1. Lecture Notes Exercise 105: Given an \(m \times n \) matrix \(A \), show that \(S(B) \subseteq S(A) \) and \(N(A') \subseteq N(B') \) whenever \(B = AX \) for some matrix \(X \). What is the geometric interpretation? (Note: this is a repeat from last year’s problem set; as such, the solution is right on the website. It is certainly worth doing, but the main reason I included it was to draw your attention to the result, which can be used to make part (e) of the next problem much less tedious.)

2. Let \(A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & -1 & 1 \end{pmatrix} \) and \(B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 1 \end{pmatrix} \)

(a) Find \(C = AB \)

(b) Find \(\text{rank } C \)

(c) Find \(\det C \)

(d) Find \(D = BA \)

(e) Find \(\text{rank } D \) (reminder: try to answer this using the result of problem 1 - without calculations)

(f) Find \(\det D \)

(g) Is \(C \) invertible? If so, find \(C^{-1} \)

(h) Is \(D \) invertible? If so, find \(D^{-1} \)

(i) Find eigenvalues of \(C \)

(j) Solve the following two linear systems (Hint: you will need no extra calculations!):

i. \(\begin{cases} \frac{1}{2}x + \frac{6}{7}y = 1 \\ \frac{1}{2}x - \frac{1}{7}y = 0 \end{cases} \)

ii. \(\begin{cases} \frac{1}{2}u + \frac{6}{7}v = 0 \\ \frac{1}{2}u - \frac{1}{7}v = 1 \end{cases} \)

3. Look at last year’s problem set 1, #3, and its solution. It is good to understand the notion of changing bases, and of the coordinates of a vector with respect to a basis (we will use it again in discussing diagonalization). In particular, do Lecture Notes Exercise 114: what are the coordinates of \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \) with respect to the following bases?

(a) \(\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \)

(b) \(\begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix} \)
4. Prove Lemma 116 (note the hint in the lecture notes): Let \(\{e_j\} = \{e_1, ..., e_n\} \) be a basis for \(\mathbb{R} \), and let \(\{b_j\} = \{b_1, ..., b_m\} \) be any set of vectors belonging to \(\mathbb{R} \) with \(m > n \). Then \(\{b_j\} \) can not be linearly independent.

5. Lecture Notes Exercise 124: Using the 'fundamental theorem of algebra' and the fact that \(\text{rank}(A) = \text{rank}(A') \), show that

\[
\text{rank}(A) + \text{null}(A') = m \\
\text{null}(A) - \text{null}(A') = n - m
\]

6. Lecture Notes Exercise 129: Using the properties of transpose and inverse:

(a) Prove that \(A^{-k} = (A^k)^{-1} \)

(b) Consider the matrix \(Z = X(X'X)^{-1}X' \) where \(X \) is an arbitrary \(m \times n \) matrix. Under what conditions on \(X \) is \(Z \) well-defined? Show that \(Z \) is symmetric. Also show that \(ZZ = Z \) (i.e., that \(Z \) is idempotent).

(Note: this is another repeat, but this one I included simply because it really is worth doing - you will use these facts, and the techniques needed to prove them, a LOT in statistics and econometrics, so it would be helpful to get them down now.)

7. Lecture Notes Exercise 150: Show that, if \([A, b] \) is singular, then and only then \(X^* = \emptyset \), and further \(\dim(X^*) = \text{null}([A, b]) - 1 \).

8. Calculate \(e^A \) for \(A \) equal to

(a) \(\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} \) (hint: diagonalize!)

(b) \(\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix} \) (hint: start with \(A^2 \), and recall that \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \))

9. Lecture Notes Exercise 182: Let \(X \) be an \(m \times n \) matrix with \(m \geq n \) and \(\text{rk}(X) = n \). Show that \(X'X \) is positive definite.

10. Lecture Notes Exercise 183: Show that a positive definite matrix is non-singular.

(Conclude from the past two exercises that so long as \(m \geq n \) and \(\text{rk}(X) = n \) - as you will generally assume when you estimate systems of equations - that you don’t need to wonder whether the term \((X'X)^{-1} \) is defined.)