Multiple Random Variables

Recall the dart tossing experiment from Class 4. Treat the 2 dart coordinates as two different scalar random variables x and y.

In this experiment the experimental outcome is the location where the dart lands. The random variables x and y both depend on this outcome (they are defined over the same sample space). In this case we can define the following events:

$$ A = [x(\xi) \leq x] \quad B = [y(\xi) \leq y] \quad C = [x(\xi) \leq x, \ y(\xi) \leq y] = A \cap B = AB $$

x and y are independent if A and B are independent events for all x and y:

$$ P(C) = P(AB) = P(A)P(B) $$

Another example …

Consider a time series constructing from a sequence of random variables defined at different times (a series of n seismic observations or stream flows $x_1, x_2, x_3, \ldots, x_n$). Each possible time series can be viewed as an outcome ξ of an underlying experiment. Events can be defined as above:

$$ A_i = [x_i(\xi) \leq x_i] \quad A_{ij} = [x_i(\xi) \leq x_i, \ x_j(\xi) \leq x_j] = A_i \cap A_j = A_iA_j $$

x_i and x_j are independent if:

$$ P(A_{ij}) = P(A_iA_j) = P(A_i)P(A_j) $$

Multivariate Probability Distributions

Multivariate cumulative distribution function (CDF), for x, y continuous or discrete:

$$ F_{xy}(x, y) = P[(x(\xi) \leq x)(y(\xi) \leq y)] $$

Multivariate probability mass function (PMF), for x, y discrete:

$$ p_{xy}(x_i, y_j) = P[(x(\xi) = x_i)(y(\xi) = y_j)] $$

Multivariate probability density function (PDF), for x, y continuous:
If \(x \) and \(y \) are independent:

\[
F_{xy}(x, y) = P[x \leq x]P[y \leq y] = F_x(x)F_y(y)
\]

\[
p_{xy}(x_j, y_j) = p_x(x_j)p_y(y_j)
\]

\[
f_{xy}(x, y) = f_x(x)f_y(y)
\]

Computing Probabilities from Multivariate Density Functions

Probability that \((x, y)\) ∈ the region \(D\):

\[
P[(x, y) \in D] = \int_{(x, y) \in D} f_{xy}(x, y) \, dxdy
\]

Covariance and Correlation

Dependence between random variables \(x \) and \(y \) is frequently described with the covariance and correlation:

\[
Cov(x, y) = E[(x - \bar{x})(y - \bar{y})] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \bar{x})(y - \bar{y}) f_{xy}(x, y) \, dxdy
\]

\[
Correl(x, y) = \frac{Cov(x, y)}{\sqrt{Var(x)Var(y)}} = \frac{Cov(x, y)}{\text{Std}(x)\text{Std}(y)}
\]

Uncorrelated \(x \) and \(y \): \(\text{Cov}(x, y) = \text{Correl}(x, y) = 0 \)

Independence implies uncorrelated (but not necessarily vice versa)

Examples

Two independent exponential random variables (parameters \(a_x \) and \(a_y \)):

\[
f_{xy}(x, y) = f_x(x)f_y(y) = \frac{1}{a_x} \exp\left(\frac{-x}{a_x}\right) \frac{1}{a_y} \exp\left(\frac{-y}{a_y}\right) = \frac{1}{a_x a_y} \exp\left(\frac{-x}{a_x} - \frac{y}{a_y}\right)
\]

\(a_x = E(x), a_y = E(y), \text{ Correl}(x, y) = 0 \)
Two dependent normally distributed random variables (parameters μ_x, μ_y, σ_x, σ_y, and ρ):

$$f_{xy}(x, y) = \frac{1}{2\pi}\sqrt{|C|} \exp\left\{ -\frac{1}{2} (Z - \mu)^T C^{-1} (Z - \mu) \right\}$$

$Z = $ vector of random variables $= [x \ y]'$

$\mu = $ vector of means $= [E(x) \ E(y)]'$

$C = $ covariance matrix $= C = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}$

$\sigma_x = Std(x), \ \sigma_y = Std(y), \ \rho = Correl(x,y)$

$|C| = $ determinant of $C = \sigma_x^2 \sigma_y^2 (1 - \rho^2)$

$C^{-1} = $ inverse of $C = \frac{1}{|C|} \begin{bmatrix} \sigma_y^2 & -\rho \sigma_x \sigma_y \\ -\rho \sigma_x \sigma_y & \sigma_x^2 \end{bmatrix}$

Multivariate probability distributions are rarely used except when:

1. The random variables are independent
2. The random variables are dependent but normally distributed

Exercise:

Use the MATLAB function `mvnrnd` to generate scatterplots of correlated bivariate normal samples. This function takes as arguments the means of x and y and the covariance matrix defined above (called `SIGMA` in the MATLAB documentation).

Assume $E[x] = 0, E[y] = 0, \sigma_x = 1, \sigma_y = 0$. Use `mvnrnd` to generate 100 (x, y) realizations. Use `plot` to plot each of these as a point on the (x,y) plane (do not connect the points). Vary the correlation coefficient ρ to examine its effect on the scatter. Consider $\rho = 0., \ 0.5, \ 0.9$. Use `subplot` to put plots for all 3 ρ values on one page.