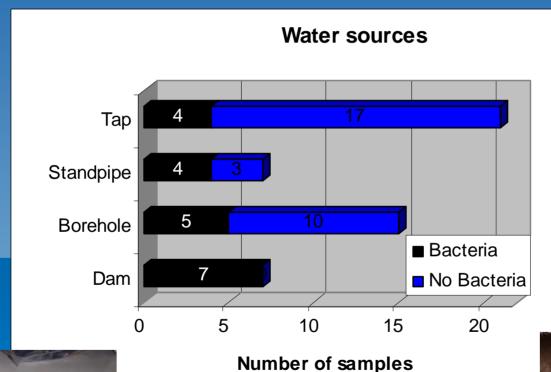


#### GENERAL SURVEY RESULTS

#### WAWI (West Africa Water Initiative) Indicators


- > Access to Safe Water: 64%
  - Improved water source always available
- > Access to Adequate Sanitation: 46%
  - Latrine or flush toilet source always available
- > Appropriate Hand Washing: 86%
  - Mothers always wash hands at appropriate times

#### DIARRHEAL PREVALENCE


- > Overall Prevalence = 5%
  - 5% (39/724) of all people suffered from diarrhea at time of study
- > Children under five years = 15%
  - 16% (17/109) of children under five suffered from diarrhea at time of study

Children under 5 are at the greatest risk for diarrheal illnesses





# H2S BACTERIA HOUSEHOLD WATER TESTING

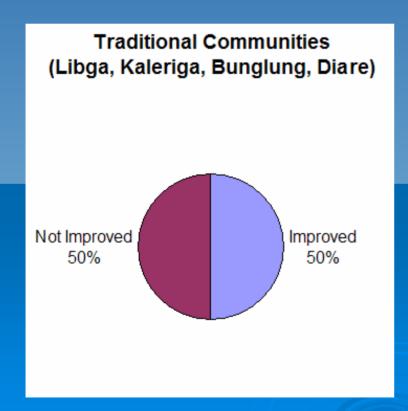


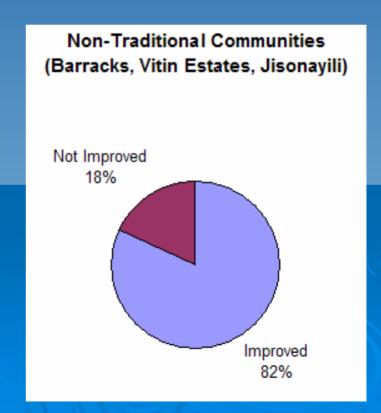
rtampor or campion

Recontamination is probable!

#### COMMUNITIES



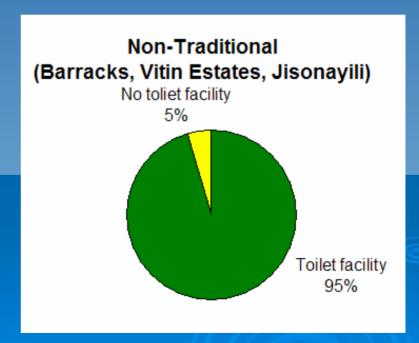

Non-Traditional


**TRADITIONAL** 



#### IMPROVED WATER SOURCE


Improved=Borehole, Tap, Standpipe Not improved=Dam, Dugout, Tanker Truck



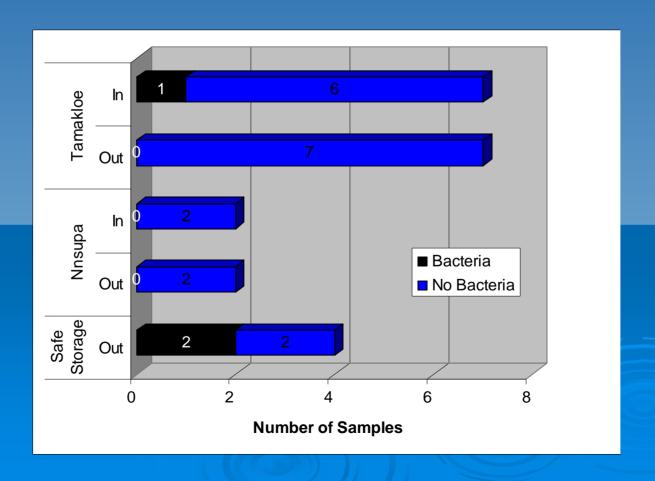



#### SANITATION

### Toilet facilities = latrines and flush toilets No toilet facility = 'free range' (fields)






#### **USER PERCEPTIONS**

| Technology still in use        | 93%                            |  |
|--------------------------------|--------------------------------|--|
| Changes in water               | 80% = Better<br>20% = The Same |  |
| Recommend technology to others | 100%                           |  |
| Noticeable health improvements | 87%                            |  |

