What determines exchange rates:

Supply and demand for foreign exchange

Sources of supply: foreigners wanting to buy domestic goods
foreigners wanting to buy domestic assets

Depreciation usually increases both: makes domestic goods, assets look cheap

Sources of demand:

domestic residents wanting to buy foreign goods
domestic residents wanting to buy foreign assets

Depreciation usually reduces both: makes foreign goods, assets look expensive
In modern world: capital account dominates => focus only on supply and demand for assets

Inflows of capital if expected return on domestic bonds \((i) \) exceeds expected return on foreign bonds \((i^* + \text{expected change in exchange rate}) \)

Outflows if other way around

So basic *arbitrage equation*

\[
i = i^* + \frac{E^e - E}{E}
\]

What determines \(E^e \)? Long-run issues, ability of domestic producers to compete, future monetary policy, etc. For now, we simply take expected future exchange rate as given:

\[
E^e = \bar{E}
\]

So *exchange rate equation*

\[
i = i^* + \frac{\bar{E} - E}{E}
\]

or
\[i - i^* = \frac{\bar{E} - E}{E} \]
The open-economy IS curve:

Now 2 channels through which i affects demand:

1. Conventional channel: lower i means higher investment

2. Exchange rate channel: lower i means higher E, hence higher $EP*/P$ (real exchange rate), hence higher $X-M$ at any given Y
Monetary policy: higher M means lower i, higher Y, higher E; current account can go either way

Fiscal policy: higher G or lower T means higher I, lower E, higher Y; current account moves toward deficit