14.102 Midterm Exam
October 17, 2003.

Instructions: This is a closed book exam. Please answer all questions. You have 2 hours to complete the exam. Good luck!

1. (Short questions, 5 pts each). For true/false questions you should either prove the statement or provide a counterexample.

(a) List the properties of a distance function. Is the following statement true: "if $d(\cdot, \cdot)$ is a distance, then $d'(x, y) = (d(x, y))^2$ is a distance"?

(b) Define a limit point of a sequence. Is it true that if A is a limit point of a sequence $\{a_n\}$ and B is a limit point of a sequence $\{b_n\}$ then $A + B$ is a limit point of sequence $\{a_n + b_n\}$?

(c) Define a symmetric matrix. Is it true that the product of two symmetric matrices is a symmetric matrix?

(d) State the Weierstraß theorem. Is it true that any function that is differentiable on a compact set is bounded?

(e) State the Separating Hyperplane Theorem. Is it true that for any two disjoint closed convex sets C_1 and C_2 there exists a hyperplane $H(p, a)$ such that $p \cdot x < a$ for all $x \in C_1$ and $p \cdot y > a$ for any $y \in C_2$?

(f) State the implicit function theorem. Find all points on the curve $x^4 - 2x^2y^2 + y^4 = 0$ around which either y is not expressible as a function of x or x is not expressible as a function of y. Compute $y'(x)$ along the curve at point $(1, -1)$.

(g) State Kuhn-Tucker Theorem under convexity. What is Slater’s condition?

2. (Matrix Algebra, 25 pts)

Let $A = \begin{pmatrix} 6 & 3 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix}$.

(a) Find $\det A$ and $\text{rank} A$

(b) Is A positive/negative definite? Is A positive/negative semidefinite?

(c) Find the eigenvalues of A.

(d) Find the eigenvectors of A. How many of them are there? Are they orthogonal?

(e) Under what restrictions (if any) on vector $b \in \mathbb{R}^4$ will the system $Ax = b$ have solutions?
3. (Optimization in \mathbb{R}^n, 10 pts for each of (a)-(d) and 20 pts for (e)) Let $F(x, y) = \frac{1}{x+y+1}$, $G_p(x, y) = 2x^2 - 4px + 2y^2 + 2y^2 - 18$, where p is a parameter. For questions (a) to (d) assume $p = 1$.

(a) Find all unconstrained optima of F and G on \mathbb{R}^2. Is the Weierstraß Theorem applicable?

(b) Maximize and minimize $F(x, y)$ subject to $G_1(x, y) = 0$. Is the Weierstraß Theorem applicable?

(c) Maximize and minimize $F(x, y)$ subject to $G_1(x, y) \leq 0$. Is the Weierstraß Theorem applicable?

(d) Maximize and minimize $F(x, y)$ subject to $G_1(x, y) \geq 0$. Is the Weierstraß Theorem applicable?

(e) (Bonus question, attempt it only if you have extra time) The problem is to maximize $F(x, y)$ subject to $G_p(x, y) \geq 0$. State the Maximum Theorem. Are the hypotheses of it satisfied? Compute directly the function $f^*(p) = \max F(x, y)$ s.t. $G_p(x, y) \geq 0$; is it continuous? Compute $(x^*(p), y^*(p))$ (defined as the set of maximizers of $F(x, y)$ subject to $G_p(x, y) = 0$). Is it a use and/or lsc correspondence? Is the Maximum Theorem under convexity applicable?

4. (Red Sox game may be your friend, 0 pts; do not attempt this problem until after you leave the exam room). Assume that your performance on this exam is given by $p = k + t$, where k is your knowledge and t is how much time you spent preparing last night. I would like to give you the score equal to your knowledge k but it is not observable to me – all I see is your performance p. I know however, that your disutility of spending time t preparing for the exam is $D(t) = \frac{t^2}{2}$, and your total utility is your score less disutility of effort: $U_{you}(s, t) = s - D(t)$. My utility of scoring your test at s when your actual knowledge level is k is $U_{me} = -(s-k)^2$. I estimate the time you spent preparing at t^* and give you score $s = p - t^*$.

(a) Find the first best level of preparation t^{FB}.

(b) Find the level of preparation t that you will choose given my grading policy $s = p - t^*$.

(c) Find the optimal (for me) grading policy t^* and equilibrium utility levels U_{you} and U_{me}.

(d) Suppose that it is a common knowledge that you could not possibly spend more than $t = \frac{1}{4}$ preparing last night (because of the Red Sox game, which was supposed to be 9 innings long). Redo points (b) and (c) under this assumption. Do I have higher or lower utility U_{me}? Do you have higher or lower utility U_{you}? Is the outcome more efficient or less efficient than that without the game?

(e) Discuss verbally efficiency implications of innings 10 and 11 of the game.