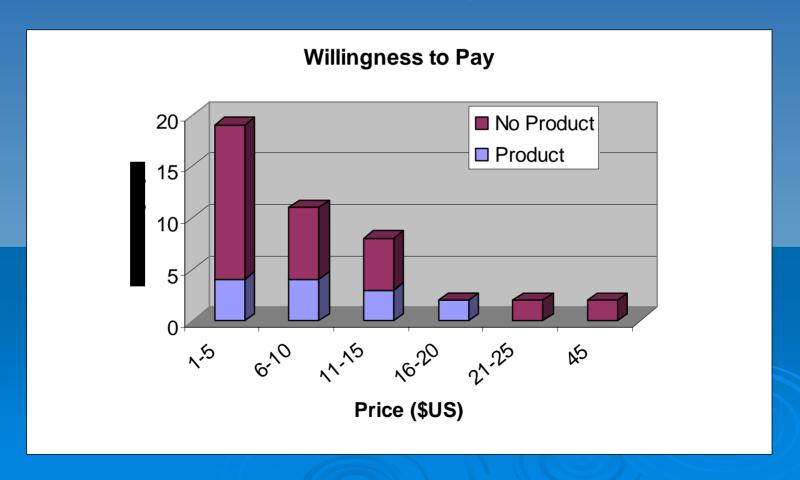
94% of households without product are interested in treating their water

# H2S BACTERIA HOUSEHOLD WATER TESTING

Product Performance

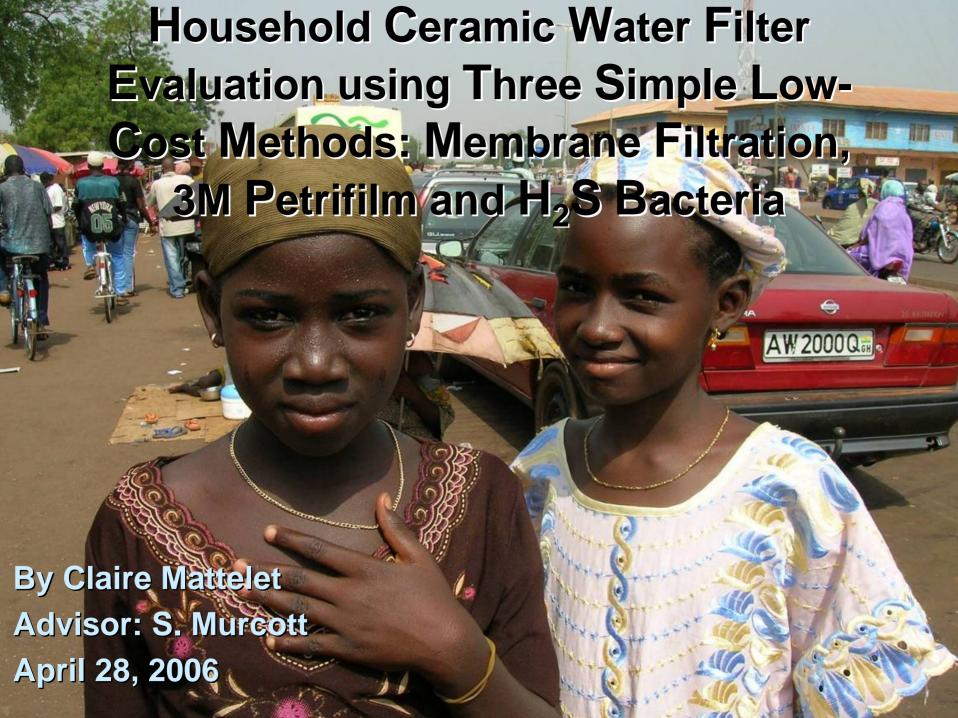


#### RELATIVE RISK ANALYSIS


|            | Diarrheal<br>Illness | No Diarrheal<br>Illness |
|------------|----------------------|-------------------------|
| Filters    | 1                    | 10                      |
| No Filters | 18                   | 21                      |

