Quantile Regression

Least squares is best linear predictor of

\[g(X) = E[Y | X] \]

Conditional expectations describes how mean of \(Y \) varies with \(X \). Many applications where one would like to know how \(X \) affects other parts of distribution of \(Y \), other than its center.

- How does education affect earnings of those who earn little? Those who earn much?
- How does income affect consumption at different consumption levels?
- How does smoking affect birthweights of small babies?

Quantile regression is designed to help answer this question.

Begin with single random variable \(Y \) to define things; the \(\tau^{th} \) quantile (percentile, fractile) is value \(q_\tau(Y) \) such that

\[\Pr(Y \leq q_\tau(Y)) = \tau \]

In terms of the CDF \(F_Y(y) = \Pr(Y \leq y) \),

\[F_Y(q_\tau(Y)) = \tau \quad \text{or} \quad q_\tau(Y) = F_Y^{-1}(\tau) \]

Inverse of CDF.

\[q_\tau(Y) \]

Turns out that \(\tau^{th} \) quantile solves a minimization problem that is convenient for

[1]
estimation and extending to regression. Let

$$1(u > 0) = \begin{cases} 1, & u > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\rho_r(u) = \tau |u| 1(u > 0) + (1 - \tau) |u| 1(u < 0)$$

Then $q_Y(\tau)$ minimizes $E[\rho_r(Y - \mu)]$ over μ. To explain why the quantile minimizes this objective function, we consider the first order conditions. Note that $\rho_r(u)$ is convex, and hence so is $E[\rho_r(Y - \mu)]$, so that the solution to the first-order conditions is a global minimum. Note that for $Y \neq \mu$, $\rho_r(Y - \mu)$ is differentiable, with

$$d\rho_r(Y - \mu)/d\mu = \tau 1(Y - \mu > 0) - (1 - \tau) 1(Y - \mu < 0).$$

Then assuming we can differentiate under the integral the first-order conditions are

$$0 = \tau E[1(Y - \mu > 0)] - (1 - \tau) E[1(Y < \mu)]$$

$$= \tau (1 - F_Y(\mu)) - (1 - \tau) F_Y(\mu) = \tau - F_Y(\mu)$$

First order condition solved at $\mu = q_Y(\tau)$.

Extension to regression: Replace constant μ with $X'\beta$. The population object is

$$\beta(\tau) \text{ minimizes } E[\rho_r(Y_i - X_i'\beta)].$$

An estimator of this object can be obtained as

$$\hat{\beta}(\tau) \text{ minimizes } \sum_{i=1}^{n} \rho_r(Y_i - X_i'\beta) / n.$$

These are called regression quantiles. Idea is that $\hat{\beta}(\tau)$ estimates effect of X on Y at the τ^{th} quantile for Y.

[2]
Example 1 $Y = \ln \text{earnings, } X = \text{schooling, other}$

$\hat{\beta}_1(\tau)$ effect of schooling on τ^{th} quantile for y;

See graphs for results from last 3 census years from Angrist, Chernozhukov, Fernandez-Val.

Note that a nonparametric approach to this problem would be to look at the conditional quantiles of Y given X. Let $\text{Pr}(Y \leq y|X) = F_{Y|X}(y|X)$ denote the conditional CDF. Then the conditional quantile is $q_Y(\tau|X) = F_{Y|X}^{-1}(\tau|X)$. Complicated function. Difficult to estimate with high dimension X (curse of dimensionality). Regression quantiles more parsimonious. Interesting question is in what sense does $X'\beta(\tau)$ approximate $q_Y(\tau|X)$. It is not minimum mean-square error predictor and it is not best predictor from the check function. See Angrist, Chernozhukov, Fernandez-Val paper discussed later.

In some cases can relate quantile regression coefficients to usual linear model and find that regression quantiles correspond to full conditional quantile.

Case A: Constant coefficient regression model.

$$Y_i = X_i'\beta_0 + u_i, \ u_i \text{ and } X_i \text{ independent.}$$

Sometimes called conditional location model, since only location varies with X. Note that for a constant C, the τ^{th} quantile of $C + Y$. Therefore, since $X_i'\beta_0$ is constant conditional on X,

$$q_Y(\tau|X) = X'\beta_0 + q_u(\tau|X) = X'\beta_0 + q_u(\tau),$$

where the second equality follows by independence of u and X. Here the quantile lines are parallel. Slopes are the same for all quantiles.

Case B: Scale shift model.

$$Y_i = X_i'\beta_0 + (X_i'\gamma_0)\varepsilon_i, X_i'\gamma_0 > 0, \varepsilon_i \text{ and } X_i \text{ independent.}$$

Sometimes called conditional location scale model. Here the τ^{th} conditional quantile of $u_i = (X_i'\gamma_0)\varepsilon_i$ given X_i solves

$$\tau = \text{Pr}((X'\gamma_0)\varepsilon_i \leq q_u(\tau|X)) = \text{Pr}(\varepsilon_i \leq q_u(\tau|X)/(X'\gamma_0)|X)$$

[3]
\[F_\varepsilon(q_u(\tau|X)/(X'\gamma_0)), \]

where the last equality follows by independence of \(\varepsilon \). Inverting \(F \) and solving gives

\[q_u(\tau|X) = (X'\gamma_0)F_\varepsilon^{-1}(\tau) = (X'\gamma_0)q_\varepsilon(\tau) \]

Then the conditional quantile function of \(Y \) given \(X \) is

\[q_\gamma(\tau|X) = X'\beta_0 + X'\gamma_0 q_\varepsilon(\tau). \]

Here the conditional quantile function is linear, so that the regression quantile is \(\beta(\tau) = \beta_0 + \gamma_0 q_\varepsilon(\tau) \).

Example 2 Engle curve.