PART A:

1. At sea floor there is no velocity normal to the ground \(\vec{v} \cdot \hat{n} = 0 \); \(\frac{\partial \phi}{\partial n} = 0 \) on \(z = -h \).

2. Streakline.

3. Pathline.

4. \(\frac{\partial \vec{v}}{\partial t} = 0 \)

5. \(\vec{v} \cdot \nabla = 0 \)

6. \[c = -4 \]

7. \(w = 2\pi f = 2.13 \text{ rad/s} = \frac{g}{k} \) \(\Rightarrow \frac{k}{g} \) \(\Rightarrow \frac{\omega^2}{g} = k \)

- Waves are deep
- \(\omega^2 = g h \)
- \(h = 13.1 \text{ m} \)
- \(v_p = \frac{g}{2 \pi} = 4.5 \text{ m/s} \)
- \(v_g = \frac{1}{2} v_p = 2.3 \text{ m/s} \)

8. \(w = 5.6 \text{ rad/s} \)

- Still deep
- \(\omega^2 = g \frac{k}{h} \)
- \(v_p = \frac{w}{2\pi} \)
- \(v_g = \frac{v_p}{2\pi} \)

9. \(p = -\rho g z = 1000 \cdot 10 \cdot 100 = 10^6 \text{ N/m}^2 \)

10. \(p_0 = \frac{1}{2} \rho v^2 \)

11. \(p_d = -\rho \frac{\partial v}{\partial t} \)
10. Irrotational \(\nabla \times \vec{V} = 0 \) [Does] \(\checkmark \)

Continuity \(\nabla \cdot \vec{V} = 0 \) [Does Not] \(\checkmark \)

PART B.

"L" waves in central Atlantic.

\[
\begin{align*}
\text{deep water} & \\
\omega^2 = gk & \\
k = 0.324 \frac{\text{rad}}{\text{s}} & \\
\lambda = 9.4 \text{ m} & \\
\omega = 1.9 \text{ rad/s} & \\
a = 1 \text{ m} & \\
\end{align*}
\]

(4) \(2a \lambda^2 = 2/19.4 = 0.103 < \frac{1}{4} \) (0.143)

\(\therefore \text{yes, linear assumption is valid but for } \theta \approx 0 \frac{\text{rad}}{\text{s}} = 0.2 \text{, not valid} \)

6. \(KH > \pi \) so if \(KH \approx \pi \) then too shallow

\(KH = 0.324 \frac{\text{rad}}{\text{s}} \approx \pi \)

\(H \approx 9.1 \text{ m} \)

\(E = \frac{1}{2} g a^2 = 5000 \text{ J/m}^2 \)

\(KE = \frac{1}{2} E = \frac{1}{4} g a^2 = 2500 \text{ J/m}^2 \)
Flow Through Nozzle

Continuity:

\[
p_1 V_1 A_1 = p_2 V_2 A_2
\]

\[
V_1 A_1 = V_2 A_2
\]

\[
V_2 = V_1 \frac{A_1}{A_2}
\]

\[
\left(\frac{A_1}{A_2} = \frac{V_2}{V_1} \right)
\]

Bernoulli's Eqn gives \(\Delta P \)

\[
p_1 + \frac{1}{2} p_1 V_1^2 + p_1 g z_1 = p_2 + \frac{1}{2} p_2 V_2^2 + p_2 g z_2
\]

\[
(P_1 - P_2) = \frac{1}{2} p_1 (V_2^2 - V_1^2) + p_1 g (z_2 - z_1)
\]

From manometer:

\[
(P_1 - P_2) = \frac{p g D}{2}
\]

\[
\frac{p g D}{2} = \frac{1}{2} c_1 \left(\frac{A_1^2}{A_2^2} - 1 \right) + p_1 g (z_2 - z_1)
\]

\[
\frac{\frac{p g D}{2} + p_1 g (z_1 - z_2)}{\frac{V_2^2}{2 c_1 V_1^2}} + 1 = \frac{A_1}{A_2}
\]
Max force is on the harbor gate:

1. Boat goes into lock @ low tide from the river into the harbor.
2. Tide rises to high tide - now the water in the chamber is 14' deep. Harbor is 14.15' deep.

Pressure on wall (take bottom @ z = 0)

Left side:

\[P(z) = \rho g(z + H_1 - z) \]

\[F = L \int_0^{H_1} \rho g(z + H_1 - z) \, dz \]

\[F = \frac{1}{2} \rho g L H_1^2 \]

Acts at \(z = \frac{H_1}{3} \)

Right side:

\[P(z) = \rho g(H_2 - z) \]

\[F = L \int_0^{H_2} \rho g(H_2 - z) \, dz \]

\[F = \frac{1}{2} \rho g L H_2^2 \]

@ z = \(\frac{H_2}{3} \)
Resolving Force acts to Left:

\[F_R = (F_2 - F_1) = \frac{1}{2} p g L (H_2^2 - H_1^2) \left(\frac{kgm}{s^2} \right) \]

where
- \[L = 22' = 6.7m \]
- \[H_1 = 14' = 4.27m \]
- \[H_2 = 29' = 8.84m \]

\[F_2 = 2007 \text{ KN} \]

Note there is a moment on the gate as well!

Total Force Acts to the left. There is a force \(F_1 \) acting to the right at \(\bar{z} = \frac{14'}{3} \)

and force \(F_2 \) acting to left @ \(\bar{z} = \frac{29'}{3} \).

These forces supply a moment to the gate as shown above.

\[F_R \cdot 2 = F_2 \cdot \bar{z}_2 - F_1 \cdot \bar{z}_1 \Rightarrow \bar{z} = 3.4 \text{ m from bottom} \]

The forces act at the center of the gate from side to side.

Design-wise any of the 3 will work.

- Design A will require the most torque to move the gate as the force on each door in B is \(\frac{1}{2} \) of one whole gate in A. B requires less space for
- Design B requires 4 motors could be expensive though hydraulic system would not be too much different than in A
- Design C is easiest to open but hardest to seal

Design through outside.