Odds Ratio=
$$\underline{(1x21)}$$
 = 0.12 Statistically significant (p<.001) (18x10)

Households with filters have 12% of the risk (78% less risk) of having diarrheal illness in the home compared to households without filters


#### PRODUCT PRICING FEEDBACK

Average willingness to pay = \$9 Product cost = \$18



#### CONCLUSIONS

- > Positive feedback from customers
  - Adoption rate: 93% (14/15) of households
- > Greatest need in traditional communities
  - Lack of clean water and adequate sanitation
  - Higher prevalence of diarrheal illness for children under 5
    - 5% non-traditional
    - 18% traditional



#### Introduction

Motivations Simple and Low-Cost Methods for Drinking Water Testing:



Fatal diseases in Ghana mainly linked to poor water & sanitation:

Malaria, Diarrhoea, Typhoid, Cholera, Gastroenteritis

In Northern Ghana:

**Communities are widely dispersed** 



Poverty in Northern Ghana:
Need for cheap methods

#### RESEARCH OBJECTIVES



Assessment and Comparison of Simple and Low-Cost Microbial Indicator Methods on the Basis of 6 Screening Criteria:




- Cost
- Ease of use
- Ease of interpretation
- Labor requirements to complete test
- Level of skill required
- User acceptability
- > Analysis of Water Samples from Dams and Rivers around Tamale
- Microbial Assessment of the Filters sold by Pure Home Water Ghana



# RESULTS: PHW FILTERS vs. INDIAN FILTER

#### Flow Rates of Filters in Tamale



# RESULTS: PHW FILTERS vs. INDIAN FILTER

- > Tamakloe is the best performer
  - Porosity is all over the bucket (great surface area)
  - Decrease in water head greatly affect the filter
- > Indian filter is second
  - Candle = Greater surface than Nnsupa until a certain height of water in top bucket
- > Nasupa is the worst performer
- > WHO (2004): «7.5L/D-person is necessary»

| Tamakloe | 25.5L/D |
|----------|---------|
| Nnsupa   | 8.2L/D  |
| Indian   | 13.1L/D |

### MATERIALS & METHODS

#### >3M PetriFilm

Esherishia coli + Total coliform



#### > P/A H2S test

H<sub>2</sub>S-producing bacteria



#### > <u>Membrane Filtration</u> (m-ColiBlue)

Esherishia coli + Total coliform



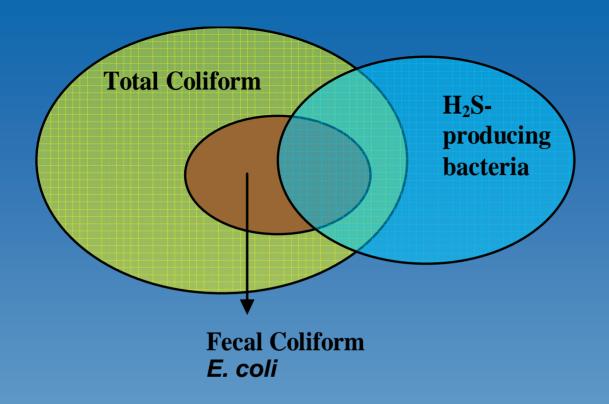



Illustration of the relationships between TC, FC and H<sub>2</sub>S bacteria. Low, 2002

FC: Able to grow at 44.2°C

EC: Some E. coli able to

grow at 37°C

TC: Multiply at 37°C

# RESULTS: BACTERIA REMOVAL

> Indian filter results got contaminated

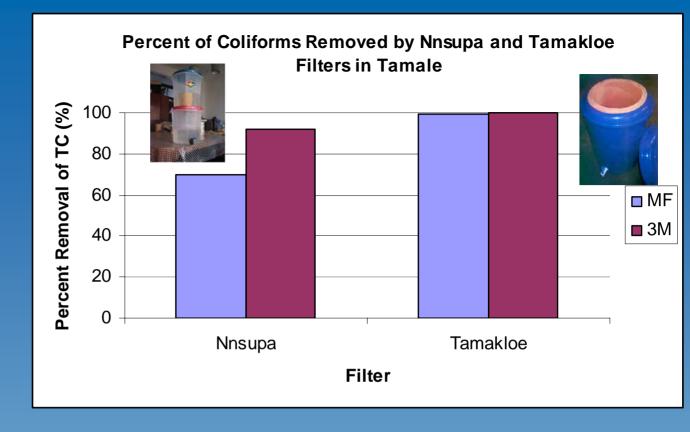
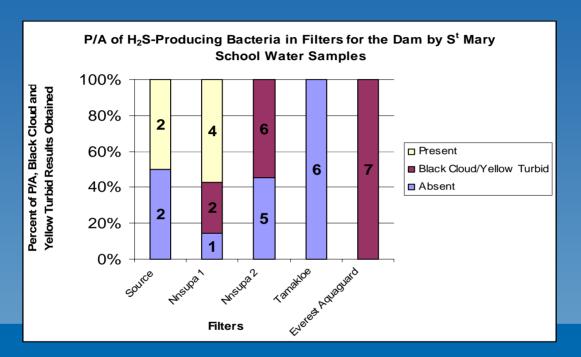



Table 5.2. Percent Removal of Total Coliforms (TC) and *E. coli* (EC) with the Nnsupa, Tamakloe, and Indian filters.

| muran murs.          |                                                |                 |         |                 |  |
|----------------------|------------------------------------------------|-----------------|---------|-----------------|--|
|                      | Percent Coliforms Removed by Filters in Tamale |                 |         |                 |  |
| Filter               | Avg                                            | . TC            | Avg. EC |                 |  |
|                      | MFa                                            | 3Мь             | MFa     | 3M <sup>b</sup> |  |
| Nnsupa First Candle  | 69.92                                          | 91.58           | -       | 100             |  |
| Nnsupa Second Candle | $C_c + CC_q$                                   | 74.06 + Cc      | -       | 100             |  |
| Tamakloe             | 99.55                                          | 100             | -       | 100             |  |
| Everest Aquagard     | CCq                                            | CC <sub>q</sub> | -       | 100             |  |


<sup>&</sup>lt;sup>a</sup> Membrane Filtration.

<sup>&</sup>lt;sup>b</sup> 3M Petrifilm.

<sup>&</sup>lt;sup>c</sup>Competition between total coliform bacteria growth and other red spot colonies.

<sup>&</sup>lt;sup>d</sup> Suspected candle contamination enhancing the growth of total coliform bacteria (water flowing out of the filter is more contaminated than the water flowing in the filter).

#### RESULTS: BACTERIA REMOVAL



- > P/A H<sub>2</sub>S generally supported the results for all three filters
- > Intersted in the methods comparison
  - H2S vs. 3M and MF
  - 3M vs. MF

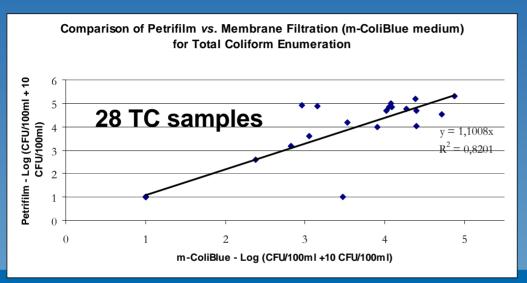
Table 5.5. Summary of the Data Obtained for Each Brand of Filter Tested.

|          |                     | TC Rem | oval (%) | EC Removal (%) |      |                                      |                                  |
|----------|---------------------|--------|----------|----------------|------|--------------------------------------|----------------------------------|
| Filter   | Flow Rate<br>(L/Hr) | MF a   | 3М ь     | MF a           | 3М ь | H <sub>2</sub> S (Filtered<br>Water) | Cost (US\$)                      |
| Nnsupa   | 0.34                | 69.92  | 91.58    | -              | 100  | P d                                  | 25                               |
| Tamakloe | 1.06                | 99.55  | 100      | -              | 100  | A e                                  | 18                               |
| Indian   | 0.55                | CCc    | CCc      | -              | 100  | Рf                                   | 14 (20L)<br>16 (24L)<br>18 (27L) |

<sup>&</sup>lt;sup>a</sup> Membrane Filtration.

- > Tamakloe is the most efficient (silver coating, small pore size)
- >Remove Nnsupa from sells until improvement of the candle
- > Indian filter & Nnuspa filter (second candle) got contaminated (candle, activated carbon?)

<sup>&</sup>lt;sup>b</sup> 3M Petrifilm.


<sup>&</sup>lt;sup>c</sup> Supposed Candle Contamination enhancing the growth of total coliform bacteria (water flowing out of the filter is more contaminated than the water flowing in the filter).

<sup>&</sup>lt;sup>d</sup> The colour of the media within the P/A tube tests was turbid or black for the filtered water for water dilutions until 100x.

<sup>&</sup>lt;sup>e</sup> All P/A results were negative (remained yellow) for the filtered water.

<sup>&</sup>lt;sup>f</sup> The colour of the media within the P/A tube tests was turbid and a black cloud formed at the bottom of the tube tests for water dilutions until 1000x.

#### RESULTS: 3M vs. MF



## Are 3M and MF Significantly Different?

- ><u>T-test for paired</u> samples
- > Interval of Confidence
  set at 95%

Figure 5.8. Comparison of Petrifilm vs. Membrane Filtration (m-ColiBlue medium) for Total Coliform Enumeration.

Test d'égalité des espérances: observations pairées

#### Probability > 5%

No significant difference between the tests.

|                                       | Variable 1   | Variable 2 |
|---------------------------------------|--------------|------------|
| Moyenne                               | 2,871        | 3,159      |
| Variance                              | 2,065        | 3,062      |
| Observations                          | 28,000       | 28,000     |
| Coefficient de corrélation de Pearson | 0,906        |            |
| Différence hypothétique des moyennes  | 0            |            |
| Degré de liberté                      | 27           |            |
| Statistique t                         | -2,014099746 |            |
| P(T<=t) unilatéral                    | 0,027030783  |            |
| Valeur critique de t (unilatéral)     | 1,703280423  |            |
| P(T<=t) bilatéral                     | 0,054061566  |            |
| Valeur critique de t (bilatéral)      | 2,051830493  |            |
|                                       |              |            |

# RESULTS: WATER SOURCES CONTAMINATION ASSESSMENT

Table 3.1. Faecal Contamination Assessment of Water Sources in Tamale.

| Table 5.1. I accar contamination Assessment of water Sources in Tamaic. |                                            |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MF (CF)                                                                 | U <b>/100mL)</b>                           | 3M (CFI                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| TC                                                                      | EC                                         | TC                                                                                                                                                                                  | EC                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 13,167                                                                  | 0                                          | 62,571                                                                                                                                                                              | 1,409                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 8,000                                                                   | 135                                        | 4,500                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 25,000                                                                  | 125                                        | 10,750                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| TNTC <sup>b</sup>                                                       | TNTC <sup>b</sup>                          | 5,100,000                                                                                                                                                                           | 3,450,000                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1,055                                                                   | 30                                         | 11,600                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 757                                                                     | 142                                        | 18,771                                                                                                                                                                              | 233                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                         | MF (CF) TC 13,167 8,000 25,000 TNTCb 1,055 | MF (CFU/100mL)           TC         EC           13,167         0           8,000         135           25,000         125           TNTCb         TNTCb           1,055         30 | MF (CFU/100mL)         3M (CFU           TC         EC         TC           13,167         0         62,571           8,000         135         4,500           25,000         125         10,750           TNTCb         TNTCb         5,100,000           1,055         30         11,600 | MF (CFU/100mL)         3M (CFU/100mL)           TC         EC         TC         EC           13,167         0         62,571         1,409           8,000         135         4,500         0           25,000         125         10,750         0           TNTCb         TNTCb         5,100,000         3,450,000           1,055         30         11,600         100 |  |  |

<sup>a</sup> World Vision Office, Savlegu.

<sup>b</sup> Too numerous to count.





## CONCLUSION: The 6 Scree Criteria

|    | Cost                            | Ease<br>of<br>Use            | Ease<br>of<br>Interpretation | Labor<br>Requirement |  |  |
|----|---------------------------------|------------------------------|------------------------------|----------------------|--|--|
| MF | > H2                            | 2S should not be recommended |                              |                      |  |  |
|    | > 3M should be recommended at h |                              |                              |                      |  |  |

コンコン



3M

> 3M should be recommended at high level of contamination (dams, dugouts, rivers)

. . .

➤ MF should be recommended at low level of contamination (tap water, water coming out of the filter)

#### RECOMMENDATIONS

- Concentrate on lowering prices or finding alternatives
  - Manufacturing within Tamale
  - Solar disinfection
- > Plan how to best spread the technology
  - Through other organizations (Shell gas stations, midwives, schools, clinics)
  - Advertising

## THANK You!

